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ABSTRACT 
This article presents a model of water intake in a suburban Canadian 
household. The data cover daily water intake for a year. It is shown that a 
Box-Jenkins model with moving average terms best fits the data. Further, it is 
shown that a separate model for each of the three seasons provides an even 
better fit. The models are then explained with reference to water consumption 
habits and patterns. 

INTRODUCTION 

Several models have been formulated to guide or explain water policy. Most are 
"macro" models in that they try to explain water use for countries, regions, or 
entire urban areas [1-6], or for industries [7-10], or for overall water policy 
management [11,12]. Many important studies have assessed the impact of price 
on residential water demand [13-16]. Other studies have used climatic variables 
and price data [14, 17-20] to forecast water demand, taking advantage of sig­
nificant advances in building time series models [21-26]. A distinguishing charac­
teristic of these studies before the mid-1970's has been.that most dealt with 
cross-sectional, not time series, data. The principal reason for this, as documented 
by Young [27] and Wong [28] is the limited availability of data. There has since 
been considerable progress in time series modeling [14,18,20-23,29-31] as more 
time series data became available. 

In most cases, however, the time series data are monthly figures for cities or 
regions only. "Micro" data for daily consumption at the household level are rare. 
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Even then, daily data for household consumption over a year are hard to come by. 
Maidment et al. studied municipal water use [25]. Hughes reported on daily data 
for municipal systems [22]. Smith analyzed daily water use over a summer for 
the Washington, D.C., Metropolitan Area (WMA) [26]. Examples of specific 
modeling of single households in a micro context are very few. Most Canadian 
households consume large quantities of water in dish washing, washing clothes 
and lawn watering in addition to routine water use in cooking and in bathrooms. 
While dishwashing is normally a regular daily chore, clothes are collected and 
washed every two or three days, or weekly, depending on the size of the load. 
These two activities occur over the entire year. Lawn watering lasts from the end 
of May to late September or later, depending on the onset of wintry weather. 
Lawns are usually watered for a two-hour period. In a home with front and back 
lawns, a minimum four-hour watering each time is typical. During warm spells 
even six hours of watering may be needed. During these periods, there is a fall in 
water pressure and this may make intensive water use for other purposes such as 
dish or clothes washing difficult. Thus, the water use may be scheduled in such a 
way that each of these activities is carried out during different periods so that 
water use is likely evened out over the seven days of the week. An analysis of 
daily water intake over a period of a year could tell us much about these fluctua­
tions in water use. 

We present here a model for household water intake. Data were collected from 
a suburban house near Ottawa, Canada. A single family of two adults and three 
children formed the household. There are three bathrooms with three toilets, one 
tub and one shower in use. The family uses an automatic clothes washer and a 
dishwasher. The household is located in a subdivision provided with a community 
water supply and sewer system. The data consist of daily water intake figures over 
almost one full year. It may be preferable to model water consumption rather than 
water intake. But such consumption data are hard, if not impossible, to obtain. No 
municipality in Canada measures water use exclusive of water returned to source. 
The data reported here are not necessarily for the most recent period, but neverthe­
less are assumed to be representative since there is no reason to believe that 
average water intake would fluctuate widely, year to year in the absence of far 
reaching changes in climatic and/or economic conditions. 

The daily data consist entirely of household water intake for one bungalow type 
house for each day of the week for forty-nine weeks beginning from the 1st of 
January. These figures are expressed in cubic meters per day. There were a few 
missing observations. These were replaced by the simple average of the average 
intake over the remaining days of the week and the annual average for that day 
over the other weeks in the forty-nine-week time horizon. Thus, we had a total of 
343 data points to work with. These water intake figures are influenced by several 
factors such as number of people in the household, guests, special events which 
may increase or decrease people using water in the home over the entire day, 
temperature and humidity inside and outside, age distribution of the members of 
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the household, and several other factors. Thus, the variation in water intake from 
day to day may be caused by several factors, the influence of each one of which 
may be too small or too difficult to measure; yet, their cumulative effects, while 
random, may yet be measurable. Instead of a regression or input-output model, a 
Box-Jenkins type "Auto Regressive Integrated Moving Average" (or ARIMA) 
model was chosen to fit the data. 

In the next section, we briefly describe ARIMA models and the model selection 
procedure which then is applied in the following section. The annual data is 
broken down into three data periods to take seasonal variations into account. The 
last section discusses model results and policy implications. 

