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ABSTRACT 
Changes in monthly averages of total suspended participates in Chicago are analyzed 
to investigate the effect of a law forbidding the use of high sulphur coal, which came 
into effect in January 1970. A seasonal integrated autoregressive-moving average 
time series model is fitted to the data collected prior to 1970 and forecasts made 
from this model are compared with the data observed after the ban was in effect. A 
portmanteau test based on one-month ahead forecast errors indicates the decrease in 
particulate concentrations caused by the law banning the use of high sulphur coal to 
be statistically significant. Weight functions which represent the effects of changes 
in parameters of the model and changes in the series due to different factors modeled 
by a series of indicator variables are computed next. These weight functions are used 
to analyze the one-step ahead forecast error variance in order to evaluate the 
magnitude of changes in the long-term trend and seasonality of the particulate data. 
The results indicate a gradual decrease in the particulate emissions due to high 
sulphur coal burning that approaches steady-state after an approximate lag of five 
years. 

I. INTRODUCTION 
After a law which prohibited burning coal of high sulphur content came into 
effect in the city of Chicago, Illinois, U.S.A., the measured particulate 
concentration showed a drastic decrease in level as well as a substantial change in 
its characteristic periodic behavior. O'Neill analyzed the change in particulate 
concentration in Chicago by using an autoregressive model [ 1 ] . Rao and 
Padmanabhan used intervention analysis to investigate the changes in particulate 
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concentration in warm and cold seasons after burning high sulphur coal was 
banned in Chicago [2]. 

There are some questions left unanswered by these studies. For example, the 
sources of variation of the level and periodicity of the particulate concentration 
series cannot be inferred by methods based on intervention analysis. A method 
developedrecentiy by Box and Tiao [3], makes it possible to investigate the sources 
of variation in particulate concentration levels and also the changes in trend and 
seasonal characteristics of the time series after the ban on burning high sulphur 
coal went into effect. The basic objective of research presented herein is to 
investigate the sources of changes and the changes in seasonal behavior of the 
particulate concentration time series originated by the ban on burning high 
sulphur coal in Chicago by using Box and Tiao's method. 

A time series of monthly average concentrations of air suspended particulates 
measured from January 1964 to December 1977 is used in the present study. 
The procedure used in the study is to analyze the errors in one-step ahead 
forecasts computed by means of a time series model based on data prior to the 
change in the series. The particle concentration data before January 1970 — i.e., 
before the ban on burning high sulphur coal went into effect — are used to 
construct and validate a time series model. This model is used to obtain one-
month ahead forecasts of particle concentrations from January 1970 to 
December 1977. The resulting forecast errors are analyzed to test the changes in 
stochastic character of the time series after the law went into effect, and also to 
determine the sources of these changes. The sum of squares of one-month ahead 
forecast errors is compared to confidence intervals based on its theoretical 
distribution according to the model constructed by using data prior to the ban. 
The variations in computed forecast errors due to unit changes in model 
parameters and due to indicator variables are also investigated. The 
contributions of each of these factors to the sum of squares of errors are 
estimated via regression analysis. 

This article is organized as follows. The particulate concentration data series 
and the stochastic model construction and validation for the data before January 
1970 are discussed in section II. Testing the sum of squares of errors is 
discussed in section III. The computation of weight functions is discussed in 
section IV. The regression analysis of the forecast errors in the Chicago 
particulate data is discussed in section V. The results are discussed and a set of 
conclusions are presented in the last section. 

II. DATA USED IN THE STUDY AND 
INITIAL TIME SERIES MODEL 

The series of monthly averages of total suspended particulates measured at 
the central city monitoring location in Chicago is plotted, together with forecasts 
made with origin at the 72nd point (t0 = 72) up to ninety-six months ahead 
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Figure 1. Chicago particulate time series and forecasts from equation 4 
with origin at t = 72. 

