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ABSTRACT 

The Faustmann model has played a key role in the determination of the optimal 
forest rotation. Faustmann developed a simple and deterministic competitive 
economic model, the objective of which was to maximize the present value of 
perpetual returns to the fixed factor, a unit of timberland [ 1 ]. The optimal 
rotation problem thus viewed is a timber management problem abstracting from 
any environment of uncertainty. This article considers an alternative model 
formulation that treats a forest resource operated under conditions of stumpage 
price uncertainty and forest owners with risk aversion. A modified Faustmann-
type rule under conditions of stumpage price uncertainty is developed based on 
the theory of a competitive firm under price uncertainty developed by Sandmo 
[2]. The Sandmo model is then used to investigate the effects of an increasing 
risk on the optimal rotation age. 

THE MODEL 
In the initial analysis presented, the forest consists of a single homogeneous 
tree population distributed uniformly and initially grown on a bare plot of land. 
The forest manager is assumed to be operating in a perfectly competitive market 
and to have perfect knowledge of the level of the tree population (tree stock) 
and the regeneration and harvesting costs. Like Faustmann, we abstract from 
the nontimber benefits flowing from a standing forest. 

305 

© 1988 , Baywood Publishing Co., Inc. 

doi: 10.2190/AGKQ-MWLM-1397-BTGG
http://baywood.com



306 / R. N. BHATTACHARYYA AND D. L. SNYDER 

Assuming a competitive market, let G(t) denote the stumpage value (net of 
harvesting cost) in a forest of age t. Once the optimal harvest age is determined, 
harvesting costs are likewise determined. Hence, G(t) can be considered as net 
stumpage value. 

It is assumed that G (t) è 0. Initially G(t) increases at an increasing rate, then 
at a decreasing rate, reaches a maximum, falls, and then probably levels off at a 
steady state. Since the forest stand is regenerated naturally on initially base land 
at time t = 0, regeneration cost is ignored. 

It is assumed that the forest manager considers only the stumpage price p 
stochastic with a subjective probability density function <p(p) and an expected 
price, E[p] = p, where E is the expectation operator. Furthermore, it is assumed 
that the planting decision when the production process starts must be taken 
ex ante, i.e., before the stumpage price is known, and only on the basis of the 
knowledge of the price summarized in the density function. To facilitate 
comparison with the deterministic model, the stochastic price can be subsumed 
in stochastic stumpage value. If G(t) is the stumpage value (net of harvesting 
cost) of a forest of age t with a stochastic price, then G(t) is stochastic with a 
subjective density function f [G(t)] and an expected stumpage value 
E[G(t)] = G(t). 

The forest manager is assumed to choose a rotation cycle to maximize the 
expected utility of discounted value of all net returns from the forest resource 
calculated over the infinite chain of renewal cycles. The net return from a single 
rotation is given by 

V!(T) = G(T)e-^ (1) 

where r > 0 is the discount rate, T is the age of the trees for each rotation cycle, 
and G(T) is a random variable of stumpage value. 

Given that all rotations are alike, the net return from all future rotations is 
given by 

V ( T ) = i r t r T G(T)e-rT = V l (T)/ l - e-rT . (2) 

The approach adopted here is to describe the rotation problem in terms of 
the classic Von Neumann-Morgenstern theory of individual decision making 
under uncertainty. Uncertainty in stumpage price results in a V that is stochastic. 
Hence, the manager must select the best of the available probability distributions 
for V, which are called random prospects. If we assume that the manager's 
behavior in solving this problem conforms to the Von Neumann-Morgenstern 
axioms [3], then it can be inferred that the preference ordering for various 
random prospects can be represented by a utility function U[V(t)] and that the 
best prospect is found by maximizing the expected value of utility. 

