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ABSTRACT 
An analytical model is developed which can describe the hourly temperature variation 
in rivers. The model is composed of two parts, a day and night solution. The 
analytical solution is based on a linearization of the net heat exchange term at the 
air-water interface. The incoming solar radiation is approximated by a sine function. 
Comparison with experimental data is very good. 

INTRODUCTION 
The natural water temperature of a river is defined as the temperature in the 
absence of man-made alterations. Some examples of alterations are channeliza­
tion, weather modification, impoundment, heat discharges, and irrigation 
withdrawal and return. Predicting the natural temperature of a river can form 
the basis for determining the effects of proposed modifications to the river 
system. Prediction of water temperature is also important from a water quality 
standpoint. Dissolved oxygen content, saturated solute concentration, BOD, 
and other water quality parameters are functions of temperature. 

Mathematical models which predict water temperatures in rivers have 
received considerable attention over the years. Raphael developed a model 
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which treated a river as a well-mixed system so that the temperature change 
depended only on meteorological conditions and the inflow and outflow to each 
reach [1]. This well-mixed assumption is normally not encountered in rivers. 
He neglected convective or dispersive effects. 

Kothandaraman developed a model to predict daily mean temperatures of 
large rivers [2]. He assumes that the water temperature can be written in the 
form of a time dependent Fourier series with three residual terms. He used four 
years of water temperature and dry-bulb air temperatures to fit the coefficients. 
He then computed the daily mean temperature for 1969, one of the four years 
for which he had data, and obtained agreement within 1.0°C. 

The main drawback to this model is the fact that it is site-specific and 
empirical in nature. Any attempt to use the model in a different river system 
would require recomputing the coefficients. Also, any alteration to the river 
basin cannot be predicted since the coefficients are based on existing conditions. 

Brown developed a model for predicting the hourly water temperature of 
small streams [3]. His model contains only accumulation and source terms. He 
also neglects convection and dispersion. Calculated results were within 0.5°C of 
the observed values on two streams. Comparison was limited to one twenty-four 
hour period. 

Morse developed a one-dimensional stochastic stream model which included 
an accumulation, convective, and source term [4]. The source term was 
approximated as a second-order polynomial. The coefficients of the source term 
were fitted using expected meteorological conditions. By following parcels of 
water through a portion of the Columbia river, he was able to predict twenty-
four temperature points to within 0.5°C. 

Edenger, Duttweiter, and Geyer developed a water temperature model based 
on the concept of an equilibrium temperature [5]. The equilibrium temperature 
was defined as the temperature the river would attain if the net heat flux to the 
system was zero. By using this concept, they were able to linearize the energy 
source term. Models using this concept neglect axial dispersion. This model 
works best under constant meteorological conditions. 

Brocard and Harleman used the equilibrium temperature method to develop 
a one-dimensional model for water temperatures in rivers during unsteady flow 
[6]. Their model included accumulation, convective, dispersive, as well as the 
linearized source term. The model was solved numerically and compared to 
reservoir data. Agreement was generally within 0.5°C for daily averages. 

Yorsukura, Jackman, and Faust developed a linearization scheme for the 
energy source term by expanding it in a Taylor series about an undefined base 
temperature and neglecting higher than first-order terms [7]. 

Jobson used the concept of a natural temperature to describe the removal of 
excess heat loads in rivers or streams [8]. By subtracting the effects which cause 
a change in the natural temperature from the total temperature change, he was 
able to describe the reduction in excess heat. His analysis also uses the concept 
of the Taylor series expansion to linearize the source term. 
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Paily, Macagno, and Kennedy [9] used the linearization scheme of Yotsukura, 
et al., to predict the axial temperature profiles in heated rivers during winter. 
Their model includes accumulation, convective, and dispersive effects as well as 
the linearized source term. A test case is shown for calculation of the ice-free 
case but no comparison with data is shown. 

Paily and Macagno describe a numerical method for solving the one-
dimensional differential equation for temperature in a river [10]. To test their 
method, they compared their results to a special case which reduces to the 
closed-form solution described above. The agreement for this case is good. 

Noble and Jackman also describe a numerical solution to the one-dimensional 
differential equation for temperature with accumulation, convective, dispersive, 
and source terms [11]. Comparison of model results with experimental data 
through an entire river basin for a six week period showed agreement generally 
within 3°C. 

Noble used the linearization scheme of Yotsukura, et al., to solve the one-
dimensional differential equation for temperature and obtain an analytical 
solution [12]. This solution is strictly valid only under constant meteorological 
conditions. No comparison with experimental data was demonstrated. 