MODEL DESCRIPTIONS 

The general ARIMA model with autoregressive terms of order 'p ' and moving 
average terms of order 'q', is given by: 

γ, = %_λ Φ Α ^ - , - Σ ^ ΘΛ_, (1) 

where Yt is the value of Y at time 't', at is the random error term at time 't', 
assuming that the Ύ ' values have a stationary mean. If not, they must be suitably 
differenced till stationarity in the mean is achieved. The φ/'s and the 9,'s are 
known as the autoregressive and moving average parameters of order ' i ' . In 
addition, there may be seasonality in the data; for example, every Monday there 
may be a significant increase or decrease in water consumption indicating a 
seasonality of order 7 in the daily data. One distinguishing characteristic of the 
ARIMA models is parsimony, so that rarely do the autoregressive, moving 
average or differencing factors have values greater than 2. In economic and social 
science time series data, it rarely happens that both the autoregressive and moving 
average lags are non-zero [32]. The general notation for ARIMA models is 
ARIMA (p,d,q) (P,D,Q)s, where p,d,q represent the autoregressive, differencing 
and moving average lags required when no seasonality is observed, and P,D,Q 
represent their corresponding values when additional seasonal differencing is 
required to make the observations stationary. 

The strategy for building ARIMA models for any given problem proceeds in 
well defined stages laid down by Box and Jenkins [33]. These are the four stages 
of Identification, Estimation, Diagnosis and Forecasting. First, the data and the 
scatter diagram were examined to check for stationarity. If the data do not look 
stationary they are differenced to the appropriate lag to ensure stationarity. 
Stationarity in this context means that the random process generating the data is in 
equilibrium around the underlying mean of the process and that the variance 
remains more or less constant over time. Then, one looks at the autocorrelation 
function (ACF) and the partial autocorrelation function (PACF) to search for 
patterns of autoregressive and/or moving average behaviour. There are well 
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researched and documented procedures to arrive at initial estimates of these lags 
[32-34]. Any resulting ambiguity in model selection and interpretation may be 
resolved by looking at the various test statistics for the estimates derived from the 
empirical data. These procedures are now applied to model the water intake 
behaviour of a Canadian household, based on daily readings over forty-nine 
consecutive weeks. 

ARIMA MODEL OF THE DAILY WATER INTAKE DATA 

The daily water intake data are shown in Table 1. Their empirical characteristics 
were analyzed first and the Box-Jenkins iterative model building strategy was 
followed to arrive at the appropriate ARIMA model. The ACF's (Auto Correla­
tion Functions) and PACF's (Partial Auto Correlation Functions) of the raw data 
series are shown in Figures 1 and 2. They indicate nonstationarity. The series had 
to be differenced once to remove this nonstationarity. (The rest of this article 
therefore deals with this differenced series only.) 

But even this differencing could only ensure stationarity in the mean at most. 
However, in the northern hemisphere, climatic fluctuations lead to wide variations 
in temperature and humidity—and in water use, as noted. It is reasonable to test 
for equality of means and equality of variances in water intake during the seasons: 
1) winter (January-May), 2) spring and summer (June-September), and 3) fall 
(October-December). Since lawn watering starts in the spring, and continues till 
the end of summer, those two seasons were grouped together. 

The mean daily water intake and the standard deviation of daily water intake are 
shown in Table 2, with the results of the statistical tests of equality of variances 
and of the means. Since the variances clearly are not equal, separate models were 
fitted for each seasonal group. 

The winter data had 161 observations, the spring/summer data had 119, and the 
fall data 63. The ACF and PACF for these data sets are shown in Figures 3,4, and 
5, respectively. The winter ACF shows a significant spike at lag 1 and a less 
conspicuous one at lag 2 and then decays. Its PACF shows significant spikes at 
lags 1 and 2 and then gradually decays. This is more or less the same as the pattern 
for the annual data, and it suggests an ARIMA (0,1,2) model with positive moving 
average parameters at both lags. The parameters for both (0,1,1) and (0,1,2) 
models were estimated and the second lag parameter was found statistically 
significant. The residual ACF at all lags showed no significant autocorrelation at 
any lag. Accordingly, it was concluded that the residuals were 'white noise'. The 
parameter estimates obeyed the stationarity and invertibility conditions required. 
Only six of the 161 back forecasts were outside the forecast 95 percent confidence 
interval, the expected number being 8. 

