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ABSTRACT 
Governing equations for the transport and retention of microorganisms in porous 
medium are reviewed and modified to describe various experimental conditions. 
Analytical solution and a numerical solution by Galerkin finite element method 
(GFEM) are available for a simplified case of transport of microorganisms in one 
dimensional flow through saturated porous medium. This article investigates a 
different numerical method, orthogonal collocation method (OCM), which is 
known to be more efficient and effective computationally, for solving the 
transport equations. The solutions obtained by these two numerical methods are 
compared with the analytical solution for the simplified case. The agreement 
between the numerical prediction by OCM and the analytical solution was 
observed to be better than that between the analytical solution and GFEM solu­
tion. The governing equations and the boundary conditions were further modified 
for unsaturated soil condition and solved by the OCM to verify the model using 
the experimental data available in the literature. As the values of the constants in 
the model for transport of microbes through porous media have never been 
established, a sensitivity analysis was performed to find the coefficients for 
effective dispersion, clogging and declogging of microbes in soil medium. 
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INTRODUCTION 

The transport of bacteria in porous media has long been a subject of great 
importance in many areas of study, particularly ground water pollution. The use of 
soils for applying waste materials has also resulted in a growing concern for the 
potential movement of microorganisms through soil layers, as the pathogenic 
bacteria present in the waste materials may contaminate ground water. Septic 
tanks, cesspools, and the direct injection and percolation of domestic waste water 
from land application for ground water recharge, crop irrigation and leachate from 
sanitary and hazardous landfills are some of the sources for ground water con­
tamination. These wastes contain bacteria, viruses and protozoa which are 
pathogenic to human beings resulting in the potential to cause large outbreaks of 
water borne diseases due to contamination of ground water. 

The recent trend in treating the landfill sites and contaminated soils has been to 
use the naturally occurring or commercially available microorganisms to degrade 
the hazardous chemical compounds. This process is known as in-situ biodégrada­
tion or in-situ bioremediation. The in-situ bioremediation is achieved by using 
indigenous populations or by introducing adapted microorganisms acclimatized in 
the laboratory into the subsurface with necessary nutrients. In either case the 
retention and movement of these microorganisms in the subsurface has to be 
studied to quantify the effectiveness of this process. 

The fate of microorganisms in the subsurface is determined by their survival 
and retention by soil particles. The survival and transport of these microorganisms 
depend on many factors, including soil type, moisture, pH, sunlight, temperature, 
organic matter, type of microorganisms, and their interaction with other microor­
ganisms [1]. A number of research studies have reported experimental results on 
transport and fate of bacteria in porous media without any mathematical model 
development [2-4]. On the other hand, Corapcioglu and Haridas [5,6] formulated 
a mathematical model for the transport of microorganisms in porous media and 
developed a numerical solution for the same. This model was not verified using 
suitable experimental data and, therefore, the validity of the model remains to be 
established. A recent research work predicted the position of the retarded bacterial 
concentration fronts using an analytical model and verified the same with experi­
mental data [7]. Fortunately, because of the availability of this data, it is now 
possible to calibrate and verify mathematical models for transport of micro­
organisms through porous media. 

The purpose of this article is to: 

1. Review and propose a general model for transport of microorganisms 
through porous media; 

2. Establish an appropriate numerical solution technique for the proposed 
model; 

3. Verify the model by making necessary modifications of the model to suit 
the available experimental data; and 
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4. Obtain representative values for dispersion coefficients, clogging and 
declogging coefficients for microorganisms necessary for the solution of 
the transport equations. 

THEORY 

The governing equations for the transport and retention of microorganisms can 
be obtained from the macroscopic conservation of mass for microbial particles in 
porous media. 