(1 = 96), in Figure 1. The seventy-two data points observed before the ban came 
into effect, hereinafter referred to as the first part of the series, have a mean of 
155.1, variance 1042, and skewness coefficient 0.364. This series is denoted by 
the sequence Zj, z 2 , . . . , z t - 1 , zt, z t + 1 , . . . . The monthly average particulate 
concentration zt can be estimated by using a time series model which may 
involve past values zt_lt z t _ 2 , . . . . By using a white noise series,... a t - 1 , at, 
a t+1 defined as a sequence of independent identically distributed random 
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variables, such a model can be described by the autoregressive (AR) model in 
equation (1), 

at = 7r(B)zt = (1 - τ^Β - 7T2B2 - . . . )zt = zt - τ ^ ζ ^ - π2ζ<_2 . . . , (1) 

where B is the back shift operator such that Bzt = zt_j and at is a normally 
distributed white noise series with mean zero and variance a\. O'Neill showed 
that twelve π-weights were adequate to model the Chicago particulate time series 
[1]. Alternatively, the moving average (MA) model equation (2) may also be 
used. 

zt = V/(B)at = (1 + vi/jB + ψ2Β2 + . . . )at = at + i / ^ a ^ + V2at_2 . . . . (2) 

Integrated autoregressive-moving average (ARIMA) models are usually more 
parsimonious than AR or MA models [4]. The general ARIMA model is 
represented by the finite difference equation (3) 

Φ(Β8)0(Β)(1 - B)d(l - Bs)Dzt = θ0 + ©(Bs)0(B)at . (3) 

This equation consists of the overall constant 0O and the following operators: 
Regular Differencing 
Seasonal Differencing 

Regular Autoregressive (AR) 

Seasonal Autoregressive (SAR) 

Regular Moving Average (MA) 

Seasonal Moving Average (SMA) 

(1 - B)d 

(1 - BS)D 

<KB)=1-

Φ(Β)= 1 -

0(B)= 1 -

0(BS) = 1 

P 
Σ Φ31 

i=l 
P 
Σ ΦβΆ 

i=l 
q 
Σ θίΒ1 

i=l 
Q 

- Σ ©jB51 

i=l 
In the present study a model with one seasonal differencing of order s = 12 is 

fitted to the first part of the series. After substituting the estimates of the 
overall constant 0O and the SMA parameter Θ± in (3), the model in equation (4) 
is obtained. 

(1 - B12)zt = -2.946 + at - O ^ l a ^ (4) 
(0.924) (0.159) 

The standard errors of the estimated parameters 0O and 0 j are given in 
parentheses below their respective values in (4). The residuals at are obtained by 
an iterative procedure which combines forecasting and backforecasting [4]. This 
procedure gives an estimated white noise variance ò\ = 412. The computed 
residuals are plotted in Figure 2 and their correlogram is shown in Figure 3. 
These residuals are tested for whiteness by using a portmanteau test. The details 
of this test are found in Box and Jenkins [4], and hence are not repeated here. 
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Figure 2. Residuals from the model fitted to the data 
before the ban (equation 4). 

The value of the portmanteau statistic is Q = 11.6 which is well below the 
χ2(0.95;13) = 22.4 bound. Thus, the model in (4) is accepted as valid for the 
first part of the series. This model represents adequately the seasonaUty of the 
particulate concentrations due to household and industrial coal burning for 
heating and production purposes exhibited as a dominant feature in the first 
part of the series, as well as the weak decreasing trend present in the data. 

The plot of the ninety-six observed particulate concentration values after 
seventy-two months, hereinafter referred to as the second part of the series 
(Figure 1), shows two major differences with respect to forecasts made from the 
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Figure 3. Correlogram of residuals from the model fitted to the 
data before the ban (equation 4). 

model constructed for the first part of the series (equation 4). First, the slope of 
the trend line slants down. Secondly, the amplitude of the seasonal wave 
pattern has definitely decreased. A model similar in structure to the previous 
one is fitted to the second part of the series. Substitution of the corresponding 
parameter estimates gives model equation (5). 

(1 - B12)zt = -6.163 + at - 0.857at_12 (5) 
(0.437) (0.101) 

Comparing equations (4) and (5), a change of approximately three negative units 
in θ0 can be inferred, whereas the estimate of ©j is not significantly different 
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from that of the first part. This independent model is only an approximation 
since the probability distribution of the second part of the series is conditional 
on the observations and residuals from the first part of the data. In addition, 
this model does not account for the apparent change in the seasonal pattern of 
the data. These changes in the stochastic character of the series must therefore 
be analyzed by other methods such as those discussed in the next section. 

