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ABSTRACT 
A dissolved oxygen sag equation for a stream is developed in which the 
biochemical oxygen demand is described as a half order reaction rather than a 
first order reaction as in the classical Streeter-Phelps equation. The dissolved 
oxygen equation using half order BOD kinetics is most applicable to rapidly 
degrading industrial wastes containing glucose and glutamic acid. The time at 
which the maximum dissolved oxygen deficit occurs is predicted in this 
model. The dissolved oxygen sag equation is developed for the case in which 
sedimentation of BOD occurs. However, if both sedimentation and benthic 
demand occur, a complete analytical solution does not appear possible. 

INTRODUCTION 

The Streeter-Phelps equation for the dissolved oxygen in a stream has been widely 
studied and applied in environmental engineering. The equation relates the 
oxygen demand exerted upon a stream by a biodegradable waste to the natural 
recovery process for a stream through reaeration. First developed by Streeter and 
Phelps [1] during their studies of pollution on the Ohio River, the equation is 
derived from the relationship 

^ = ]qL-k 2 D (1) 
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where 
D = dissolved oxygen deficit, Q - C, mg/L 
Cs = saturation value for dissolved oxygen, mg/L 
C = dissolved oxygen concentration in the stream, mg/L 
ki = biochemical oxygen demand deoxygenation rate constant, day-1 

L = biochemical oxygen demand yet to be satisfied, mg/L, also L means liter 
k2 = reaeration rate constant, day"1 

The biochemical oxygen demand is treated as a first order reaction so that 

§=-^ © 
which integrates to L = Lo exp(- kit), where Lo is the ultimate carbonaceous 
biochemical oxygen demand and ki is the reaction rate constant, assumed to be 
equal to the deoxygenation rate constant. Combining Equations (1) and (2) and 
integrating leads to the classical Streeter-Phelps equation 

D = "F^k" [exp(-kit) - exp(-k2t)] + D0 exp(-k2t) 
K2 - K! (3) 

where Do is the dissolved oxygen deficit at time zero. 
A large number of variations of the basic Streeter-Phelps differential equation 

have been developed to extend its range of applicability. These variations include 
the addition of terms to account for the effect of benthic deposits, photosynthesis, 
sedimentation, and temperature [2, 3]. Some attention has been given to the form 
of the kinetic equation for BOD. For example, Thomas [4] and Young and Clark 
[5] proposed a second order BOD reaction equation. Braun and Berthouex [6] 
proposed a Mechalis-Menten expression for the BOD kinetics. Apparently, the 
half order BOD kinetic expression has not been incorporated into a dissolved 
oxygen sag equation. Reining [7] presented data on BOD decay for various 
mixtures of glucose and glutamic acid. Analysis of his data showed it was best 
described by a half order kinetic model. Sutherland [8] and Sutherland et al. [9] 
reported that a sugarcane factory wash water containing glucose was readily 
biodegradable but these authors did not develop a dissolved oxygen sag equation. 

PURPOSE 

The purpose of this article is to develop an oxygen sag equation for a stream in 
which a half order relationship describes the oxygen demand kinetics of the waste. 
The mathematical description will retain the basic form of Equation (1), but will 
change the form of Equation (2) so that a half order BOD equation can be used 
[10]. The mathematics of the half order BOD equation will be reviewed first; then 
the equation which incorporates this type of BOD demand into the dissolved 
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oxygen budget of a stream will be developed. Finally, the consequences of using 
the revised equation will be explored through examples. 