The capture of microbial particles from water passing through soil is the result 
of simultaneous action of shearing and viscous forces along with other forces that 
act between the particles and the collector [8]. The removal mechanisms for 
bacteria in the porous media can be conceptualized as similar in nature to those 
observed for the filtration mechanisms. A review of the filtration theory [9-11] 
suggests that the rate of deposition of bacteria can be expressed by a kinetic 
equation: 

Ra = kc(ßC)-kd (po'), (l) 

where, 

Ra = rate of deposition of microbial particles per unit volume of soil (Μ/Ι?Τ), 
k,. = clogging rate constant takes into account screening and adsorption 

phenomena (1/T), 
Θ = effective porosity, i.e., volume occupied by the flowing suspension per 

unit of the total volume (Û/L3), 
C = concentration of suspended microbial particles per unit volume of 

flowing suspension (M/L3), 
kd = declogging rate constant (1/T), 
p = density of the microbial particles (M/L3), 
σ = volume of deposited bacteria per unit volume of bulk soil (L3/L3), and 
h = constant which has to be found experimentally (h = 1 was proposed by 

Mints [12], and is used here). 

The first term on the right hand side of the equation is the accumulation or 
clogging of bacteria and is considered to be primarily due to adsorption, straining, 
sedimentation, and interception. Other mechanisms which may influence the 
removal of microbes in the porous media are explained later. The second term is 
the detachment or declogging which is due to the breaking of bacterial clusters. It 
is apparent from this equation that the rate of clogging is a function of the 
concentration of the bacterial suspension and effective porosity of the bed, 
whereas the declogging rate is a function of deposited bacterial volume. The 
kinetic equation assumes that these two processes are simultaneous, which may 
not be true in the early stage of the process. 
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A significant volume of research has been done on adsorption of viruses to soil 
surfaces, but there are only a few studies on the adsorption of bacteria. The 
adsorption of bacteria like viruses was found to follow a Freundlich isotherm 
when straining is absent (e.g., sands) and the constants are different for different 
types of sands [7]. But the validity of this expression for cases where straining is 
present (e.g., clays), is not known. In the case of soils containing clay, adsorption 
could be an important removal mechanism [13]. 

A particle will be strained if the particle size is larger than the pore opening. 
Straining results in the accumulation of particles on the soil grains thereby 
decreasing the pore space and hence, increasing the straining effect. The deposited 
bacterial volume can be estimated based on purely geometric considerations. 
Herzig demonstrated that for bacteria the effect of straining is considerable and 
needs to be included in the formulation [14]. Microbial removal by straining may 
not play a significant role if the mean diameter of microbes is much less than the 
mean diameter of the soil grains. The effect of straining may not be significant for 
sand medium because of the larger pores [7]. 

The removal of suspended particles by interception is due to the inability of 
particles to follow the tortuous streamlines of the fluid even though they may have 
the same density as the fluid. However, because of their very small size it is not an 
important mechanism for microbes. 

The net rate of change of deposited microbial mass should also include the 
growth and death of microorganisms. If Rdd and Rgd are decay and growth terms 
of the deposited microbes, respectively, then the equation for deposited particles 
can be written as 

ά(ρσ) 
= Ra- Rdd + Rgd 

dt a m ga (2) 

Substituting for Ra from Equation (1) in Equation (2), we will get the first 
governing equation for the transport process: 

^p- = kc(QC)-kd(po)-Rdd + Rgd. 

A mass balance for suspended microbial population is the control volume at the 
macroscopic level can be written as: 

d(QC) 
— - V-J-Ra-Rds + Rgs, ( 4 ) 

where, 

Rds = rate of decay of suspended microbial particles (M/L3T); 
Rgs = rate of growth of suspended microbial particles (M/L^T); and 

J = specific mass discharge of flowing suspension (Μ/Ι?Τ). 
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The specific mass discharge (J) is composed of advection and mechanical 
dispersion, Brownian diffusion, chemotaxis and tumbling and movement due to 
sedimentation. The detailed explanation of these mechanisms is given elsewhere 
[5]. Hence, 

J=JA+JB+JCT+Jvg, (5) 

where, 

JA = flux due to advection and mechanical dispersion (M/L2!"); 
JB = flux due to Brownian diffusion (M/L^T); 

JCT = flux due to chemotaxis and tumbling (M/I^T); and 
Jvg = flux due to sedimentation (M/L2!1). 

Advection and mechanical dispersion flux is the component of movement 
attributed to transport by the flowing suspension. The flux term JA would contain 

JA = -Da6VC + vf(QC), (6) 

where, 

Da = coefficient of mechanical dispersion (L2/T); and 
vf = superficial longitudinal velocity of flow (L/T). 