III. TESTING THE FORECAST ERRORS 
When the expected values E[a, + 1 ] = 0 for lead times 1 = 1 to 1 = 96 are 

substituted in (4) without updating the resulting forecasts with new observations, 
the plot of the observed and forecasted particulate concentrations for the 
second part of the series (Figure 1) give an impression of large discrepancy. 
However, this impression may be misleading since the effect of assuming the 
one-step ahead forecast errors to be zero is cumulative. In order to test the 
significance of this discrepancy, it is first assumed that the parameters of the 
model equation 4 have not changed and the one-step ahead forecast errors for 
the second part, denoted here by à[ are computed by using (6). 

âj = * (B)zt. (6) 

When the ARIMA model difference equation (3) is preferred, (6) is written as 

Φ(Β8) φ (B)(l - B)d(l - Bs)Dzt = Ô0 + Ô(Bs)0(B)â; . (7) 

After expanding (7), it can be solved recursively for â't in terms of the observed 
series z t, z t _ i , . . . , z t_d_sD_p_sp, and computed residuals â^_j, â ' t_2 , . . . , 
â't_q_sQ. The recursive computation starts by substituting the previously 
computed residuals â{ from the first part instead of the corresponding â[ for 
t < t 0 . 

When the pertinent parameter estimates from (4) are substituted in (7), the 
one-step ahead forecast errors for the Chicago data are computed by using (8). 

ä[ = z t - z t _ 1 2 +2.946+ 0.791ât_12. (8) 

If the ban on burning high sulphur coal has brought about no change in the time 
series, the forecast errors given by equation (8) would constitute a white noise 
series and their standardized sum of squares Qj during the period t0 + 1 , . . . , 
t0

 + i . 

Ql = ΖΣ (9) 
"a 

would be distributed as χ with 1 degrees of freedom. Thus, a portmanteau test 
of the continuing appropriateness of the model during this period is achieved by 
comparing Q1 with the corresponding χ bound for a given confidence level. If 
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the value of Qj is above this bound, then we may conclude that the stochastic 
character of the time series has changed. 

The one-step ahead forecast errors of the second part of the Chicago 
particulate series, plotted in Figure 4, show an apparent lack of randomness. By 
using the estimated residual variance from the model fitted to the first part of 
the series (σ^ = 412), Qgg is calculated as 161.6, which is much larger than 
χ2(0.95;96) = 119.9. The Ql values for lead times 1 = 1 to 1 = 96 are plotted on 
Figure 5. These Qj values are highly above the χ (0.95;1) bounds after two 
years since the ban went into effect. Thus, the stochastic character of the 

Figure 4. One-month ahead forecast errors after the ban was in effect 
computed by using equation 8. 
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Figure 5. Portmanteau statistic of one-month ahead forecast errors from 
the model fitted to the data before the ban. 

particulate concentration series has been definitely altered after the law banning 
the use of high sulphur coal. 

IV. COMPUTATION OF CHANGE WEIGHT FUNCTIONS 

The changes which have been introduced into the system may be represented 
by the model equation (10). 

7r'(B)zt' = at. (10) 
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(11) 

Let the operator π(Β) of equation (1) be expressed in terms of n parameters. 
Each of these parameters, denoted here by y^, is incremented by an amount 
Ä7k and the resulting values 7k = 7k + A7k are substituted into the operator 
π'(Β) of equation (10). Let the series z[ be derived by equation (11). 

z t ~ z t ~ Σ ÄXjt » 
j = l 

where x;t are m series of indicator variables representing different agents which 
may be responsible for changes in the original series. Several types of functions 
may be used to represent step changes, seasonal changes, or the influence of new 
exogenous variables. The coefficients ßt are quantitative measures of the 
influence of the corresponding series of indicator variables. Considering these 
combined changes, the one-step ahead forecast errors â( can be expressed in 
terms of n weight function series νΥγ t for the changes in parameters A7k and m 
series Xjt for the effects of indicator variables j3j as shown in (12) [5]. 

m n 
'< = . Σ ^jXJt + Σ ATkW t + a t , 0 2 ) 

j = l k = l K 

where the X;t and W t weights are computed as follows: 

dât' 
Change in Parameter 7k ^n-t = ~ "a— ( ^ ) 

Indicator Series Xjt Xjt 
= <B)xjt (14) 

A brief derivation of equations (12), (13), and (14) from (6), (10), and (11), is 
presented in Appendix A. 