Noble [13] demonstrated that there is a direct relationship between the 
equilibrium temperature method and the method of Yotsukura, et al. It was 
shown that the equilibrium temperature model was a special case of the 
Yotsukura method. It was also demonstrated that the Yotsukura method was 
the better choice. This is due to the fact that the Yotsukura method uses the 
natural river temperature at a given time as the base temperature. This reduces 
linearization error compared with the equilibrium temperature method which 
implicitly uses zero degrees as the base temperature. 

Any model which incorporates accumulation, convective, dispersive, and 
source terms to predict hourly axial temperature profiles in rivers suffers some 
shortcomings. If the source term is not linearized, the equation must be solved 
numerically due to the non-linearities in the source expression such as radiation, 
for example. If the source term is linearized to develop an analytical solution, 
this solution would not perform well on an hourly basis due to the large 
variation in incoming solar radiation. Linearization solutions have been suitable 
for hourly night-time predictions or hourly day-time predictions with fairly 
constant meteorological conditions. They are also appropriate for daily or 
weekly averages. 

The purpose of this article is to present an analytical solution for hourly 
temperature predictions in rivers. The solution utilizes a linearization of the net 
heat flux at the air-water interface and assumes uniform geometry and steady 
flow conditions. This solution is useful to estimate the diurnal temperature 
variation along a reach of a river. Comparison can be made with numerical 
results to test their reliability. Predictions of system response to a change in 
meteorological conditions can be determined. Also, one can move forward in 
space or time to any point of interest without intermittent calculations (such as 
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determining maximum or minimum temperatures). Finally, one can use this 
solution to obtain estimates of system parameters, such as average depth or 
velocity. 

MODEL DERIVATION 
Equation (1) describes the one-dimensional differential equation of change 

for water temperature. 

9T + ^ Τ = ^ ϋ _H_ 
at ^ V pcpd {l) 

where T = axial water temperature, t = time, v = axial velocity, x = axial 
coordinate, D = axial dispersion coefficient, H = net heat flux at the air-water 
interface, p = density of water, Cp = isobaric heat capacity of water, and d = 
channel depth. Equation (1) contains accumulation, convective, dispersive, and 
source terms. Direct analytical solution of equation (1) is not possible due to 
the non-linear nature of the source term. 

Here H is given by 

H = Hj - HBR - HE - Hc - HA (2) 

where Ht = total incoming absorbed radiation, HBR = radiation from water 
surface, HE = evaporative heat loss, Hc = conductive heat loss, and HA = 
advected heat loss. 

H B R =eo(T + A)4 (3) 

HE = p U X ( e T - e a ) (4) 

Hc =C l P UX(T-Ta) (5) 

where e = emissivity of water, σ = Stefan-Boltzmann constant, λ = latent heat of 
vaporization, Δ = scale factor required to shift temperature to an absolute scale, 
U = wind speed function, eT = saturated vapor pressure of water at the river 
temperature, ea = actual vapor pressure of water above the water surface, Cj = 
Bowen's ratio, and Ta = dry-bulb air temperature. 

To develop an analytic solution, it is necessary to linearize the source term. 
Noble [13] demonstrated that the linearization procedure of Yotsukura, et al. 
[7], was superior to the equilibrium temperature method and will be used here. 

-^—7 = |3 - aT + a sin bt (6) 
pCpd 

Equation (6) describes the linearization of the source term. 
β - αΤ is the linearization of the incoming long-wave radiation, back-radiation 

from the water surface, evaporation, and convection contributions, a sin bt 
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describes the incoming solar radiation actually absorbed at the water surface, a 
is the maximum value of the absorbed solar radiation and bt varies from 0 to π 
over the period of daylight hours. For night conditions, a = 0. 

Here, 

α = ^ d " [4ea<Tb+A)3 + » υ λ ( W~}
T

 + C i } ] ( 7 ) 

β = - ^ {Hr - ea(Tb+A)4 -pUX[(eTb-ea) + C^T . -TJ ] 

+ AeoTb(Tb+A)3 ^ U X T b ( ^ . ) T b + Cx)\ (8) 

where Tb = base temperature for evaluation (usually taken as the natural water 
temperature). 

To solve equation (6) analytically, it will be assumed that there are steady 
flow conditions and uniform geometry along a reach. 

The night solution (a = 0) has previously been determined [12]. Equations 
(9) and (10) describe the solution for this period. 

r , V 2 X 2 , OiX2 M, - X , f V 2 t , ^ i / 2 1 l 
+ exP t <Π& + "5") I e r f c t^5^ + ( "^T + a t ) ί I 

1 [~ L· , vx ,Λ , ν χ . . Γ χ 
- - ( T i - a ) e x P ( — - a t ) e x P ( - — ) e r f c [ ^ 5 ^ 

- 2 ( Γ 7 Π + e « P ( 2 D ) e r f c [ 2 W 5 + 2 ( F ) ] ί ( 9 ) 

If one neglects axial dispersion (D = 0) 