Because of their small size, bacteria rely partially on Brownian diffusion for 
their movement. Even though the path of the individual particles appears to be 
quite erratic, the average particle flux is proportional to the concentration gradient. 
The flux due to Brownian motion is given by [5]: 

JB~-DBQVC, (7) 

where, DB is diffusion coefficient of bacteria (L2T). DB can be estimated by the 
Stokes-Einstein equation: 

DB = kbT/3n\iJ, (8) 

where, 

kb = Boltzmann constant (energy per degree, ML2/T2); 
T = absolute temperature (°K); 

μ̂ , = viscosity of the flowing fluid (M/LT); and 
d = diameter of the suspended particle (L). 

Chemotaxis or systematic movement of bacteria is the directed movement of 
bacteria toward higher concentrations of substrate. The chemotactic phenomena is 
a function of the substrate concentration gradient. Flux due to chemotaxis (Jc) can 
be expressed as: 

7 c = 9(v m C), (9) 
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where, vm = the migration velocity (L/T). 

The migration velocity is a function of relative concentration gradient and it can 
be formulated as a log function of the concentration gradient [15]: 

vm = *mVlnCf = - ^ V c f , 
c f (10) 

where, 

km = migration rate constant or chemotactic coefficient (1/T); and 
CF = substrate concentration in the porous space (M/L3). 

However, the chemotactic motion of bacteria is frequently accompanied by 
another phenomenon known as tumbling which is due to chaotic motion of 
bacteria. The flux due to tumbling can be formulated in the same manner as is 
done for Brownian diffusion. However, the diffusion coefficient DT in this case is 
known as motility coefficient or effective diffusivity and is always positive and 
the flux due to tumbling can be superimposed on the systematic movement, 
therefore the flux due to chemotaxis and tumbling is given by: 

JcT=Q(vmC-DTVC). (11) 

Sedimentation occurs if the density of the suspended particles is greater than 
that of the fluid. Since the bacteria and viruses have densities very close to that of 
water, they do not tend to settle. But for some bacteria, sedimentation could be a 
removal mechanism [13]. Settling velocity (Vg) can be used to quantify the 
significance of sedimentation and it is expressed as [11]. 

v -il-Pw) mdg 

Vg { ρρπμ»//' (12) 
where, 

p = density of microbial particles (M/L3); 
d = diameter of microbial particles (L); 
g = gravitational acceleration (L/T2); 

irid = mass of microbial particle (M); 
pw = density of water (M/L3); and 
jV = viscosity of water (M/LT). 

Therefore, flux due to settling can be expressed as: 

Jvg = QvgC. (13) 

Substituting for all the flux components from Equations (6-7) and Equations 
(11-13) in Equation (5), J will become: 
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3 = -QD V C + QC(vf +vg + vm), (14) 

where D, the coefficient of hydrodynamic dispersion (L2/T), is the sum of the 
Brownian diffusion coefficient, coefficient of mechanical dispersion and effective 
diffusivity coefficient due to tumbling of bacteria, i.e., D = Da + DB + DT. 

A mass balance for the microorganisms both in the deposited and suspended 
forms results in the second governing equation. This can be formulated by com­
bining Equations (3) and (4). 

d (QC) d (p σ) 
—r-— + — = - V J-Ra- Rds + Rgs +Ra~ Rdd + Rgd · •* ~ 

Substituting for J, from Equation (14), and canceling Ra, the modified form of the 
second governing equation is: 

iteä(ifi..,[^(^,H (16) 
+Rgs + Rgd ~ Rds ~ R-dd · 

The decay and growth of bacteria may play significant roles in case of long 
retention times for microbes in the porous media. Gerba reviewed the factors that 
affect the survival of enteric bacteria [13]. The decay of microorganisms is 
considered as a first order irreversible reaction. Assuming the decay rate to be the 
same in both the adsorbed and free states, the decay term becomes: 

Rd = Rdd + Rds = b(QC + po), (17) 

where, 

Rj = decay of particles in both the phases (M/L3T); and 
b = the specific decay rate (1/T). 

The specific decay rate (b) is typically a constant value for a particular type of 
bacteria and environment. Matthess and Pekdeger assumed that the decay in the 
adsorbed state is negligible [16]. 