For a forest manager with a planning horizon running through one harvest 
cycle from the time t = 0 through t = T, the objective function to be maximized 
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with respect to T can be written as 

W1(T) = E{U[V 1 (T)] | . (3) 

When the planning horizon is extended to an infinite sequence of identical 
harvest cycles, the objective function to be maximized turns out to be 

W(T) = EJU[V 1 (T) / ( l -e- r t ) ]} . (4) 

The forest manager's attitude towards risk in resource return is represented by 
the form of the U[V(T)]. Strict concavity in the utility function implies risk 
aversion. The choice of the particular form is based on its risk characteristics in 
terms of the measures of risk aversion developed by Arrow [4] and Pratt [5]. In 
the analysis here, utility is represented by a concave, continuous, and twice 
differentiable function of discounted net returns, U[V(t)], where 

U' [V(T)] > 0, U" [V(T)] < 0, (5) 

so that the forest manager is assumed to be risk averse. 
For clarity and convenience of exposition, the analysis runs in terms of two 

cases: the Fisherian one-cycle case and the Faustmann many-cycle case, 
remembering of course that the Faustmann formulation is the only correct one 
[3]. 

Fisherian One-Cycle Solution 

For a one-cycle time horizon, the expected utility of the discounted net 
return from a forest of age T is: 

E { U[V,(T)] } = ; U[e-'TG(T)]f[G(T)]dG(T), (6) 

where the first integration is over the range of G(T). Alternatively stated, 

E|U[V!(T)] \ =EJU[e-'TG(T)]}. (7) 

Differentiating equation (7) with respect to T, the necessary condition for an 
optimum is 

EJU'tViOOHG'CO-rGCT)] } = 0, (8) 
and the sufficient condition for an optimum is 

D = E | U" [V^T)] [G'(T) - rG(T)] 2e" r T + 
U'[V,(T)] [G"(T) - rG'(T)] - r[G'(T) - rG(T)] } < 0. (9) 

If [G"(T) - rG'(T)] < r[G'(T) - rG(T)], then D < 0 is satisfied. 
It is assumed that equations (8) and (9) determine a nonzero, finite, and 

unique solution T, say T*, to the present maximization problem. Under 
certainty, the solution T is characterized by the equality between the net gain 
from marginal time (G'(T)) and the opportunity cost of marginal time (rG(T)). 
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To allow for the comparison between the competitive optimal rotation under 
conditions of certainty and uncertainty, following Sandmo [2], the problem is 
posed as follows: What is the optimal rotation time under uncertainty compared 
to the situation where the stumpage price is known to be equal to the expected 
value of the original distribution. The latter time is referred to as the 
deterministic time. 

Now the first-order condition equation (8) can be rewritten as 

EJU'^OOJG'CT) =E{U'[V1(t)]rG(T)|. (10) 
Subtracting E { U'fV^T)] E[rG(T)] } from and adding E {U'tVjiT)] E[G'(T)] ( 
to both sides of equation (10), and remembering that E[rG(T)] = rG(T) and 
E[G'(T)] = G'(T), we have 

E lu ' tV^T)] [G'(T) -_rG(T)] } = E { U'[Vj(T)] 
[rG(T) - rG(T) + G'(T) - G'(T)] J . (11) 

Since E[Vj(T)] = E[G(T)]e"rT (from the definition of V^T)), we have 
V:(T) = EfV^T)] + [G(T) - G(T)] e"rT. Given the concavity of U, it then 
follows that 

U'rVjOOKU'JEtV^T)]}, (12) 
ifG(T)>G(T). Then, 

U' [Vi(T)] [rG(T) - rG(T) + G'(T) - G'(T)] < 
U' | EfV^T)} rG(T) - rG(T) + G'(T) - G'(T)]. (13) 

This inequality holds for all G and G' [2]. Taking expectations on both 
sides of equation (13) and noting that U' | E[Vj(T)] ( is a given number, 

E { U' [V^T)] [rG(T) - rG(T) + G'(T) - G'(T)] } < 
U'j E [V ! (T)] } E [rG(T) - rG(T) + G'(T) - G'(T)]. (14) 

But, here the right-hand side is equal to zero by definition, and, therefore, the 
left-hand side is negative. Consequently, the left-hand side of equation (11) is 
also negative, i.e., 

EJU'tV^T)] } [G'(T) - rG(T)] < 0 . (15) 

Since marginal utility (U' [Vj(T)] ) is positive, this implies that 

G'(T)<rG(T), (16) 

or 

G'(t)/G(T)<r. (17) 

Inequality equation (16) shows that the expected utility maximizing rotation 
time T is characterized by the expected net return of marginal time, G'(T), being 
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less than the expected opportunity cost of marginal time rG(T). Or, in other 
words, in terms of equation (17), it means at the optimal rotation age the 
expected growth rate of stumpage value be less than the interest rate. 