When the model fitted to the first part of the data is given in the form of the 
ARIMA difference equation (3), the one-step ahead forecast errors of the second 
part of the series are computed by using (7). Then, (14) is written as (15a). 

Φ(Β5)0(Β)(1 - B)d(l - Bs)Dxjt = Θ (Bs)0(B)Xjt . (15a) 

Thus, the computation of the series of weights Xjt is equivalent to substituting 
such weights for the one-step ahead forecast errors â't when the time series of 
indicator variables X:t is substituted for zt in (7). Since the term 0O has been 
already accounted for in (7), it does not affect the indicator series in (15a). 

By partial differentiation of (7) with respect to each parameter, equation (13) 
is written in the forms given in Table 1. Thus, the series of weights W t can be 
obtained as one-step ahead forecast errors from the observed series zt or 
computed a( with respect to appropriate modifications of the model equation 
(7). Equations (15) can be solved recursively for the Xjt and W t series in a 
similar fashion as (7). Since the model parameters are constant before the 
introduced changes, the starting values W t as well as Xjt are zeros for t < t0. 
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Table 1. Equations for Computation of Weight Functions 

Parameter Equation for the W-Weights Equation Number 

4>i Φ(Β5)(1 - B ) d ( 1 - B s ) D B i z t = 0(Bs)Ö(B)W0.t (15b) 

Φ, 0(B)(1-B)d (1-B s )DB i sz t = 0(Bs)ê(B)W$. t (15c) 

0j Β^^-θ(Β)\Νθ.χ (15d) 

Θ, Bisât' = -0 (B s )W 0 . t (15e) 

θ0 ■\=ê(Bs)Ô(B)\N()Qt (15f) 

Weight Series for the Chicago Particulate Data 

For the Chicago particulate data, changes in parameters 0O and 0 j are 
investigated. In addition, the series ât'; t > t0, is partitioned in several subsets 
whose correlograms (Figure 6) clearly indicate that these residuals have a strong 
seasonal component which decreases until vanishing at approximately five years 
after the law was enacted. Thus, a series of indicator variables x l t is included in 
the model to account for this "damping" of the seasonal component present in 
the first part of the series z t. Substituting this damping component in (11), 
equation (16) is obtained. 

zt' = zt - |S1xlt, (16) 

where ßy represents the initial amplitude of the gradually decreasing seasonal 
component. 

In order to obtain an adequate expression for x l t , the coefficients of a 
Fourier series expansion for the seasonal component of the first part of series 
are first calculated. After the linear trend is deleted, the coefficients estimated 
by regression analysis of the data from the first period give a periodic function 
which is then rescaled by dividing by its amplitude. The resulting unit amplitude 
seasonal indicator function is given in (17a). 

TTt 77t 7Tt 
ut = 0.7550cos ^+0 .2666s in-^ + 0.1804cos-r-1 6 6 3 

-0.0298sin y + 0.0669cos-y + 0.1076sin y 

-0.0441COS ̂  - 0.0191sin ^ + 0.0840cos ^ 3 3 6 

-0.1037sin - ^ - 0.042ÛCOS nt. 6 

(17a) 
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The periodic function u t is plotted in Figure 7a. The function yt given by (17b) 
decreases parabolically from y = 0 at t = 72 to y = -1 at t = 132. This function yt, 
shown in Figure 7b, represents a gradual decrease in amplitude during that period. 

y t = ( 
t - 132 } 

60 

- 1 

0 < t < 7 2 

) - 1 7 2 < t < 132 

t > 132 . 

(17b) 
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Figure 7. Construction of the series of change indicator variables. 
Top: unit amplitude seasonal indicator (eq. 17a); Center: parabolic decrease 

indicator (eq. 17b); Bottom: seasonality change indicator (eq. 17c). 
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The indicator series included in the model is the product of the functions y t and 
ut, given in (17c) and plotted in Figure 7c. 

x l t = u t y t . (17c) 

The weights for the change due to x l t are obtained by substituting the 
parameter 0 j from model equation (4) into (15), yielding 

(1 - B12)x l t = (1 - 0.791B12)Xlt. (18a) 
Similarly, the weights for changes in the SMA parameter 0 j and the trend 
parameter 0O are computed by substituting ©j into (15c) and (15f), yielding 
equations (18b) and (18c) respectively. 