The growth of bacteria can be assumed to follow Monod's equation, which 
describes the relationship between the concentration of a limiting substrate and the 
growth rate of microbes. The specific growth rate, μ (1/T), is given by: 

Mroax *-F 
μ " KS + CF' (18) 

where, 

μπ«χ = maximum specific growth rate (1/T); 
Ks = half saturation constant (M/L3); and 
CF = concentration of substrate (M/L3). 
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For real world situations where most of the organic matter is attached to the soil 
grains, the growth rate of microorganisms in the adsorbed phase may be different 
from that of the free phase. However, for most laboratory experiments where there 
is little or no organic matter available for the growth of microorganisms, the 
specific growth rate is likely to be very small. In such cases, the specific growth 
rate of both phases can be assumed to be the same. With that assumption, the 
growth rate of microbial mass in the control volume is given by: 

/ Ι , - Α , , + Α , , - μ β Ο + ρ σ ) , (19) 

where Rg is the growth of microbial particles in both the phases (M/L^T). 

Substituting the decay and growth terms of Equations (18) and (19) into Equa­
tion (17), the final form of the second governing equation will become: 

^ ♦ ^ ~ ν · [ - * > ν <:♦"*>♦..♦*,] (20) 

+ Γθ C + p σΐ (μ - b). 

The third governing equation is obtained from the mass conservation equation 
for the organic matter which acts as substrate for the microorganisms in the 
control volume, by following the similar procedure: 

d(psSF) d@CF) 
■ + = - V · \-DeQVCF + Qvfp\-^. (QC + po), 

dt dt I e ' ' J Y v r " (21) 

where, 

ps = bulk mass density of dry soil (M/L3); 
SF = mass of adsorbed substrate per unit mass of soil particles; 
CF = the mass of substrate per unit volume (M/L3); 
De = Odi + Dm, effective diffusivity coefficient (L2/T); 
Dji = coefficient of mechanical dispersion of substrate (L2/T); 
Dm = coefficient of molecular diffusion (L2/T); and 

Y = true yield coefficient. 
Equations (3), (20), and (21) are the governing equations for the bacterial 

transport in porous medium. These three equations are to be solved to describe 
bacterial transport in a porous medium. 

Selection of Numerical Methods 

As can be seen, the governing equations are complex with a high degree of 
non-linearity and coupling. It is very difficult to obtain a closed form solution for 
the unknowns even for a one-dimensional space. Numerical techniques are needed 
for a solution of these equations. The above governing equations can be modified 
to accommodate different experimental conditions. Because of the paucity of 
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experimental data, numerical solution techniques were performed on a simplified 
one-dimensional transport equation. In case of saturated soils, the volumetric 
water content Θ is equal to the effective porosity, (n - σ), and the velocity of flow 
will be a constant. If the flow is considered to be one-dimensional, then the 
divergence term in those above equations will become partial derivative with 
respect to the direction of flow. To analyze experimental conditions with no 
substrate present for the biological growth, the third equation need not be con­
sidered. Furthermore, in the absence of substrate, chemotactic phenomena is 
absent. By incorporating all these facts and setting C* = 6C, a* = ρσ, k = μ - b, in 
the governing Equations (3) and (20) and rearranging 

da* , 
— = kcC*-kda* + ka* ( 2 2 ) 

dC* d2C* dC* , ^ , 
— — = D =- - μ - T - - - kcC* + kx3* + kC* dt dX2 * dX "" (23) 

where u = vf + vm + Vg, sum of the velocities of flow, migration, and sedimenta­
tion. However, vm is zero for this particular case. 

The boundary and initial conditions for this problem are: 

C* = C*0 at X = 0; 
C* = 0 at X = oo; 
C* = 0 at t = 0; and 
σ* = 0 at t = 0. 

