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ABSTRACT 
Traditional approaches to the quantitative analysis of uncertainty employ 
probabilities, although evidence to support the principled assessment of such 
additive measures is often lacking. We show how both optimization and 
conditionalization can be carried out using the less structured, hence more 
realistic, class of lower probabilities, illustrating these techniques with a 
problem involving toxic wastes. 

Fragmentary data and incomplete evidence may often preclude a responsible 
analysis of risk in traditional probabilistic terms, that is, in terms of an additive 
measure of uncertainty. But adopting more realistic, less structured measures of 
uncertainty, while depriving us of some analytical tools of classical probability 
theory, need not leave us totally without analytical resources. In particular, both 
optimization and conditionalization can be successfully pursued when uncertain­
ties are assessed in terms of lower probabilities with surprisingly weak structural 
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properties. These topics are treated, respectively, in the following two sections. 
The material on optimization is based on work of Dempster [1], Shapley [2], and 
Chateauneuf and Jaffray [3]. The material on conditionalization is based on work 
of Wagner [4], Wagner and Tonn [5], and Sundberg and Wagner [6], and repre­
sents a generalization of Jeffrey's [7, 8] theory of probability kinematics. 

In this article we describe concrete applications of the aforementioned methods 
of optimization and conditionalization to some problems connected with a toxic 
waste dump. But the potential applications of these methods are, in our view, very 
extensive, including problems associated with power plant reliability, human 
exposure to carcinogens, global climatic change, and many types of policy 
analysis. 

OPTIMIZATION WITH LOWER PROBABILITIES 

Estimating the cost of cleaning up some body of toxic wastes is generally a 
problem of daunting complexity. The fragmentary nature of environmental data 
frustrates the more straightforward solutions to problems of this type. As we show 
in what follows, however, enough may be gleaned from such fragmentary data to 
enable us nevertheless to pursue a responsible analysis. 

We wish to argue specifically here for the usefulness of certain set functions, 
called lower probabilities, in this enterprise. In order to highlight our main points, 
we shall make use of an extremely simple model of the problem in question. In 
particular, we assume that the total mass, M, of the body of wastes is known, as 
well as the set of types T = {th . . . , tm} of waste comprising this mass, along with 
the costs, c(ti), of cleaning up a unit mass of waste of type t;. If the proportion of 
M attributable to waste of type t; is known, and denoted by q(t;), and if a simple 
linear cost function is assumed, then the cost of cleaning up the entire body of 
waste will be 

m 

M j c(ti)q(ti) 
i-i (1) 

We may of course be ignorant of the proportions q(tj). Suppose, however, that 
we are able to assess for each subset A C T a lower bound £ (A) on the proportion 
of M attributable to wastes of all of the types belonging to A. Elementary 
consistency considerations dictate that any such set function should be subject to 
the restrictions 

ß(0) = O, (2) 

ß (T) = 1, and (3) 

Ai fi A2 = 0 = > e(Aj U A2) ;» C(Aj) + g (A2). (4) 
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It is worth pointing out here that even in a state of total ignorance we may assess 
such an ß , simply setting ß (A) = 0 for every proper subset of T and ß (T) = 1, an 
unexceptionable (and uninformative) lower probability. 

Of course, if we actually know the proportions q(t;), and extend q to subsets A 

of T by defining q(A) = ' , we shall be in possession of a particularly 
ij ε A. 

informative set function, namely, a probability measure. And this observation 
suggests a principled compromise with the approach of Eq. (1). Given a set 
function ß satisfying Eqs. (2), (3), and (4) above, identify all those probability 
measures q such that 

q(A)a £ (A) for all A C T , (5) 

and determine the minimum and maximum of the quantities given by Eq. (1), 
taken over all q satisfying Eq. (5), thereby bounding the clean-up costs. 

The only problem is that if ß satisfies only Eqs. (2), (3), and (4), there may be 
no probability measure q satisfying Eq. (5). What additional properties of ß will 
ensure that the above approach may be activated? It follows from results of 
Shapley [2] and of Chateauneuf and Jaffray [3] that the additional restriction on ß, 

ß (Al U A2) s ß(AO + ß(A2) - ß (A! H A2), (6) 

is sufficient to activate the above approach. 
But what sorts of procedures ensure the assessment of an ß satisfying Eq. (6)? 

