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ABSTRACT 
Impoundments and lake systems become eutrophic through excessive nutrient 
(phosphorus and nitrogen) loadings. Deterioration of water quality because of 
algal blooms has forced many water quality control boards to adopt measures 
to reduce discharge of such nutrients into the water bodies. Phosphorus is the 
nutrient that is selected most frequently for control as there are fewer path­
ways for it to enter a lake than there are for nitrogen. For instance, the Virginia 
Water Control Board has adopted an average monthly limit of 2 mg/1 of total 
phosphorus in the effluent of about forty wastewater treatment plants in the 
Chesapeake Bay Drainage Basin [1]. 

A practical model to compute the transient response of a lake system to phos­
phorus is of great benefit to water resources planners and designers. Many systems 
of interest in environmental engineering are described by first order linear dif­
ferential equations which have readily obtainable solutions when the coefficients 
are constant. Simultaneous differential equations occur less frequently than single 
differential equations and the methods for solving systems of these equations 
are less commonly known to engineers. Continuous, lumped parameter, linear 
systems of n ordinary differential equations are written 

*The Louisiana Transportation Research Center, the Department of Civil Engineering, and the Water 
Resources Research Institute at Louisiana State University provided support for the authors while they 
were developing this work. Robert N. Havis provided encouragement for pursuing this study. 

137 
© 1994, Baywood Publishing Co., Inc. 

doi: 10.2190/J65A-Y0EP-266U-9H6H
http://baywood.com



138 / NAGHAVI AND ADRIAN 

= fn(t)xi(t)+-+fln(t)xn(t) + gu(t)ui(t)+...+glm(t)um{t) 

- J p = fnl(t)Xl(t)+- ■ ■+/„„(')*„(') + g„l(0"lW+·. ■+gnm(t)um(t) (1) 

where n and m are the dimensions of the state and input vectors 

x(0 = [Xl(t),...,x„(t)]T (2) 
and 

u(0 = [Ul(t),...,u„(t)]T (3) 
These equations can be written in the compact form 

x(/) = F(0x(0 + G(0u(0 (4) 

where x(t) stands for dx(t)/dt and F(t) and G(t) are the two matrices [fij(t)] and 
[gij(t)] of dimension m x n and n x m, respectively. 

Certain subclasses of the general problem described above are of particular 
interest to environmental engineers. Of special interest are equations having 
constant coefficients in which [fij(t)] consists of constants [fy] and [gij(t)] 
consists of constants [gy]. In addition, homogeneous equations occur when 
ui(t) = . . . = um(t) = 0. In many applications, we are interested in the solution given 
when G(t) is the identity matrix. A theorem which is applicable to both a single 
linear ordinary differential equation and to a system of linear ordinary differential 
equations is that the most general solution of the nonhomogeneous Equation (4) is 
obtained by adding to any particular solution of Equation (4) the general solution 
of the homogeneous equation [2]. 

PURPOSE AND SCOPE 

The purpose of the article is to discuss alternative methods for solving systems 
of equations which arise when describing a transient lake eutrophication problem. 
We restrict our discussion to a comparison of methods for solving systems of 
ordinary linear differential equations having constant coefficients. We illustrate 
application of the methods with a system of three simultaneous equations which 
describe lake phosphorus dynamics. We will examine five methods for solving 
systems of equations: reducing the number of equations to a single higher order 
equation, solving by the eigenvalue method, using Laplace transforms, developing 
a trial function, and obtaining the solution by series. We will not discuss numerical 
methods as this subject is covered by extensive literature elsewhere [3, 4]. Also, 
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we do not discuss the method of eliminating the independent variable by combin­
ing equations as it eliminates the time variable [5]. 

PHOSPHORUS MODEL FOR LAKE EUTROPHICATION 
Dynamic models for prediction of equilibrium phosphorus concentrations in a 

lake system require the solution of three simultaneous, linear, first order differen­
tial equations which are derived from the lake model shown in Figure 1. The lake 
model as presented by Bingham and Feng [6], Havis [7], and Havis and Ostendorf 
[8] is 

Sediment solid phase phosphorus 

dP<i Di 
^ = -k3Ps + ^kiPL (5) 

Sediment interstitial phosphorus 

f = ^ - £ ( Ρ , - Ρ , ) (6) 
Lake water phosphorus 

dPL P0 PL ε*! ir = T-T+^-^)-^ (7) 
where 

Ps = sediment solid phase phosphorus concentration, μg/l 
Pi = sediment interstitial water phosphorus concentration, μg/l 
PL = lake water phosphorus concentration, μg/l 
ki = film diffusion coefficient, m/day 
k2 = sedimentation rate coefficient, day"1 

k3 = desorption rate coefficient, day"1 

DL = average lake depth, m 
Dr = sediment reactive depth, m 
ε = sediment porosity 
T = VL/Q = lake detention time, days 
VL = lake volume, m3 