This implies that under stumpage price uncertainty, optimal rotation length is 
longer than the deterministic optimal rotation length characterized by 
G'(T) = rG(T) or G'(T)/G(T) = r, where the deterministic stumpage price/value is 
equal to the expected price p/value G. This result is supported by the finding of 
Norstrom [7] and may be due to the entrepreneur's desire for greater 
availability of inventory to meet uncertain future price. 

Faustmann Many-Cycle Solution 

Here, for the many-cycle Faustmann, the objective function to be maximized 
is equation (3) and the necessary condition for an optimum is 

E{U'[V!(T)] [G'(T)- ^G(T)] } =0. (18) 

where λ = (1 - e"rT)/r. 
Using the same procedure as followed for the one-cycle case (with some 

additional terms), it can be shown that 

E { U' [V^T)] } [G'(T) - -J- G(T)] < 0. (19) 

Given positive marginal utility, this implies that 

G'(T)<^(G(T)), (20) 

or 

G ' (T) /G(T)<^r[ l / ( l -e- rT)] . (21) 

Inequality equations (20) or (21) can then be called the Faustmann rotation 
rule under stumpage price uncertainty. Inequality equation (21) is identical 
with the inequality equation (17), excepting the term within the parentheses. 
Since the term within the parentheses is greater than one, the effective interest 
rate in equation (21) is greater than r. Thus, under conditions of certainty as 
well as under conditions of uncertainty, the Faustmann many-cycle rule implies 
a shorter rotation period than the Fisherian one-cycle rotation period. This 
occurs because the effective interest rate gets inflated in the former case. 
Inequality equation (21) also indicates that under stumpage price uncertainty, 
the optimal rotation length is longer than the deterministic rotation length 
characterized by 

G'(T)=i(G(T)) 
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or 

G'(T)/G(T) = ^ = r(l - 1/1 - e"'T), (22) 

where the deterministic stumpage value is equal to the expected value G. 

Effects of Increasing Risk 

The effect (on the optimal rotation age) of an increasing risk in the sense of 
the effect of making a given probability distribution "slightly more risky" is 
considered in this section. For its simplicity and intuitive appeal, we consider 
the one-cycle Fisherian case only. It can easily be extended, with some more 
algebraic manipulations, to the Faustmann many-cycle case (where compared 
with the Fisherian result, the rotation age would be shorter). A small increase 
in risk is defined as a "stretching" of the probability distribution of the random 
variable, stumpage value (G(T)) around a constant mean equation [2]. 

To accomplish this, two slight parameters, one multiplicative (ß) and one 
additive (0), are used. Then, the stumpage value function can be expressed as 
0G(T) + 0, and its discounted present value as Vj(T) = [|3G(T) + Θ] e~*T. 0 is 
equivalent to an increase in the mean with all other moments constant. Because 
of the nonnegativity of G(T), an increase in ß alone (from ß = 1, (3 = 0) will 
increase the mean as well as the variance. To counteract this and preserve the 
mean (expected value), ß is made to reduce simultaneously such that 

dE[/3G(T) + 0] = E[G(T)dj3 + dö] = 0. (23) 

This implies that 

^ = - G ( T ) . (24) 

The one-cycle objective function 

W^T) = E | U[)3G(T) + 0)e-'T] ( , (25) 

and the first-order condition of maximization with respect to T is 

E ( U'tVOtfG'er) - r(0G(T) + Θ)ε-*τ] } = 0. (26) 
Differentiating equation (26) implicity (when the solution T = T*) with respect 
to β, and evaluating the derivative at (j3 = 1,0 = 0), and using equation (9) and 
equation (24) yields 

λ Τ * p - r T , _ i 
j±- = \ [E | U'XVjXGCT) - G(T)(G'(T) - rG(T)) } 

+ E | U'tVjXG'tT) . rG(T) + rG(T)) } ] . (27) 
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So far, the forest manager's attitudes to risk has been restricted by the 
assumption of risk aversion only. To ascertain the sign of 9T*/9ß, a further 
restriction on the utility function is imposed by means of the Arrow [4] and 
Pratt [5] "absolute risk aversion" function 

R A ( V l ) = " W i f <28) 
It is assumed here that the forest manager has a nonincreasing absolute risk 
aversion, i.e., RA(Vi) is a nonincreasing function of V^. This assumption 
implies that as a decision maker becomes wealthier, the risk premium for any 
risky prospect, defined as the difference between the mathematical expectation 
of the return from the prospect and its certainty equivalent should decrease, or 
at least not increase. 