These equations are the same as those presented by Corapcioglu and Haridas for 
similar conditions [6]. They obtained the analytical solution and also solved these 
equations numerically using Galerkin finite element method (GFEM). In this 
article another well-known numerical technique, orthogonal collocation method 
(OCM), is used for solving the governing equations. OCM is a combination of the 
collocation method and finite difference method [17]. It uses the orthogonal 
polynomial expansions. The trial function is assumed as a series of orthogonal 
polynomials FN(x) defined as: 

N 

M (24) 

The coefficients (Cj) in Equation (24) are defined by requiring that F1 be orthog­
onal to FQ, F2 be orthogonal to both Fj and FQ, and FN be orthogonal to each Ft, 
where k s (N-l). The orthogonal condition can include a weighing function w(X) 
a 0. Thus, 
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jw(X)Fk(X)FN{X)dX =0, k = 0,1, 2 , . . . , N - 1, 
(25) 

where a and b are the limits of integration. The polynomials satisfying Equation 
(25) with w = 1 are called shifted Legendre polynomials, and the roots for these 
polynomials are readily available in tabular form [17]. 

The collocation points are taken as the N roots to FN(X) = 0, where the roots are 
between zero and one. The collocation points are then Xx = 0.0, XN+2 = 1.0, and 
X2, . . . , X]NJ+I are the interior roots. The solution for the trial function at the 
collocation points C*(Xj), can be written as: 

N+2 

c*(xj)= y dp-1. 
;-i (26) 

The first and second derivatives at the N + 2 collocation points are: 

dC*(Xj) ™ ., 

** ti (27) 
d2C*(Xj) ™ 

** ή (28) 

These equations can be written in matrix notation: 

C* = Qd, 

dC* 
-dT = Ed>and (29) 

T=Dd, 
dX2 

where Q, E, and D are (N + 2)*(N + 2) matrices. 

The first and second derivatives can be obtained by eliminating d from Equation 
(29): 

dC* , 
— = EQ->C*=AC* m 

d2C* . 
dX2 * (31) 

When orthogonal collocation method is applied to solve Equations (22) and 
(23), the spatial derivatives are replaced by the following matrices: 
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N+2 . „ N+2 
dC* π 02e* V 

j-l j-l dX 

Then, by substituting these, Equations (22) and (23) become: 
da*; 

dt = kcC*i + (k-kd)a*i 

dC*-, N+2 N+2 

j-l / - I 

(32) 

(33) 

(34) 

Runge-Kutta method was employed to integrate the above equations numeri­
cally. However, it should be noted that the above equations can also be converted 
to linear algebraic equations by using the Laplace transform. The solution of the 
orthogonal collocation method is plotted in Figure 1, with relative concentration 
of bacteria in suspension on the Y axis and distance along the X axis. The 
analytical solution and the Galerkin finite element method solution obtained by 
Corapcioglu and Haridas are also plotted on the same figure for comparison [6]. 

To compare the solutions of orthogonal collocation method and Galerkin finite 
element method with the analytical solution, the values of the constants and 
parameters used were the same as those reported by Corapcioglu and Haridas [6] 

analytical 

O GFEM 

x OCM 

15 
Distance X 

Figure 1. Comparison of the solutions of OCM and GFEM 
with the analytical solution. 
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Table 1. Values of the Parameters Used In the Literature [6] 

Parameter Value Used in the Literature 

Dispersion coefficient (D) 0.04 cm2/sec 
Clogging rate constant (kc) 6.5 x 10^/sec 
Declogging rate constant (kd) 4.35 x 10^/sec 
Velocity (μ) 3.0 x 10"2 cm/sec 

and are presented in Table 1. The other constants used are specific decay coeffi­
cient 10"3/sec, maximum specific growth 4.2 x 10"5/sec and Monod half saturation 
constant 2 x 10"3mg/l and yield coefficient 0.04. As can be seen from this plot, the 
solution of the orthogonal collocation method (N = 6) fits the analytical solution 
better than that of the Galerkin finite element method. Moreover, the OCM has the 
following advantages over the GFEM. It uses one high degree polynomial over the 
entire domain where as for GFEM linear polynomials are used on each element 
[18] and the higher order methods converge rapidly and give more accuracy than 
lower order method. If the solution is symmetric, this fact can be incorporated in 
the trial functions and computations can be reduced by half in the OCM. 
Moreover, for one-dimensional partial differential equations it is easy and con­
venient to use OCM rather than GFEM and also, by increasing the number of 
collocation points, the error can be decreased appreciably. Hence, the orthogonal 
collocation method is recommended for solving bacterial transport equations 
through porous media. 