The ACF for the spring/summer period shows a single negative spike at lag 1 
decaying thereafter; the same is true of the PACF. This suggests an ARIMA (0,1,1) 
model. Accordingly, the parameters were estimated for three models: ARIMA 
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Table 1. Water Consumption in Cubic Meters per Day 

Week 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Day 1 

1.10922 
1.10922 
1.22287 
1.20924 
1.19560 
1.17741 
1.19560 
1.19560 
1.22287 
0.93648 
0.93648 
0.88192 
0.88912 
1.05013 
0.90920 
0.74100 
0.85465 
0.84465 
0.90920 
1.08195 
1.16378 
1.19560 
0.90920 
0.85465 
1.08195 
1.13650 
1.47745 
1.16378 
1.56382 
1.36380 
1.13650 
0.17275 
1.84568 
1.16378 
1.13650 
1.30925 
1.47745 
1.99115 
1.10922 
1.16378 
1.19560 
1.02285 
1.16378 
1.19560 
1.05013 
1.10922 
1.08195 
1.10922 
1.02285 

Day 2 

1.08195 
1.19560 
0.96830 
1.20469 
1.05013 
1.16378 
1.30925 
1.30925 
0.96830 
0.88192 
0.90920 
0.82283 
0.93468 
0.99557 
0.93648 
0.96830 
0.90920 
0.90929 
1.39108 
1.08915 
1.10922 
1.13650 
0.90920 
1.16378 
1.13650 
1.42290 
1.09195 
1.47745 
1.19560 
1.16378 
1.19650 
1.25015 
0.88192 
1.10922 
1.08195 
1.25015 
1.47745 
1.70475 
1.13650 
0.99557 
1.16378 
0.88192 
1.19560 
1.27734 
1.08195 
1.19560 
1.10922 
0.93648 
1.16378 

Day 3 

1.13650 
1.27743 
1.05013 
1.20924 
0.82283 
1.36380 
1.13650 
1.13659 
0.82283 
0.88912 
1.02285 
1.13650 
0.82283 
0.82283 
0.90920 
0.96803 
0.85466 
1.01830 
0.96830 
1.36480 
1.10922 
0.85465 
0.88192 
1.25015 
1.27743 
1.13650 
1.19560 
1.42280 
1.42290 
1.47745 
1.19560 
1.42290 
1.13650 
1.16378 
1.16378 
1.30925 
1.42290 
1.76386 
1.13650 
0.90920 
1.02285 
0.96830 
1.19560 
1.33652 
1.13650 
1.08195 
1.08195 
1.02285 
0.99557 

Day 4 

1.10922 
1.27743 
1.08195 
1.27743 
1.16378 
1.42290 
1.13650 
1.17287 
0.93648 
0.68190 
0.90920 
0.85465 
0.93648 
0.88192 
0.88912 
0.90902 
0.90922 
1.01830 
0.99557 
0.90929 
0.88192 
0.93648 
0.93648 
1.16378 
1.13650 
1.13560 
1.13650 
1.36380 
1.33652 
1.37745 
1.27743 
1.45017 
1.16378 
1.47745 
1.13650 
1.42290 
1.70475 
1.76385 
1.08195 
1.10922 
1.16378 
0.68190 
1.19650 
1.10922 
1.1360 
1.16378 
1.16378 
1.02285 
1.02285 

Day 5 

1.25015 
1.16378 
1.16378 
1.05013 
0.82283 
1.10922 
1.84568 
1.18196 
1.08195 
0.90920 
0.90290 
0.88192 
1.16378 
1.13650 
0.93648 
0.96830 
0.93846 
0.93647 
0.90921 
1.02285 
0.85465 
0.88192 
0.99557 
1.25015 
1.13650 
1.08195 
1.13650 
1.27743 
1.47745 
1.47754 
1.22287 
1.70475 
1.16378 
1.22287 
1.16378 
1.47745 
1.13650 
1.76385 
1.02285 
1.16378 
1.08195 
1.13650 
1.13650 
1.27743 
1.19560 
1.10922 
1.13650 
1.03285 
1.16378 

Day 6 

0.99557 
1.08195 
1.13650 
1.45017 
1.07286 
1.19560 
1.70475 
1.17741 
0.93648 
0.05910 
0.99557 
0.93648 
1.08195 
0.93688 
1.02285 
0.90920 
0.93648 
1.02285 
1.08195 
0.99920 
1.13650 
1.02285 
1.13650 
1.02285 
1.08195 
1.42290 
1.08195 
1.30925 
1.39018 
1.45017 
1.27743 
1.76385 
1.19560 
1.13650 
1.30925 
1.45017 
1.36380 
1.46386 
0.96830 
1.13650 
0.96830 
1.30925 
1.27743 
1.16378 
1.13569 
1.05013 
1.19560 
1.10922 
1.13650 