Q = flow rate into lake, m3/day 
Po = average annual influent total phosphorus concentration, μg/l 

Removal of the nonhomogeneous part of the lake model problem is accom­
plished by introducing new dependent variables hs(t), hi(t), and hL(t) which 
describe the departure from steady state conditions. 

hs(t) = Ps(t)-Ps„ (8) 
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Figure 1. Control volumes used in dynamic lake phosphorus model. 
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h£t) = P£t)-Pu (9) 

hL(t)=PL(t)-PLx (10) 

where 

hs(t) = sediment solid phase phosphorus concentration variable, μg/l 
hi(t) = interstitial phosphorus concentration variable, μg/l 
hr.(t) = lake water phosphorus concentration, μg/l 
PSoo = sediment solid phase concentrat ion as t ime approaches infinity, μg/l 
Pi» = sediment interstitial phosphorus concentration as time approaches 

infinity, μg/l 
PLOO = lake water phosphorus concentration as t ime approaches infinity, μ ^ 

The steady state condit ions are found b y setting the left-hand side of Equat ions 
(5), (6), and (7) equal to zero, solving them simultaneously and obtaining 

■Oûû — 
k-Pi 
kjP,. 

(11) 

P - ICTPL 
kfi Pn+Pn (12) 

PL» = PO (13) 
The homogeneous system of differential equations expressed in matrix notation is 

dhs 

~dT 

dhi 
dt 

dhL 

-dt _. 
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JL_ 

(14) 

where ai,...,a7, equal the corresponding terms in the coefficient matrix. The vector 
form of Equation (14) is 

h(/) = Ah(0 (15) 

SOLVING LAKE SYSTEM EQUATIONS 

Five methods of solving systems of differential equations will be discussed in 
turn and will be illustrated by application to the transient lake phosphorus model. 
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The methods will be discussed in the order: 1) reducing the number of equations 
to a single higher order equation, 2) solving by the eigenvalue method, 3) using 
Laplace transforms, 4) developing a trial function, and 5) obtaining the 
series solution. 

Reduction to a Single Higher Order Equation 

This method is a relatively simple approach to systems of differential equations 
and is widely referenced. Unknown functions and their derivatives are success­
fully eliminated until a single higher order differential equation containing only 
one unknown function and its derivatives is obtained. This equation is solved, and 
then other unknown functions are found [9-12]. 

Eigenvalue Method 

In this method, vectors and matrices are used to solve problems of linear 
differential equations [10, 13, 14]. A system of differential equations can be 
written 

h = Ah (16) 

where A is the coefficient matrix and h, (dh/dt), and h are vectors. By postulating 
the solution h = Z eXt', and canceling out ελι' we obtain 

AZ = λΖ or (A - λΙ)Ζ = 0 (17) 

The characteristic equation when Z * 0 is 

det(A-\T) = 0 (18) 

The roots of the characteristic equation are then used in Equation (17) to solve for 
Z. A value of λ for which Equation (17) has a solution Z * 0 is called an 
eigenvalue of matrix A, and Z is called an eigenvector of A corresponding to the 
eigenvalue λ. A linear combination of the independent solutions is also a solution. 

Laplace Transform Method 

The Laplace transformation can be used for solving systems of differential 
equations [15,16,17]. For f(t), a given function which is defined for all t Ä 0, the 
Laplace transform is given as 

F(s) = fe-*%t)dt (19) 

When solving a system of differential equations, after applying the transform, a 
solution in terms of s can be found for the transform F(s) by elimination. Then by 
taking the inverse transform of F(s), the original function f(t) can be obtained. 
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Tables of functions f(t) and their Laplace transforms F(s) can be found in many 
mathematics textbooks and reference books [18,19, 20]. 

Trial Function Method 

The trial function method [9] is a non-elegant method which requires little 
background on the part of the user. It is closely related to the method of undeter­
mined coefficients. Havis [10] applied it to solve the problem defined by Equa­
tions (5), (6), and (7). One assumes a solution such as h = zeXt as done in the 
eigenvalue method, but finds the coefficients and exponents that are appropriate 
for the problem being solved by substituting the assumed solution into the dif­
ferential equations. 

Series Method 

This method is presented in Hurewicz [2] and is explained in detail in Frazer 
et al. [21] and in Rinaldi et al. [22]. One advantage that this method has over the 
others is its capability of handling large systems of differential equations. How­
ever, one may experience instability or slow convergence when the independent 
variable (time) becomes large. Hurewicz hints about the instability of the method 
as the series converges uniformly in a sufficiently small neighborhood of the 
initial point [2]. The instability problem may be resolved by keeping the number 
of terms in the series small by re-initializing the solution periodically. The solu­
tion to a system of homogeneous differential equations with initial time equal to 
zero can be given as 

h(i) = e ^ O ) (20) 

where 

eA/ = / + Ai + A 2 ^ + A 3 ^ + . . . (21) 

In Equation (21), I is the identity matrix and A is the nxn matrix of constant 
coefficients, such as the coefficient matrix in Equation (14). Equation (21) can 
become cumbersome for large values of time as more terms are needed to reach a 
desired accuracy. 