Bacterial Transport through Unsaturated Porous Media 

Experimental data for one of the special cases of an unsaturated soil water flow 
problem have been reported in the literature [7]. The governing equations for the 
experimental data are obtained by modifying Equations (3), (20), and (21) to 
reflect the following experimental conditions: 

1. The flow is unsaturated and one-dimensional; 
2. No substrate is present; 
3. Effects of straining and sedimentation are negligible for the medium used; 

and 
4. The growth and decay of bacteria are neglected during the short time 

periods of the experiment. 

Therefore, the first governing equation (Equation (3)), becomes: 

*£*-**-*,ρσ. (35) 
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Table 2. Variation of Volumetric Water Content with Similarity Variable (λ) 

Similarity 
Variable 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

Volumetric 
Water Content 

0.370 
0.340 
0.311 
0.292 
0.278 
0.265 
0.255 
0.250 
0.246 

Similarity 
Variable 

4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
10.0 

Volumetric 
Water Content 

0.242 
0.233 
0.228 
0.218 
0.208 
0.190 
0.120 
0.015 
0.000 

In the absence of organic matter, chemotaxis is absent (vm = 0). The effect of 
sedimentation is neglected because of the low settling velocity of microorganisms. 
Then, the second governing equation becomes: 

Considering the flow as one-dimensional, the divergence will become the partial 
derivative with respect to the direction of flow, so the above equation reduces to: 

d(6C) a 
dt ~ dX 

dC dVfQC 

-JT-^c + kdPo. (37) 
As there is no substrate available, the third governing equation need not be 

considered. Since there are two equations (Equations (35) and (37)) and three 
unknowns (σ, Θ, and C), we need additional information about the soil water 
content. The variation of Θ for this experiment is available [7]. Table 2 shows the 
variation of volumetric water content with Boltzmann's similarity variable λ 
which is defined as X/V7for a diffusion type equation [19]. The similarity variable 
(λ) is used to eliminate the X and t from the one-dimensional transport equation. 

The above governing equations (35) and (37) can be reduced to ordinary 
differential equations by taking N collocation points along the direction of flow. 
The reduced equations are: 

d(a σ,) 

-V-W-^ρσ, (38) 
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. . N+2 N+2 N+2 

■+-J-Ì = V AjfXßi Q) 2 Aa ΘΑ - vr J Λ;·,· Θ,· C, - kc θ,- Ç, + ^ p σ;·. 
«-1 M ί-i (39) 

Initial and boundary conditions are: 

1. When t = 0, X > 0, Q = 0, a, = 0, θ; = 0; 
2. When X = », C = 0, σ = 0, Θ = 0; and 
3. When X = 0, Cx = C | x=0 = Q = 1.0 (relative concentration is used), and θ | 

x=o = θ0 = 0.37 . 

When j = 1 (X = 0), Equation (38) reduces to: 

^ = 0 . 3 7 ^ - ^ p O l . ( 4 0 ) 

Now, taking the Laplace transform on both sides of Equation (40): 

S p 0l(s) = 0.37-^ -kd9a1 (s) - ρ σ , (s) (S + kd) = 0.37 -f. 

The solution is obtained by taking the inverse Laplace transform: 

p OiW-0.37^(1-e*0· 
kd (42) 

Equation (42) is a boundary condition for σ at X = 0 and is a function of time. 
Equations (38) and (39) are non-linear ordinary differential equations. There are 
several techniques to solve these equations. The Runge-Kutta method is adopted 
here. 

Equations (38) and (39) cover three sets of variables (9i; at, Q). One can set C* 
= Θ C and σ* = p σ, then Equations (38) and (39) reduces to 

do* 
-ir = k<C1-k<°1 (43) 

N+2 N+2 N+2 

= J Aji DC* J! Aa C\ - vf 2 Aji Cf - kcC* + kdo*. 
dC*30j 

i-i I-/ i-i (44) 

Equations (43) and (44) can be solved simultaneously for C*j and o=jf. Knowing 
the values of Bj from Table 2, Cj = C*j/0j and Oj = σ$/ρ can be calculated. The 
total concentration of bacteria (Ct) can be obtained by summing Cj and Oj. 