T = J T i - T 0 e - e t - ^ ( l - e - e t ) } e J ^ u ( t - J ) 

+T0e"a t + ^ ( l - e - a t ) (10) 

where Tj = initial water temperature, T0 = water temperature at the upstream 

boundary, and u(t - —) = unit step function. 
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Equation (6) becomes 

| ^ - + v | ï - = 0 - aT + a sin(bt) (11) 
dt σχ 

when axial dispersion is neglected for daytime conditions. 
The initial and boundary conditions are 

T(o,t) = T0 

T(°°,t) = finite 

T(x,o) = Ti 

Taking the Laplace transform of equation (11) 

v | î + (s + a)f = 1 + -
3x s s 

Solving equation (15) 

f - β ! ab 

s(s + a) (s + a)(s2 

j3 - ( s + a ) x 
- r j_ \ e v s(s + a) 

rr (s+a)x 

88 + !2 + b2 

+ b2) ' 

" (s2 + b: 

Ti 

Ti 
s + a 

ab 
2)(s + 

Ti 
S + ι 

_ 

« ) " 

—e α 

(s+α 
V 

(s+a)x 
v 

:)x 

S 

Inverting equation (16), the solution in this case for T becomes 

(12) 

(13) 

(14) 

(15) 

(16) 

T = A(l - e"at) + Tje-at + aAe~at + , 2 * 2 .u sin(bt - t a n " 1 - ) 
a v ' 1 (a* +b )/2 v cr 

+ u(t-k) I T0e-k a - Ti e-a t - aAe"at - £ (e"** - e~at) 

+ aAe -ak [cos b(t - k) - ^ sin b(t - k)] [ (17) 

where 

Λ - +b 

k = ^ v 
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In the above solution, the inflow temperature is assumed constant. This 
corresponds to situations such as the reach is bounded by a dam or the 
headwaters reach where the inflow is groundwater. If the inflow temperature is 
not constant, parcels of water could be tracked using Lagrangian coordinates. 
For this situation, the terms in equation (14) multiplied by the unit step 
function would not be used. 

COMPARISON WITH EXPERIMENTAL DATA 
To test model predictions, comparison of model calculations with 

experimental results were performed for two independent sets of data. Marcotte 
and Duong presented meteorological and water temperature readings for a 
twenty-four hour period for the North River in Canada [14]. Figure 1 shows a 
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Figure 1. Model performance using Matcotte and Duong data. 
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comparison of their experimental data and temperature predictions using 
equations (10) and (20). As seen from this figure, the largest variation is 
approximately 0.2°C. 

Noble and Jackman presented data for meteorological conditions and water 
temperature data for the Mattole River in northern California [15]. Figure 2 
shows a comparison between experimental data and model predictions again 
based on equations (10) and (20). The model was run for four days. The 
maximum deviation between predicted and experimental values is approximately 
1°C with most predictions within 0.5°C. 

Separate values of a and ß were calculated for the day and night period in 
Figure 1. For Figure 2, only one value of a and ß were calculated each day. 
They are listed in Table 1. The base temperature used in each calculation was 
the initial water temperature for each period. The meteorological conditions 
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Figure 2. Model performance using Noble and Jackman data. 
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Table 1. Parameter Values for Calculated Results 

1 K K 1 
Figure Time Period a(-) ß(-^) af-j^J bf—J 

12 
Day 9.87 X 1(T3 2.10 X 1CT1 3.49 X 10_1 

Night 1.81 X 1 0 - 3 - 7 . 3 3 Χ Κ Γ 2 0 

2 Day 1 4.62 X 1CT2 5.27 X 1 0 - 1 1.150 jr 

Day 2 4 . 6 5 X 1 0 ^ 6.03 X 10_1 1.140 
7Γ 

14 

Day 3 4.66 X 10~2 6.32 X 10~1 1.121 -£r 
14 

Day4 4.46 X 10~2 3 .94X10 - 1 1.121 JL 
14 

used to calculate a and ß were also those corresponding to the initial point of the 
time period. 

The comparison between experimental and calculated water temperature is 
very good in both cases. The model as demonstrated performs best under steady 
flow and slowly varying meteorological conditions. Predictions would be poorer 
under highly variable meteorological and flow conditions. 

CONCLUSIONS 
Analytical solutions have been developed to predict the water temperature of 

rivers for both day and night conditions. The solution is based on a linearization 
of the heat flux term at the air-water interface. The solution contains time and 
position dependence as well as accounting for convective effects. Two different 
sets of experimental data are compared to model predictions. In each case, the 
difference between predicted and observed values usually is less than 0.5°C. 

These solutions allow one to predict the hourly temperature variations in 
rivers with uniform geometry under clear sky, steady flow conditions. These 
solutions can then aid in the development of more extensive analytical solutions 
under more varying conditions. 
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