Day 7 

1.13650 
1.08195 
0.96830 
1.39108 
1.07740 
1.16378 
1.33652 
1.17740 
0.93846 
0.42732 
0.99575 
0.85465 
0.88192 
0.85465 
0.93468 
0.88192 
0.90920 
0.82283 
0.90920 
0.90910 
1.08195 
0.99557 
1.05013 
1.39018 
1.16378 
1.36380 
1.16378 
1.25015 
1.70475 
1.13650 
1.05013 
1.67747 
1.08195 
1.27743 
1.27743 
1.53655 
2.04570 
1.46386 
1.19560 
1.87750 
1.02285 
1.30925 
1.16378 
1.02285 
1.08196 
1.08195 
1.02285 
1.02285 
1.10922 
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Figure 1. ACF's for the original series. 

Figure 2. PACFs for the original series. 
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Table 2. Test Results for Equality of Means and Variances 

Test p-Value Decision 

H0: Xs = Xw vs. < 0.0001 Reject H0 for a s: 0.0001 
Hv. Xs >Xw 

H 0 : X S = XFVS. < 0.0001 Reject H0 for a a 0.0001 
Hi: XS>XF 

H0: XF = XWVS. < 0.005 Reject H0 for a a 0.005 
H-\~. XF>XW 

Ho. S l = S^vs. <0.01 Reject H0 for a * 0.01 

Hi : Ss > Sw 

H0: S l = S|vs. 
Hi: Sl>Sp 

H0: SW = SFVS. 

H I ; Sw> Sp 

<0.001 Reject Ho for a a 0.001 

< 0.001 Reject Ho for a * 0.001 

WINTER: 
Mean = Xw = 1 03; Standard Deviation = Sw = 0.19. 

SPRING and SUMMER: 
Mean = Xs = 1.29; Standard Deviation = Ss = 0.25. 

FALL: 
Mean = XF = 1.11 ; Standard Deviation = SF = 0.11. 

(0,1,0), (0,1,1) and (0,1,2). In terms of statistical tests with respect to autocorrela­
tions up to 24 lags of the differenced data, the significance of the moving average 
parameter for the incremental lag and the ACF of the residuals, there was better 
support for the ARIMA(0,1,1) model than for any of the other two. The model 
parameters were within the required bounds. Five of the 118 back forecasts were 
outside the forecast 95 percent confidence interval; the expected number is 5.80. 

For the fall data, applying the same stages and criteria as in the previous 
instances, it was found that an ARIMA(0,1,1) model provided the best fit, passing 
all the mathematical requirements and statistical tests. Three of the 62 back 
forecasts were outside the 95 percent confidence interval estimates; the expected 
number is 3.10. 
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Figure 3. ACF's for the Winter Model Residuals. 
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Figure 4. ACF's for the Spring Model Residuals. 
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Figure 5. ACF's for the Fall Model Residuals. 

The Box-Pierce Q-statistics for residuals for each of the three fitted models are 
shown in Table 3. The results support the hypothesis of absence of autocorrelation 
in the residuals. In addition, the model estimates for each of the three groups are 
shown in Table 4, providing instant comparison of model features, parameter 
estimates and the number of forecasts outside their respective confidence interval 
estimates. 

DISCUSSION 

Given the considerable seasonal variations in temperature, humidity and water 
consumption needs, it becomes necessary to model each season's data separately. 
This analysis showed that the appropriate model for each is different. 

One other justification for using the three different models instead of the annual 
model is provided by comparing the variance for each season with the respective 
variances for each of the other two seasons. The variances are 0.19,0.25 and 0.11, 
respectively for winter, spring and fall; the respective sample sizes are 160, 118 
and 62 for the once-differenced data. Applying the standard F-test for comparison 
of variances, it was found that for each of the three pairs of comparisons, the 
hypothesis of equality of variances is soundly rejected even at the 0.1 percent level 
of significance. In other words, there is no stationarity in variance, but only 
heteroskedasticity. 
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Table 3. Box-Pierce Q-Statistic for Model Residuals 

Series 

Winter 

ARIMA 
(0,1,2) 

Spring 

ARIMA 
(0,1,1) 

Fall 

ARIMA 
(0,1,1) 