One way of arriving at such an ß (indeed, an ß with much stronger properties 
than Eq. (6)) is to make use of an old idea of Dempster [1], which has been 
somewhat obscured in its abstract formulation by Shafer [9]. Suppose that we 
have identified the set S = {sh . . . , sn} of sources of the body of toxic wastes in 
question, and that we know the proportion Jt(s;) of M attributable to each source S;. 
Suppose, in addition, that for each s; ε S, we can identify a nonempty subset A(S;) 
of T, comprised of the possible types of waste attributable to source s;. If we then 
define 

β(Α) = 2 π ^ 
S;E S: 

A(Si) C A (7) 

ß (A) will be a lower bound on the proportion of the total mass of the dump 
comprised of wastes in the class A. We remark that ß satisfies not just Eq. (6), but 

8 (A, U . . . U A,) * 2 H ) ' l M (ΠΑί) for a11 r * Z 

I C {l,...,r} i ε I 
I * 0 . (8) 
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In any case, the set of probability measures q satisfying Eq. (5) will be nonempty, 
and maximal and minimal values of the cost function Eq. (1), taken over all such 
q, may be easily calculated. It should be noted that while we have made no explicit 
mention of upper probabilities in the above discussion, they underlie our analysis 
in an implicit way. For if £ is a lower probability, its companion upper probability 
u is clearly defined by 

u(A) = l - Jc(Ä) for all A C T . (9) 

For a pair of lower and upper probabilities 2 and u, it is very easy to prove that a 
probability measure q satisfies Eq. (5) if and only if it satisfies 

q(A) s u(A) for all A C T , (10) 

making it superfluous to state the upper bound Eq. (10) as a constraint when 
optimizing Eq. (1). 

Example 1. A toxic waste dump contains wastes of types { tj, t2, t3 ] = T. The 
dump is known to have received a shipment su accounting for 10 percent of its 
mass, a shipment s2, accounting for 20 percent of its mass, and a shipment s3, 
accounting for 50 percent of its mass. The set of sources S = { Sj, s2, s3, s4 }, with 
s4 denoting the union of all remaining shipments, is naturally endowed with the 
probability n(s{) = 0.1, JC(S2) = 0.2, JI(S3) = 0.5, and Jt(s4) = 0.2. The specific 
composition of the individual shipments is unknown, but fragmentary records 
indicate that shipments Sj and s2 contained no wastes of type lu and shipment s3 
contained no wastes of type t3. Here A(Sj) = A(s2) = { t2, t3 }, A(s3) = { tu t2 }, and 
A(s4) = T. 

The lower probability ß defined by formula Eq. (7) takes the nonzero values 
£({ h, *3 } ) = 0.3, C( { U, t2 } ) = 0.5, and of course ß (T) = 1.0. If the cost of 
cleaning up a unit mass of waste of type t; is, let us say, i, for i = 1,2,3, 
then it can easily be seen that the cost function Eq. (1) is minimized over those q 
satisfying Eq. (5) when q(tj) = 0.7, q(t2) = 0.3, and q(t3) = 0 and maximized when 
q(tt) = 0, q(t2) = 0.5, and q(t3) = 0.5. This example is worked in more detail in 
Table 1. 

Optimization is always nearly as simple as in the above example when ß 
satisfies Eq. (8) for all r a 2 (see [1]). When ß merely satisfies Eq. (6) the situation 
is somewhat more complex, but optima may still be found in a finite number of 
steps (see [2, 3]). 
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Table 1. Variables and Equations for Example 1 

Types of Wastes: 

Shipments of wastes to 
dump: 

ti.fele 

s1> s2> s3> s 4 

Total amount of waste in 
dump: 

M (Assume = 1 ) 

Proportion of waste (π) in 
dump by shipment: π ^ ) = 0.1, jt(s2) = 0.2, JI(S3) = 0.5, jt(s4) = 0.2 

Types of waste (A) in dump 
by shipment: 

A(S1) = A(s2) = {t2, ta}, A(s3) = ft, ta>, 
A(s4)={ti,t2,t3} 

Costs of cleaning up 
(c) wastes by type: c(t1) = 1,c(t2) = 2,c(t3) = 3 

Lower bound ( ζ ) on 
proportion of total 
mass of dump 
attributable to wastes 
of a given set of types: 

ß(ti)= ß(t2)= ß(t3)= ß« t 1 t 3 } ) = 0 
e({ t2. t3})="(s1) + n(s2) = 0.3 
e({t i , t2})=n(s3) = 0.5 
£({ t i , t2, t;j} ) = nfo) + jt(s2) + JI(S3) + jt(s4) = 1.0 

Constraints on actual, but 
unknown, proportion (q) 
of total mass of dump 
attributable to wastes of 
a given type: 

q(ti) * 0,1 = 1,2,3 
q(ti) + q(t2) + q(t3) = 1 
q(t|) + q(t2)i0.5 
uq(t2) + q(t3) * 0.3 