Parameter Estimation and Model Verification 
The above equations can be solved, if the values of the parameters D, kc, and kj 
are known. These parameters for the transport of microorganisms are not available 
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in the literature. For the numerical solution of the governing equations, Corap-
cioglu and Haridas [6] used the values of the parameters from studies on the 
leachate movement and filtration [20-22]. It should be noted that the leachate 
movement and filtration is somewhat different from that of transport of organisms 
through porous media. 

Our approach in this research is to establish the values of the parameters D, the 
dispersion coefficient, k„ the clogging coefficient and kj, the declogging coeffic­
ient, which would fit the experimental data available in the literature [7]. For this 
experiment, the flow is unsaturated and velocity of flow through the column is not 
stated. However, one can use the known range of values for the hydraulic conduc­
tivity of sand (10"* to 10"1 cm/sec) [23], which is the medium used for the 
experiment and the reported experimental head of water (12 mm), to calculate the 
range of values for flow velocity by Darcy's Law. A sensitivity analysis was 
performed to obtain the best value of flow velocity, which minimizes sum of 
squared residual between the model prediction and the experimental values. The 
model predictions and the experimental data are presented in Figure 2. It should be 
noted that the total concentration of bacteria (bacteria in both the adsorbed and 
free phases) is plotted as a function of a parameter defined earlier as the similarity 
variable (λ). The initial trial values of the parameters D, k,., and kj are presented in 
Table 1. The other parameters used for the sensitivity analysis are density of 
bacteria (1 gm/cc) and the porosity of bed (0.37). It is apparent from Figure 2 that 
the solution is not sensitive to flow velocity for the range of velocities used. A 
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Figure 2. Effect of varying the flow velocity on the model prediction. 
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Figure 3. Effect of varying the dispersion coefficient on the model prediction. 

velocity of 6.0 x 10"3 cm/sec produced the minimum sum of the squared residual 
and hence is used here. 

Dispersion coefficient, D, clogging coefficient, k<., and declogging coefficient 
kj are the three important parameters for the prediction of the microbial transport 
in porous media. The effect of variation of these parameters on the model predic­
tion was analyzed by the sensitivity analysis in a manner similar to the one 
described above for the velocity. The effect of the variation of D on the model 
prediction (Figure 3) suggests that the solution is sensitive to D for the range of 
values used. The values of D, less than the order of 10"2 are under predicting and 
the values more than the order of 10"1 are over predicting the relative concentra­
tion of bacteria for all λ values. Hence, the value of D is likely to be of the order 
of 10'2. The least square analysis confirmed this, a D value of 8.0 x 10"2 produced 
the minimum sum of the squared residual and is used for further computations. It 
should be noted that the value of D obtained in this study is approximately twice 
the D value used by Corapcioglu and Haridas [6]. Figure 4 shows the effect of the 
variation of kc> the clogging coefficient on the model prediction. As can be seen 
from this figure, the model solution is sensitive to clogging coefficient. For all kc 
values, the trend of prediction changes direction at a n value of 1.6 x 10"3. The 
iterative search method employed to estimate the clogging coefficient yielded a k<. 
value of 3.9 x 10"3/sec. This value is about two-thirds of that used by Corapcioglu 
and Haridas [6]. Sensitivity analysis on the model prediction performed by vary­
ing the declogging coefficient is shown in Figure 5. It appears that the model 
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Figure 4. Effect of varying the clogging coefficient on the model prediction. 
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Figure 6. The predicted values of the relative concentration of bacteria 
along with the experimental values. 

Table 3. Values of the Parameters Obtained in This Study 

Parameter 
Value Obtained 

in This Study 

Dispersion coefficient (D) 
Clogging rate constant (kc) 
Declogging rate constant (kd) 
Velocity (u) 

0.08 crrr/sec 
S^xlO^/sec 
3.0x10"3/sec 
β.ΟχΙΟ"3 cm/sec 

solution is sensitive to declogging coefficient and for all kj values the trend of 
prediction changes direction at a 1 value of 1.4 x 10 3. Once again the search 
method of minimizing the sum of squared residuals resulted in a kj value of 3.0 x 
10"3/sec. The kj value of this study is almost seven times of that used by Corap-
cioglu and Haridas [6]. The values of the parameters obtained in this study are 
summarized in Table 3. 