â ; . 1 2 =- ( l -O .791B 1 2 )W 0 i t (18b) 

l=(l-0.791B1 2)W9 ( ) t . (18c) 

Equations (18) are solved for recursive computation of the weights as equations 
(19). 

Xlt = Xlt - xi,t-i2 + 0.791Xljt_i2 (19a) 
w 0 , t = -â;-l2 +0.791 Welt_i2 (19b) 

W 9 o t =l+0.791W e o t . 1 2 (19c) 

The resulting weights X l t , W@ t, and We t are plotted in Figures 8a, 8b, and 8c, 
respectively. The contribution of each of these sources of variation to the total 
forecast errors is evaluated next. 

V. RESULTS OF REGRESSION ANALYSIS OF 
THE FORECAST ERRORS 

After computing the forecast errors â/ and the series of weights X l t , W@ t, 
and We t , a regression equation is fitted to evaluate the contribution of each 
source to the total change in residual variance. By substituting the pertinent 
weights into (12), the amplitude of the damped seasonal component ß± and the 
changes in parameters ΔΘ^ and Δ0Ο are expressed as regression coefficients in 
(20). 

â / ^ l X i t + ̂ W ^ t + AfloW^t. (20) 

The coefficients of all combinations of 1, 2, and 3 non-zero regression terms in 
this equation are calculated in order to select the best model among them to 
explain the changes in the characteristics of the particulate data. The portion of 
the sum of squares due to regression (SSR), along with the corresponding 
regression coefficients for each combination, is shown in Table 2. The portion 
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Figure 8. Weight functions for changes in the series. Top: change due to 
indicator variables (eq. 18a); Center: change in SMA parameter (eq. 18b); 

Bottom: change in MA constant (eq. 18c). 

of the portmanteau statistic Q95 explained by each model is obtained by 
dividing the corresponding SSR by the previous estimated white noise variance 
«2 
à . The portion of Qgg due to the error sum of squares SSE, is then obtained 
by subtraction. 

Selection of Best Regression Model 

Model 7 gives a value ô j ' = 1.008, which violates the conditions for 
stationarity of the system, whereas the Qgg due to SSE in model 3 is above the 
χ (0.95;96) = 119.9 bound. Hence these two models are not considered further. 
The marginal contribution of each regression term in the remaining models from 
Table 2 is then obtained as the difference in Qgg due to SSR of models before 
and after including the term under consideration, as given in Table 3. 
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Table 2. Regression Analysis of One-Step Ahead Forecast Errors 

Model 
Number 

Source of 
Variation 

Regression 
Coefficients SSR 

Qgg due 
to SSR 

Qgg due 
tosse 

1 Change in 
0O only 

Change in 
Θ1 only 

Change due to 
x l t only 

Change in 0O 

and due to x1 t 

Change in 
0O and Θ, 

Change in Θ., 
and due to x l t 

Change in 0O, 
Θ,,and due 
t o x , , 

Δ0Ο = -5.525 26972 

Δ0Ο = -5.526 
>3Ί =40.71 

Δ0Ο =-3.316 
ΔΘ1 = -0.1.38 

ΔΘ, =-0.217 
β, =12.03 

Δ0Ο = -9.020 
ΑΘ, =0.218 
0, = 69.60 

40259 

30919 

27063 

43443 

65.6 

ΔΘ, = -0.246 26278 63.8 

97.8 

75.1 

65.8 

105.5 

96.0 

97.8 

0, =40.71 13285 32.3 129.3 

63.8 

86.5 

95.8 

56.1 

Table 3. Marginal Contribution of Regression Terms to χ2 Statistic 

Coefficient 

Δ0Ο 

ΔΘ, 

01 

ΔΘ, 

01 

Model No. 