HALF ORDER BOD EQUATION 

Derivation 

The half order BOD equation is developed from the premise that the reaction 
rate is given by the expression 

~fa - - ki/2 L - k3 L + La (4) 

where the terms are as previously defined, except that ki/2 is the half order rate 
constant (mg/L)1/2/day; to is the sedimentation rate constant, day"1; and La is the 
benthic deposits addition to BOD, mg/L/day. When k3 = 0 and L» = 0, Equation (4) 
integrates to 

L = (LT-k1/2t/2)^ (5) 
When ti = 2Lol/2/ki/2, there is no remaining organic material to degrade so that 
L = 0 for t > ti, otherwise Equation (5) would show L increasing for t > ti. When 
k3 x 0 but La = 0, Equation (4) integrates to 

L = *·*(-¥)-£('-■*(-¥))' (6) 

9 /τ1/21. . i- \ 
When ti = γ In p " ^ ™ 1 ' " the BOD is zero and one should specify L = 0 

for t > ti. 
When ki/2, ks and La are all present, Equation (4) integrates to 

In 
| L + i5if iLiy2_k| 

IT .hn-svi L· 
^ + k 3 ^ - k 3 , 

(Lf-ßML 1 ^«) 
(Ι*-β)(ΐ^ + α ) 

*j/2 
K 1/2 * ' = -k 3 t (7) 

where 

°-m\ ki/2) 4L, 
k3 k3 (8) 

and 
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L(t) is contained as an implicit function in Equation (7). Examination of Equation 
(4) shows that when La * 0, the steady state is 

L"-i (10) 

Determination of Model Parameters 
The half order BOD equation lends itself to straight-forward determination of 

the constants ki/2 and Lo from experimental data, especially when k3 = La = 0. The 
conventional BOD bottle test gives values of the amount of oxygen consumed by 
a sample as a function time. If y represents the amount of oxygen consumed at any 
time, the relationship Lo - y = L can be substituted into Equation (5) to obtain the 
parabolic equation 

y = k1/2Lo1/2t-(k1/2 t/2)2 (11) 

which can be rearranged in one of the following linear forms 

ί=-%^1 / 2α* (i2) 
or 

X _ ki/2 Ljj/2 k2^ 
t 2 _ t 4 (13) 

kin t2 1 t Kl/2 
y 4 1 ^ k 1 / 2 l T (14) 

or 

t2 _ 4Ug l Λ. 
y ki/2 y kl/2 (15) 

from which the parameters ki/2 and Lo can be determined from the ordinate 
intercept and slope of the line. Of course, to avoid the problem of predict­
ing unrealistic results, ki/2 and Lo must be positive. Also, Equation (11) would 
predict a negative oxygen consumption for large times so the restriction that 
t s 2 Lol/2/ki/2 is still necessary. 

An alternative procedure for determining ki/2 and Lo is to find their values such 
that the best fit in the least squares sense is obtained using Equation (11) and the 
measured values of y versus t. This procedure may be advantageous if one were 
processing large amounts of data, or if the linear forms illustrated in Equations 
(12)-(15) show bias in the calculated values of ki/2 and Lo. A difficulty arises in 
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the calculations because ti is a function of Lo and ki/2, both of which are 
unknowns. A practical solution is to use all the y vs. t data to calculate ki/2 and Lo. 
Then calculate ti. Then check to determine whether any data used in the calcula­
tion had t > ti. If so, then those data points would be eliminated and revised values 
of ki/2 and Lo would be calculated and the new ti determined. The least squares 
values of ki/2 and Lo would be calculated by minimizing the square of residual 
error in the function 

SRE = 'Y [yOD-yCi)]2 

Si (16) 

where y (ti) is the measured value and y (ti) is predicted from Equation (11). 
Reining analyzed the effect of dilution on the BOD kinetics of a 1:1 mixture of 

glucose and glutamic acid, containing 175 mg/L of each [7]. The above mixture 
was tested on a manometric apparatus in a series of dilutions so that the sample 
strength varied from 10 percent of full strength to 100 percent of full strength. Ten 
replicates for each dilution were measured at daily intervals. Examination of 
Reining's data shows that the wastes which were 40 percent strength or less follow 
half order kinetics. Table 1 shows the data from the ten replicate readings for the 

Table 1. Daily Dissolved Oxygen Uptake Values in mg/L for 
30% Strength Waste for Ten Replications 

Day 

Replication 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
y 
°y 

Ψ2 °(yA2) 

1 

43.9 
41.1 
29.5 
22.6 
13.1 
26.5 
17.8 
24.2 
44.9 
43.5 
30.71 
11.79 
30.71 
11.79 