Using the parameters from Table 3, the model is solved for C* and σ* by the 
orthogonal collocation method together with the Runge-Kutta method. The results 
of the numerical solution using the parameters obtained in this study and the 
experimental data from Tan et al. [7] are presented in Figure 6. The plot shows that 
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the model under predicts the relative concentration of bacteria when λ < 3.6 x 10"3 

and over predicts the relative concentration of bacteria when λ > 3.6 x 10"3. 

CONCLUSIONS 

The general governing equations for the transport of microorganisms in porous 
media are reviewed and modified to describe various experimental conditions. 
Two different numerical techniques were compared for effectiveness in solving 
the governing equations. Based on the results of this study, the following con­
clusions can be drawn: 

1. The orthogonal collocation method is found to fit the analytical solution 
better than the Galerkin finite element method. 

2. Fewer steps, simplicity for one-dimensional problems, and accuracy are the 
advantages of the orthogonal collocation method when compared with the 
Galerkin finite element method, particularly for experiments which extend 
over long time periods. 

3. The model under-predicts the relative concentration of bacteria when λ < 
3.6 x IO"3 and over-predicts the relative concentration of bacteria when λ > 
3.6 x IO"3. 

4. Sensitivity analysis was useful in obtaining estimates for the parameters 
necessary for solving bacterial transport model for porous media. However, 
simultaneous optimization of all of the parameters concurrently may have 
led to even better estimates of these parameters. 

LIST OF SYMBOLS 

b = the specific decay rate (1/T) 
C = concentration of suspended microbial particles per unit volume of 

flowing suspension (M/L3) 
CF = substrate concentration in the porous space (M/L3) 
D = coefficient of hydrodynamic dispersion (L2/T) = Da + DB + DT 

Da = coefficient of mechanical dispersion (L2/T) 
DB = diffusion coefficient of bacteria (L2/T) 
De = Dj] + Dm, effective diffusivity coefficient (L2/T) 

Dj! = coefficient of mechanical dispersion of substrate (L2/T) 
Dm = coefficient of molecular diffusion (L2/T) 
DT = motility coefficient or effective diffusivity coefficient (L2/T) 

d = diameter of microbial particles (L) 
g = gravitational acceleration (Ι/Γ2) 
h = constant which has to be found experimentally 
J = specific mass discharge of flowing suspension (M/L2!) 

JA = flux due to advection and mechanical dispersion (M/L2T) 
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JB = flux due to Brownian diffusion (M/L2!) 
JCT = flux due to chemotaxis and tumbling (MflJT) 
Jvg = flux due to sedimentation (M/L2!) 

k = net specific growth rate (1/T) 
kb = Boltzmann constant (energy per degree, ML2/T2) 
ke = clogging rate constant takes into account screening and adsorption 

phenomena (1/T) 
kd = declogging rate constant (1/T) 
km = migration rate constant or chemotactic coefficient (1/T) 
Ks = half saturation constant (M/L3) 
λ = similarity variable (distance over square root of time, LT1/2) 

md = mass of microbial particle (M) 
Ra = rate of deposition of microbial particles per unit volume of soil (M/I^T) 
Rj = decay of particles in both the phases (Μ/ΐΛ*) 

Rdd = growth term of the deposited microbes (M/L3!") 
Rds = rate of decay of suspended microbial particles (MHJT) 
Rg = growth of particles in both the phases (M/L^T) 

Rgs = rate of growth of suspended microbial particles (MßjT) 
Rgd = decay term of the deposited microbes (M/L^T) 

p = density of the microbial particles (M/L3) 
ps = bulk mass density of dry soil (M/L3) 
pw = density of water (M/L3 

Θ = effective porosity, i.e., volume occupied by the flowing suspension per 
unit of the total volume (L3/L3) 

SF = mass of adsorbed substrate per unit mass of soil particles (M/L3) 
σ = volume of deposited bacteria per unit volume of bulk soil (L3/L3) 
t = time 

T = absolute temperature (°K) 
μ = specific growth rate (1/T) 

Mm« = maximum specific growth rate (1/T) 
μ^ = viscosity of the flowing fluid (L/T) 
vf = superficial longitudinal velocity of flow (L/T) 
vg = settling velocity 
vm = the migration velocity (L/T) 
X = distance 
Y = true yield coefficient 
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