Lag 

6 
12 
18 
25 

6 
12 
18 
25 

6 
12 
18 
25 

Q-Statistic 

0.34 
3.85 
6.28 

27.59 

2.61 
8.21 

11.13 
16.20 

2.46 
5.84 
8.97 

12.52 

p-Value 

0.9529 
0.9212 
0.9747 
0.1897 

0.6243 
0.6082 
0.8012 
0.8466 

0.6521 
0.8289 
0.9147 
0.9616 

The p-values in the above table correspond to the smallest significance level at which the 
null hypothesis of no autocorrelation in the residuals of the given lag can be rejected, given 
the values of the test statistic. Thus, high p-values favor the null hypothesis. Or equivalently, 
the null hypothesis will only be rejected at significance levels greater than or equal to the 
p-values shown. 

Table 4. Model Comparisons 

Series 

Winter 
Summer 
Fall 

Model 

ARIMA(0,1,2) 
ARIMA(0,1,1) 
ARIMA(0,1,1) 

Parameter Estimates 

Constant 

-0.0004 
-0.0045 
-0.0004 

Lag1 

0.5647 
0.4769 
0.5496 

Lag 2 

0.2029 
— 
— 

Number 
Outside 

95 Percent 
C.I. 

6/160 
5/118 
3/62 

The "Number Outside 95 percent CI . " shows the number of actuals outside their 95 
percent confidence intervals estimated from the respective models, out of the total number 
of observations in each case. 

The constant terms shown are not statistically significant from zero for any one of the 
models. 
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The mean water intake is 1.03, 1.29 and 1.11 cubic metres per day for winter, 
spring and fall respectively. Statistically, water intake in spring is significantly 
higher than fall and winter intakes, and fall water intake is significantly greater 
than winter water intake. Hence, in forecasting household water requirements it is 
advisable to model each season's requirements separately. 

It must be admitted that there is some overlap in the seasons. The first week of 
October may be more like the last week of September, rather the rest of October 
itself. The cutoff dates for each season are necessarily somewhat arbitrary. This 
would certainly introduce some unavoidable bias in the model estimates. But, to 
obviate this, one would have to record the exact dates when lawn watering begins 
and ends for each household, the exact dates when significant changes occurred in 
climatic conditions resulting in significant changes in water use patterns for a 
given household and so on. Such data are not usually easily collected; and even if 
they are, generalizations based on such data may not be valid. 

As a final check of the model adequacy, each model was run by omitting 
some data points and then the values forecast by the models were compared 
against the corresponding actuals. Thus, the Winter ARIMA (0,1,2), the Spring 
ARIMA (0,1,1) and the Fall ARIMA (0,1,1) models were estimated by dropping 
each of their respective last twelve observations. Then, the respective forecasts 
were used to estimate 95 percent confidence intervals for each of the omitted 
observations under each model. It was found that in each case, all the actual values 
were well within their respective confidence interval estimates. Thus, the choice 
between one comprehensive annual model and three models, one each to account 
for the regular variations in water use patterns boils down to the causal justifica­
tions for each model. The heteroskedasticity found in the annual data and the 
adequacy of the models passing all tests lead us to conclude that the three models, 
corresponding approximately with the seasonal changes and observed water con­
sumption patterns, are a better choice than a single annual model. 

Effective water management in municipal areas requires a reasonably accurate 
knowledge of water use throughout the year. This is especially true of water use in 
residential dwellings where individual water use activities produce an intermittent 
flow of wastewater which can vary widely in volume. Detailed data on such water 
use are not only necessary to develop effective designs of on-site wastewater 
disposal systems, but also to plan water conservation and waste load reduction 
strategies. The significantly enhanced water use in spring and summer (June-
September) reflects the lawn sprinkling use. Seasonal variations were not very 
marked with respect to other uses. Water conservation and water rationing 
measures, if needed, should therefore be directed to lawn sprinkling in the 
summer; year-round, they have to be directed towards other uses such as dish­
washing, reduced capacity of water closet flush tanks and lowered shower use 
through water saving fittings. Thus, the type of data and analysis presented in this 
article can be used in making reasoned and sensible decisions for water conserva­
tion. In the case of onsite wastewater disposal systems, maximum water use less 
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the lawn sprinkling use should be examined to determine the adequacy of design 
of both the septic tank and the subsurface disposal system which are normally 
based on average flows. Further, better long-term forecasting of water needs can 
be carried out by paying attention to the time series properties of water intake and 
to any significant deviations from the mean if they are found to persist over time. 
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