RESULTS 

The solution to the system of differential equations (Equation 14), and their 
initial conditions are shown in detail in Appendix I. When the parameters in 
Appendix I are applied, the four methods of solution previously discussed yield 

Pli) = 119,025.90 eUl - 168.446^, - l . lóe^, + 148,833.60 (22) 
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P,{f) = 179.77ελ1, + 21.33«^ - 5 .30^ , + 244.70 (23) 

PL(i) = 24.39eu, + 15.236x2, + Οθβε^, + 50.00 (24) 

The solution by the series method can be written as 

\hs(t)} 
Ht) 

[hat)\ 
= <*' 

Ko 
hU> 
hiM 

where e can be obtained from Equation (21) and A (the coefficient matrix) is 

'fli 0 a2 

a3 fl4 fl5 

0 a6 a7 

and I = 
[1 0 0] 
0 1 0 
0 0 1 

A solution for the series (Equation 21) can be easily obtained for a given accuracy 
using a computer program to solve for hs(t), hi(t), and hi.(f). This solution is 
accurate when the time t is small enough that the series converges rapidly. 
However, for a large number of terms, as would be encountered when projecting 
the solution far into the future where t is large, the solution becomes unstable. 
Keeping the number of terms small by re-initializing the solution periodically 
will avoid the instability problem. We discuss this issue in detail when discussing 
the results. 

Numerical results for a lake phosphorus dynamics problem are calculated in 
Appendix III and the results are shown in Table 1. All of the methods produced 

Table 1. Lake Phosphorus Dynamics Results 

Time 
(days) 

(1) 

0 
1 
3 
5 

10 
100 

1000 
5000 

10000 
00 

PL 

(w/i) 
(2) 

90.00 
86.15 
81.17 
78.31 
75.35 
73.49 
66.55 
53.47 
50.47 
50.00 

Pi 
(μ9/0 
(3) 

440.50 
438.85 
433.73 
429.90 
425.50 
417.90 
366.69 
270.30 
248.18 
244.70 

Ps 
(mg/g-dry) 

(4) 

2.68 
2.68 
2.68 
2.68 
2.67 
2.63 
2.29 
1.66 
1.51 
1.49 

No. of 
Terms 

(5) 

2 
6 

12 
17 
30 
62" 
62s 

62" 
62e 

N/A 

"Values were obtained by re-initialization at twenty-five day periods as the series solution 
became unstable otherwise. 
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identical results. Again, however, the series method without re-initialization 
became unstable as time became larger. Re-initialization of the series at twenty-
five-day intervals when the series required sixty-two terms to converge allowed 
the results to be calculated to 10,000 days, producing results identical to those 
obtained by other methods. 

None of the textbooks which were reviewed contained all of the methods which 
we evaluated. Most books discussed only one or two of the methods. The older 
books presented the method of reduction to a single differential equation. Books 
written in the 1950s introduced the eigenvalue method, sometimes to the exclu­
sion of other methods. The Laplace transform method was presented in operation­
al mathematics books. Explicit references for the trial function method are few, 
although one can gain insight into the method by studying the method of undeter­
mined coefficients. The series method, associated with matrix reference books for 
many years, is now more widely referenced. Its popularity is associated with the 
availability of computers for carrying out the tedious calculations. 

All of the methods except the series method involve solutions for the roots of a 
polynomial equation having the same degree as there are simultaneous differential 
equations. Solution for the roots of the polynomial is made less difficult on a 
computer by the use of numerical algorithms. The question of which method is 
easiest arises. We rank the methods in the order of increasing difficulty as: 

1. series method (if one is alert to convergence and instability problems), 
2. reduction to a single higher order equation, 
3. the eigenvalue method, 
4. the trial function method, and 
5. the Laplace transform method. 

However, the ranking is subjective and may change depending upon one's 
experience. For example, one of the difficulties with the trial function method is 
that one has to prescribe the form of solution. If a term is not prescribed when one 
is selecting a trial function, trouble will be encountered later in the solution 
procedure. Laplace transforms become easier to use as one gains experience with 
them. The series method is attractive as one can write the form of the solution, 
Equation (20), as soon as the differential equation, Equation (15), and the initial 
condition are developed. All of the methods produced the same results. Care had 
to be exercised, however, with the series method as it showed signs of instability 
as the number of terms in the series increased. Re-initialization of the series 
avoided the instability problem, so it produced accurate results. 