1 

2 

4 

5 

6 

Q96 due to SSR 
Before Inclusion 

0 

0 

65.6 

65.6 

63.8 

UPS due to SSR 
After Inclusion 

65.6 

63.8 

97.8 

75.1 

65.8 

Marginal 
°96 

65.6 

63.8 

32.2 

9.5 

2.0 
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From these results the relative significance of each source of variation is 
inferred. Among one-term models, Δ0Ο in model 1 has the largest contribution 
to the x value, yet this model does not account for change in the seasonal 
character of the particulate series. The contributions of ΔΘ^ and ßi in models 5 
and 6 respectively, are very small. Model 4 has a large contribution of j3j after 
initial inclusion of Δ0Ο. From these considerations, model 4 (equation 21) is 
selected as best among the models presented above. 

ât' = ^X l t +Ao 0 W 9 o t + a t . (21) 

Consequently, the changes in the Chicago particulate time series is best explained 
by a change in the slope of the trend line, represented by Δ0Ο = -5.526, and a 
decrease in the amplitude of the seasonal wave pattern, represented by /3j = 
40.71. 

An Alternative Model 

A change in slope of the trend line of the Chicago particulates is represented 
in the model selected above by a change in the parameter 0Q. This change in 
slope can be also represented by an indicator series with value zero for t < t0 and 
increasing linearly thereafter. O'Neill proposed a model with a parallel shift 
represented by a time series with value zero for t < 72 and one for t > 72 [1]. 
A model which represents a change in level between these two and also includes 
the change in the seasonal component of the series is developed from physical 
considerations, and the results of this model are presented herein. 

As changes in the particulate concentration appeared after the ban on burning 
high sulphur coal went into effect, it is reasonable to assume that the subsequent 
reduction in high sulphur coal particle sources followed a "first order reaction 
law." More explicitly, the rate of reduction in the number of furnaces using 
high sulphur coal at a certain time is assumed to be proportional to the 
concurrent number of such furnaces. In constructing this model, the weak 
decreasing trend present in the first part of the series, represented by the 
parameter 0O, is assumed to be due to other sources whose identification is 
beyond the scope of this study. Thus, considering that all conditions other than 
the emission of particulates due to burning high sulphur coal remain unchanged, 
the same linear trend can be assumed to be present in the series after this first 
order change has reached steady state. 

In order to investigate this kind of change, the amplitude of the seasonal 
component of the series is first assumed to be reduced in annual steps [6]. Thus, 
eight indicator time series, representing the step reduction corresponding to each 
year after the ban, are constructed. Each of these series has a value of 0 before 
that year and -1 thereafter. When these series are substituted for y t in (17c), 
eight time series of seasonal indicator variables x l t , . . . , xgt, are obtained. The 
corresponding coefficients 0j to 0g are obtained by regression and then added up 
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Figure 9. Cumulative step reduction in amplitude of the seasonal component. 

to give the cumulative step change plotted against time in Figure 9, showing that 
the reduction in amplitude of the seasonal component can be adequately fitted 
by a first order reaction law of the same type as the time series represented in 
(21a) (the sign has been changed to indicate decrease). 

0 
p-<*(t-72). 1 

0 < t < 7 2 
7 2 < t < 132 

(21a) 

Successive approximations given an optimal value of the exponent a = 0.0796 
and the coefficients of the unit amplitude seasonal series with a similar form as 
the series u t from equation (17a), given as st in (21b) 
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Table 4. Regression Analysis of First Order Reaction Model 

Model 
Number 

1 

2 

3 

Source of 
Variation 

Change due to 
x1t only 

Change due to 
χΆ only 

Change due to 
x1t and χΆ 

Regression 
Coefficients 

0, = 37.29 

02 = 35.07 

0, = 36.71 
02 = 34.80 

SSR 

14960 

30129 

44620 

Q96 due 
to SSR 

36.3 

73.2 

108.4 

Qg6 due 
toSSE 

125.3 

88.4 

53.2 

(21b) 

st = 0.8233cos-^+ 0.2823sin ^ + 0.1534cos^ L 6 6 3 

-0.1374sin y + 0.0663cosy - 0.0036sin —■ 

-0.0540COS ^Φ- 0.1329sin ^ + 0.0901 cos ^ψ-3 3 6 

-0.1355sin - ^ - 0.0970cos 7rt . 6 
The product of st and x^ gives an indicator series for the reduction in amplitude 
of the seasonal component expressed as x^t in (21c). 

x l t = st*2t · 

The complete model to explain the changes in particulate concentration is 
formulated in terms of the corresponding weights X l t and X2t as in (22), 

at' = 01X l t + 02X2t + a t> 

(21c) 

(22) 

where 0^ is interpreted as in the model presented before (equation 21), and 02 
represents the reduction in the mean annual concentration of particulates from 
high sulphur coal sources. The results of the regression analysis of this new 
model, carried out in the same fashion as described previously, are summarized 
in Table 4. 