In equation (27), since e_rT/D < 0, the sign of 3T*/9(3 is equivalent to the 
sign of the terms within the brackets. Consequently, the sign of this is 
investigated. Let us first consider the sign of the expression 

Elu'OWCO-rGCT))}, (29) 
drawn from equation (27). Let Vj(T) be the maximum level of discounted net 
returns, obtained when the rotation is optimal under conditions of certainty, 
i.e., when G'(T) = rG(T). Then, since it is assumed that RA(V j ) l s nonincreasing 

R A (Vi )<R A (Vi ) 
for 

G'(T)-rG(T)>0, (30) 

i.e., when the marginal gain is at least equal to the marginal loss. 
Using equations (28) and (29), we have 

- ^ ^ < R A ( V i ) . (31) 

Since marginal utility is positive, 

-U'(V1XG'(T)-rG(T))<0 

for 

G'(T) - rG(T) > 0. (32) 

Multiplying equation (31) by the left-hand side of equation (32), and taking the 
expected values, we obtain 

E { U'XViXG'CD - rG(T)) } > - RA(V!)E { U'iVjXG'CO 
-rG(T)) | (33) 
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since RA(V;L) is a given number. By the first-order condition equation (8), the 
right-hand side of equation (33) is equal to zero and, hence, 

E { UO^XG'CT) - rG(T)) } > 0. (34) 

Now, let us consider the sign of the whole expression of the first term 
within the brackets of equation (27) which may be written as 

- \ [E | (G'(T) - rG(T))U,'(V1XrG(T) - rG(T)) } ] , (35) 

which, after some manipulations, yields 

- \ [E {(G'(T) - r G C r ) ) 2 ^ ! ) | - (G'(T) - rG(T)) 

E{(G'(T)-iG(T))U,'(V1)} 
- E j (G'(T) - G'(T) \ E { (G'(T) - r G ^ U ' ^ V j ) } ] . (36) 

The first term of equation (36) within the brackets is positive, the second term 
is positive by equations (16) and (34), and the third term is zero by definition 
(E { (G'(T) - G'(T)) } = 0). Therefore, equation (36) is positive and, hence, the 
first term within the brackets of equation (27) is positive. 

Let us now investigate the sign of the second term of equation (26) within the 
brackets, E | U^V^G^T) - rG(T) + rG(T)) } which can be rewritten as 

E ( U'tVjXG'tT) - rG(T) ) + rG(T)E { U^Vj) ). (37) 

By the first-order condition equation (8), the first term of equation (37) is zero 
and by equation (4) the second term is positive. Therefore, equation (37) is 
positive and, hence, the second term within the brackets of equation (27) is also 
positive. Using these results and noting that D < 0 (from equation (9)), it 
follows that 9Τ*/δ/3 > 0. Thus, nonincreasing absolute risk aversion is a 
sufficient condition for 3T*/9/3 to be positive equation [7]. A positive 9T*/9j3 
implies that the impact of an increasing risk would be a lengthening of the optimal 
rotation age. Thus, the marginal impact of risk is expected to be identical 
(qualitatively) to the overall impact of the uncertain stumpage price. 

CONCLUDING REMARKS 
The present article is an attempt to apply the Sandmo model to answer a 

dominant question of forest economics: when to harvest a forest operated in an 
environment of stumpage price uncertainty. The results show qualitatively that 
the optimal rotation age of a forest would be longer under conditions of 
stumpage price uncertainty than under conditions of certainty. The model 
developed here abstracts from the non timber multiple-use benefits (like 
recreation, flood control, and wildlife habitat) flowing from forest. Very often, 
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unpredictable fluctuations in tree stock create uncertainty in such flows. Any 
realistic model of forest rotation will have to consider the net benefits of these 
flows as well as types of uncertainty associated with that. 
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