Optimization Problems: MINIMIZE (respectively, MAXIMIZE) 
C = qf t ) + 2q(t2) + 3q(t3) 
SUBJECT TO ABOVE CONSTRAINTS on q 

Solutions: cM/W=(0.7) + 2*(0.3) + 3*(0.0) = 1.3 
CMAX = (0.0) + 2 * (0.5) + 3 * (0.5) = 2.5 
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CONDITIONALIZATION WITH LOWER PROBABILITIES 

Let p be a probability measure defined on subsets of the set T. If additional 
evidence indicates that the true state of affairs lies in the subset E of T, it is often1 

appropriate to update p to the probability measure q, where q(A) = p(A|E): = 
p(A n E)/p(E) for all A C T . 

A generalization of this updating method, due to Jeffrey [7], starts with addi­
tional evidence of a less dogmatic sort. In Jeffrey's generalization of simple 
conditionalization there is a pairwise disjoint collection & of subsets of T and a 
collection { μΕ:Ε ε Ê } of positive real numbers summing to one. New evidence 
establishes that possible revisions of p be restricted to those q satisfying 

q(E) = μΕ for all E ε £ . (11) 

If it is judged in addition that any acceptable revision q of p should satisfy 

q(A|E) = p(A|E) for all A C T and all E ε g, (12) 

then there is a uniquely acceptable revision q of p, defined for all A C T by 

q(A)= Σ^Ρ(Α|Ε). 
Εε£ (13) 

Evidence may of course fail to establish the sorts of restrictions on q embodied in 
Eq. (11), their substantial weakening of the dogmatic condition q(E) = 1 not­
withstanding. In seeking to equip certain expert systems with uncertainty manage­
ment capabilities, we have become convinced of the need for an approach to 
updating in which the possible revisions q of a prior p are subject to the restriction 

q(A)a ß(A) for all A C T , (14) 

where £ is a Dempsterian lower probability arising as in Eq. (7). In the analysis 
of this problem it has turned out to be fruitful to make use of the "Möbius 
transform" m of £ , defined by the slight variant of Eq. (7), 

m(A)= Ju(Si) 
Si E S: 

A(s;) = A (15) 

or, equivalently, by 

m(A)= £(-l)lA-Ele(E). 
E C A (16) 

That one cannot mechanically condition on E upon finding out that the truth lies in E is, 
fortunately, gaining wider recognition. The notorious three prisoners problems (see Diaconis and 
Zabell [10] or Jeffrey [8] for delightful discussions of this problem, originally due to Martin Gardner) 
illustrates the pitfalls of mechanical conditionalization. 
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The mapping m is termed a basic probability assignment in the work of Shafer [9]. 
It is in any case easy to show that m : 2T -* [0,1], with m(0) = 0, and that 

Jm(E)-e(A) for all ACT. 
EC A (17) 

In particular, 

Jm(E) = £(T) = l. 
ECT (18) 

A subset E C T for which m(E) * 0 is called an evidentiary focal element and 
& now represents the collection of evidentiary focal elements. Just as Eq. (11) and 
Eq. (12) yield Eq. (13), Eq. (14), combined with a condition generalizing Eq. (12) 
(see [4]), now yields the updating formula 

q(A)= £m(E)p(A|E). 
E ε g (19) 

Eq. (19) reduces to Jeffrey's Eq. (13) when evidentiary focal elements are pair-
wise disjoint. 

We remark that Eq. (19) may also be viewed as a way of upgrading the lower 
probability £ to a probability measure q by drawing on a probability p, which in 
practice often records past relative frequencies. This point of view is explored in 
detail in Wagner and Tonn [5]. We note also that Sundberg and Wagner [6] have 
proved that formula Eq. (19) actually produces a probability measure q bounded 
below by £ so long as ß merely satisfies Eq. (6) and m is defined by Eq. (16). We 
conclude with an application of Eq. (19) to an extension of Example 1. 

Example 2. Suppose that the dump of Example 1 accepted wastes from an 
identifiable set of chemical factories. In combination, the factories are known to 
have produced wastes of type t!, t2, and t3, with p(ti) = 0.4, p(t2) = 0.3, and p(t3) = 
0.3 being the proportions of the total mass of wastes produced by these factories 
attributable to the three types. With no further evidence regarding the composition 
of the dump in question, we might employ p as an estimate of the proportions of 
the types of waste in the dump. 