These results show that X l t alone (model 1) cannot explain the changes since 
its corresponding Qgg due to SSE is above the χ2(0.95;96) = 119.9 bound. 
However, after initial inclusion of X^, model 3 has a large contribution from 
X l t. As the value of Qgg due to SSE for model 3 (equation 22) is smaller than 
that corresponding to the previously selected model (equation 21), this model 
better explains the forecast residual variance, and also provides a reasonable 
physical explanation to the particulate concentration changes. The removal of 
particles due to the ban is estimated by (23) 
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Figure 10. Particulate concentration due to high sulphur coal. 

rt = ̂ 1x l t + ß2x2t, (23) 

The series wt given in (24) represents the total monthly concentration of 
particulates due to burning of high sulphur coal in the period prior to the ban, so 
that the reduction in particles rt brought about by the ban approaches steady 
state value wt asymptotically. 

wt = / 3 l S l + 0 2 . (24) 

The time series of monthly reductions in particulate levels rt is plotted together 
with the steady state reduction wt in Figure 10. 
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VI. SUMMARY AND CONCLUSIONS 

Changes in the monthly average air suspended particulate concentrations in 
the city of Chicago after the introduction of a law prohibiting the use of high 
sulphur coal have been analyzed. These changes have been shown to be 
statistically significant by means of a portmanteau \2 statistic based on the 
one-month ahead forecast errors. The changes in particulate concentrations are 
modelled by regression analysis using weight series corresponding to changes in 
parameters and time series of indicator variables. 

Several alternative models of this kind have been analyzed. A model in which 
the change in particulate concentrations is composed of a change in the slope of 
the trend line and a change in the seasonal character of the series is first selected 
on the basis of its contribution to the χ statistic. Then, an improved model 
that explains the changes in particulate concentration as a result of gradual 
reduction in the number of furnaces using high sulphur coal is constructed and 
analyzed. The results of the study permit the following conclusions: 

1. The utility of the method of decomposition of the one-step ahead 
forecast errors to investigate the sources of changes in particulate 
concentration time series is clearly demonstrated in this study. The 
method is recommended for use in the study of the sources of changes in 
time series and in the development and validation of alternative models 
for explaining such changes. 

2. The law that prohibits burning coal of high sulphur content has produced 
changes in the particulate concentrations in Chicago due to a gradual 
reduction in the emissions of particulates by furnaces using such coal. 
This reduction follows a pattern which approaches steady state after a 
lag of approximately five years. Among others, a model based on the 
first order reaction law adequately represents such a gradually changing 
pattern. This model could be used to investigate other environmental 
changes similar to that brought about by the law banning the burning of 
high sulphur coal which has been analyzed in this study. 

APPENDIX A 

A Taylor's expansion of the operator π'(Β) from (10) yields 

π'(Β) = π(Β)+[ Σ Ayk j - 1 ττ(Β) + -L[ J ^ Δγκ ^ - ] ττ(Β) + . . . (A.l) 

The second and higher order terms are then dropped to obtain (A.2): 

π'(Β) = π(Β)+ Σ ^ ψ ^ 1 . (A.2) 

Substitution of (11) and (A.2) in (10) gives 
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n 9π(Β) m 

[π(Β) + Σ A T k " ^ - 2 ] [ z t - Σ /3 jX j t ] = at . (A.3) 

After expanding, dropping the second order terms and rearranging, equation 
(A.4) is obtained. 

m n θπ(Β) 
π(Β)Ζί = π(Β) Σ ftxjt- Σ Ayk

 κ ' z t + a t . (A.4) 
j=l k=l °7k 

Substituting at' for 7r(B)zt according to (6), (A.4) reduces to equation (A.5): 

, m n da t 
at = Σ̂ ßj^B)x j t - ^ Λγ,, ^ + at . (A.5) 

Equating the coefficients of j3: and Δγ^ in (A.5) and (12), the expressions for 
Xjt and W t are obtained as equations (13) and (14), respectively. 
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