2 

58.0 
45.2 
56.6 
57.6 
44.7 
57.5 
47.9 
51.7 
49.1 
58.0 
52.63 

5.53 
13.16 
1.38 

3 

63.6 
47.8 
58.8 
62.9 
52.7 
66.2 
65.0 
65.3 
57.1 
63.1 
60.25 

6.09 
6.69 
0.68 

4 

65.0 
47.8 
59.4 
64.6 
57.0 
66.2 
70.9 
65.3 
62.4 
66.9 
62.55 

6.48 
3.91 
0.41 

5 

65.0 
47.8 
61.2 
65.3 
65.8 
66.2 
82.1 
65.3 
67.3 
74.5 
66.05 

8.75 
2.64 
0.35 
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30 percent of full strength samples. The table has been augmented so Equation 
(13) can be used to determine the kinetic parameters ki/2 and Lo from Figure 1. 

Examination of Figure 1 shows the intercept on the vertical axis is -5.0. From 
Equation (13), the intercept is - k2i/2/4, so ki/2 = 4.472 mg1/2/L1/2-d. The slope is 
35.94. Equation (13) shows the slope is ki/2Lo1/2, so Lo = 64.59 mg/L. Examination 
of the data in Table 1 shows that by day four replicates one, two, six, and eight 
ceased to consume any more dissolved oxygen. Replicates two, six, and eight 
ceased to consume dissolved oxygen by day three. Thus, if a sample is expected to 
follow half order kinetics, then it is important to collect data earlier rather than 
later in the test period. In other words, data collected early in the test period 
will have t < ti. For Figure 1, ti = 2 Lo1/2/ki/2 = 3.59 day. The line of best fit in 
Figure 1 would undergo a negligible change if the data for days four and five 
were eliminated. 

OXYGEN SAG EQUATION FOR HALF ORDER BOD KINETICS 

The appropriate differential equation describing the dissolved oxygen con­
centration in a stream is obtained from the conservation of mass principle applied 
to dissolved oxygen. The mass balance relationship results in 

Hlr-

IO -

y 

10-

0 -

-10l 1 ; : 1 1 
0 0.2 0.4 0.6 0.8 1 1.2 

1/t ( i / d a y ) 

Figure 1. Thirty percent strength oxygen uptake data for a 1:1 mixture 
of glucose and glutamic acid. Plotted points are the mean of 

ten replications. Bars are at ± one standard deviation. 
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§ = WCs-C)-kml}* (17) 

We will look at three cases for the dissolved oxygen concentration: (a) k3 = La = 
0, (b) k3 * 0, La = 0, and (c) k3 * 0 and La * 0. For the first case, we substitute 
Equation (5) into Equation (17) to obtain 

^ = k2(Cs-C)-k1/2(U/2-k^t/2) ( 1 8 ) 

for t s 2Lo1/2/ki/2. When t is larger than this value, there is no oxygen demand from 
the waste and Equation (17) becomes 

^ = k2(Cs-C) (19) 

As the solution to Equation (18) is not readily available in stream pollution books 
[3,11,12], the derivation will be presented'in some detail below. 

Equation (18) has the integrating factor exp(k2t). After integrating, the follow­
ing expression is obtained 

C = Co exp(- k2t) + [(k2 Cs - k1/2 Lo^/kJ (1 - exp (-k2t)) 
+ (k?/2/2k2)((t-l/k2) + (l/k2)exp(-k2t)) (20) 

where Co is the dissolved oxygen concentration when t = 0. This expression for the 
dissolved oxygen concentration is applicable until ti = 2 Lo^/kiß. For t > ti, 
Equation (19) integrates to 

C (t) = C (to exp (- k2(t - tj)) + Q (1 - exp (- k2 (t - tj)) (21) 

Equations (20) and (21) are the forms of the dissolved oxygen expression for 
BOD following half order kinetics which are most convenient for application. If 
one prefers to work in terms of the dissolved oxygen deficit, Equation (20) may be 
rearranged to have the form 

D = D0 exp (-k2t) + (k?/2/k2) (Le72 - k1/2/(2k2)) (1 - exp (-k2t)) 

-(k1/2
2t)/(2k2) (22) 

and Equation (21) becomes 

D(t) = D 1 exp(-k 2 ( t - t 1 ) ) (23) 
where Di is the value Cs - C (ti). Equations (22) and (23) are analogous to 
Equation (3), except they are applicable for a half order BOD demand. 