Doetsch cautions that when more than three equations are involved, the method 
of combining the equations into a single higher order equation (called the classical 
method) becomes impractical and the Laplace transform method is superior [23]. 
In fact, he states, "[The Laplace transform method] shows its full power in the 
solution of several differential equations where it leads to much greater insight 
and much less calculation than the classical method, which is not practical at all" 
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[23, p. 76]. He points out that the Laplace transform method can handle functions 
which are not differentiable, whereas the classical method of reduction to a single 
equation will fail. He also notes the initial conditions are easier to introduce in the 
Laplace transform method. 

CONCLUSIONS 

Table 1 shows that the phosphorus concentration in the lake water adjusted 
rapidly to the change in input phosphorus concentration. During the first year the 
lake phosphorus concentration made about half its ultimate adjustment. The 
sediment serves as a reservoir for phosphorus. It slowly adjusts to the change in 
input conditions, and feeds phosphorus through the interstitial water to the lake 
water for many years. 

Experience and personal preference are the major reasons one would select one 
method of solving the equations describing phosphorus dynamics in a lake in 
place of another. The series method is the recommended method because it is 
easier to set up. However, one has to be alert to avoid slow convergence of the 
series and instability if convergence requires too many terms. 

LIST OF SYMBOLS 

A = coefficient in equation, lake surface area; 
A = coefficient matrix; 
DL = average depth of lake; 
Dr = sediment reactive depth; 
F(t) = coefficient matrix; 
F(s) = Laplace transform; 
fij(t), gij(t), hij(f) = coefficients in matrix; 
f(t) = function of time in Laplace transforms; 
G(t) = coefficient matrix; 
hi(t), hL(t), hs(t) = variable for interstitial, lake water, and sediment phosphorus 
I = identity matrix; 
ki = film diffusion coefficient; 
k2 = sedimentation rate coefficient; 
k3 = desorption rate coefficient; 
Pi, PL, PO, PS = total phosphorus concentration in sediment interstitial water, 

lake water, influent stream, and sediment solid phase; 
Pioo, PL», PSOO = steady state sediment interstitial, lake water, and solid phase 

total phosphorus concentration; 
Q = flow rate into lake; 
s = parameter in Laplace transform; 
T = transpose of matrix, lake detention time; 
t = time; 
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Uj(t) = function in nonhomogeneous equation; 
VL, VS = volume of lake and volume of solids; 
x(t) = matrix of functions; 
x = variable in differential equation; 
xi(t),...,xn(t) = functions in matrix; 
ai,...,a7 = coefficients in matrix; 
Z = eigenvector of the coefficient matrix; 
λι, λ2, λ3 = roots of polynomial equation; 
ε = porosity; 
eFt = series expansion of the matrix F for time; 
det( ) = determinant 

APPENDIX 1—PHOSPHORUS DYNAMICS PROBLEM 
The following numerical values are taken from Havis [7] for Lake Warner, 

Hadley, MA. PLO = 90.0 μg/l, Pio = 440.5 μgΛ) Pso = 2.6769 mg/g-dry (267,690 
μg/l), Po = 50.0 μg/l, ki = 0.091 m/day, k2 = 0.176 day"1, k3 = 0.001 day"1, VL = 
4.35 x 105 m3, DL = 1.691 m, Dr = 0.1 m, Q = 4.89 x 104 m3/day, ε = 0.84, ai = -k3 
= 0.0010 day1, a2 = (k2DL)/(Dr) = 2.9767 day1, a3 = ks/ε = 0.0012 day"1, M = 
-ki/Dr = -0.91 day1, a5 = ki/Dr = 0.91 day1, ae = (εkl)/DL = 0.0452 day"1, and a7 = 
-[1/Γ + (8ki)/DL + k2] = -0.3336 day"1. 

Also, we have 

hs(t)=Ps(t)-Ps»=Ps(t)- f^\P0 = Ps(t)- 148,833.60^/ ( 2 6 ) 

hit) = P{t) - Pix = Pit) - fë^j P0 - P0 = Pit) - 244.70 μ#ί ( 2 7 ) 

M 0 = Pdt)-PL» = Ρι(0-Ρο=Ρι(0-50.00μ&Λ 

Therefore, we need to solve 

dt 
dhi 
dt 
dhL 
dt 

-0.001 0 2.9767 

0.0012 -0.91 0.91 

0 0.0452 -0.3336 

'hs 

hi 

hL 

(28) 

(29) 

subject to the initial conditions, hso = 118.856.60 μ^ , hu, = 195.80 μg/l, and hLo = 
40.00 μξ/Ι. 
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Solution by the Series Method 

Solution by the series method is reached by the use of Equation (20) where eAt 

is obtained from Equation (21) and A is the coefficient matrix. Results of the 
computer solution are identical to the analytical solutions obtained from other 
methods and are shown in Table 1. 
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