Suppose, however, that we are apprised of the information about shipments to 
this dump, as given in Example 1. As indicated in that example, this information 
puts the restrictions q({tls t2}) a £({tlt t2}) = 0.5, and q({t2, t3}) 2£({t2, t3}) = 0.3 
on any probability q representing the proportions of the various types of wastes in 
the dump. To activate formula Eq. (19) we must judge that within the aggregate of 
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Table 2. Variables and Equations for Example 2 

Types of wastes in dump: ^ , t2, t3 

Shipments of wastes to dump: 

Total amount of waste in dump: 

Proportion of waste (π) in dump 
by shipment: 

Types of waste (A) in dump 
by shipment: 

Proportions of waste (p) produced 
by the factories by type: 

s1> s 2 i s3> s 4 

M (Assume = 1 ) 

n{Sf) = 0.1, jt(s2) = 0.2, JI(S3) = 0.5, jt(s4) = 0.2 

A(s1)=A(s2)={ t 2 , t3} ,A(s3 )={ t 1 , t 2 } , 
A(s4 )={ t 1 , t 2 , t 3 } . 

pft) = 0.4, p(t2) = 0.3, p(t3) = 0.3 

Basic probability assignments (m) m^) = m(t2) = m(t3) = m( { ^ , t3 } ) = 0 
of sets of types of wastes: m( { t 2 , t3 } ) = n(s^) + JI(S2) = 0.3 

m({ t 1 , t 2 } )=n(s 3 ) = 0.5 
m({ t 1 , t 2 , t 3 } )=n(s 4 ) = 0.2 

Revision of p to updated estimate of proportions of types of wastes (q) using 
shipment information (as expressed in m) and the conditionalization methods of 
Wagner and Tonn [5]: 

„ , / ♦ ♦ Ì P ( f i ) , , ♦ ♦ * P( f i> 
q(U)-m( tht2 ) * —7Τ-Ι7ΓΤ + m( U,t2,t3 ) * Pit 1 )+P(f2) v ' ' " ° ' PiU) + P(t2) + P(f3) 

° - 5 *ö^ + a 2 *ä^3TÖ3- · 3 7 

P(h) Pity) 
q(t2) - m( t2,t3 ) * - τ τ ^ Γ Τ + mi fi h ) · Pit2) + it3) ' P('i)+P(f2) 

rr,f t t t \ P(f2) __ 0.3 _ E 0.3 
m ( ^ 2 ' ' 3 >* m*P(f2i*mm Ö 3 T Ö 3 + °- 5* Ö4TÖ3 + 

0.2 35 - 42 
0.4 + 0.3 + 0.3 

<7(f3) - m( t2,t3 ) * n „ f ' 3 * + m{ t,,t2,t3 ),- P ( ' 3 ) 

Pit2) + P(f3) " * P(f 1 ) + p(f2) + p(f3) 

α 3 '^3 + 0 · 2 Ό .4 ,αΙο .3 - · 2 1 
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shipments sx and s2, wastes of type t2 and t3 may reasonably be assumed to be 
represented in proportion to the quantities p(t2) and p(t3),2 and, similarly, that 
within shipment s3 wastes of type tx and t2 are represented in proportion to p(tj) 
and p(t2), and within "shipment" s4 wastes of type tj are represented in proportion 
to p(tj) for i = 1,2,3. So judging, we are warranted in employing Eq. (19) to 
construct a probability measure q on T. Using m({ti, t2}) = 0.5, m({t2, t3}) = 0.3, 
and m(T) = 0.2, we have, for example, q(t3) = (0.5) (0) + (0.3) (0.5) + (0.2) (0.3) = 
0.21. Complete details for this example appear in Table 2. Note that q can be 
viewed either as an updating of the "prior" probability p or as an upgrading of the 
lower probability ß . 

DISCUSSION 

Many lines of inquiry need to be pursued to make optimal use of the methodol­
ogy described in this article. The issues requiring further investigation are both 
practical (methods for eliciting lower probabilities and communicating them to 
the public and to decision makers) and theoretical (methods for combining lower 
probabilities derived from various pieces of evidence and the articulation of 
rigorous criteria for choosing among such methods; methods of updating or 
upgrading a more general class of lower probabilities than those treated in this 
article). The generalizations of probability theory required to represent what we 
know of chance and risk in an honest and responsible way will, we think, go far 
beyond earlier generalizations (such as Dempster-Shafer Theory, concerned 
exclusively with lower probabilities ß satisfying Eq. (8) for all r a 2), the 
pioneering style and verve of those early generalizations notwithstanding. 
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