For case (b), k3 * 0 but La = 0. Equation (6) gives the BOD concentration 
remaining as a function of time. Combining Equations (6) and (17) yields 

(jt = k2(Cs - C) - k1/2 ^-ρ(^)-^('-ρ(-¥))' (24) 
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Again, the integrating factor is exp k2t. After applying the integrating factor and 
integrating, one obtains 

C = Qexp(-k2 t)+ Cs + ki/2 
k2k3 

[l-exp(-k2 t)] 

cl/2 
1/2 . k l /2 

« +"k7 
k,- · 

e x p (" ~2~) " exP("k2 t) (25) 

This equation is applicable for t s ti where ti was shown previously to be 

2 , (L^MJ^i 
t i = k; l n { k1/2 η (26) 

For t > ti, Equation (19) is applicable and the dissolved oxygen is given by 
Equation (21) (using Equations (25) and (26) to compute C(ti)). 

For case (c), k3 * 0 and La * 0. Equation (7) gives the BOD concentration 
remaining as a function of time, but the BOD concentration remaining, L(t), is an 
implicit function of time. One cannot solve Equation (7) explicitly for L(t). Thus, 
the dissolved oxygen differential equation, Equation (17), cannot be solved 
analytically and one would have to apply a numerical solution, which is beyond 
the scope of this investigation. 

MINIMUM DISSOLVED OXYGEN 

The time when the minimum dissolved oxygen concentration occurs, t«, is of 
obvious interest. When k3 = La = 0, it may be calculated from Equation (22) by 
noting that at the minimum point dD/dt = 0. Carrying out the calculation produces 
the result 

tc = - (l/k2) In ki/2 
k ^ + 2k1 / 2k2VL7-2kl(C s-Co) (27) 

The critical value can be solved for explicitly. If tc > ti, then the minimum 
dissolved oxygen concentration would occur when t« = 0 or when te = ti. 

When Equation (25) is applicable in describing the dissolved oxygen concentra­
tion, it may be differentiated and the derivative set equal to zero to find the time at 
which the minimum concentration occurs. The critical time at which the minimum 
occurs is 
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k2-
ln 

k2(k3-2k2) c . ^ M^)l] 
^ - ^ + ^ 3

+ 2k 2 - k 3 

k3k1/2(u/2
 + ^ ) 

(28) 

If the calculated to > ti, where ti is obtained from Equation (26), then the minimum 
dissolved oxygen concentration would occur when tc = 0 or when tc = U. 

APPLICATION OF THE OXYGEN SAG EQUATION 

The use of the oxygen sag equation for a half order BOD demand is illustrated 
for the following situation. A waste having a half order reaction rate coefficient of 
3.5 (mg/L)1/2/day is discharged to a stream. The streamflow is such that after 
mixing, the ultimate first stage BOD is 15 mg/L and the reaction rate coefficient 
remains unchanged. The dissolved oxygen saturation value is 10 mg/L and the 
initial dissolved oxygen value is 9 mg/L. The reaeration rate is 0.6/day. The 
sedimentation rate is negligible and there is no benthic oxygen demand. 
Using these data as input to Equations (20) and (21) produces the results tabu­
lated in Table 2. The time for which L = 0 is ti = 2 Lol/2/ki/2 = 2.213 day. The 
minimum dissolved oxygen concentration calculated by Equation (27) occurs 
when tc = 1.337 days. 

Table 2. Dissolved Oxygen 
Concentrations for 

Half Order BOD Kinetics 

t 
Days 

0 
1 
1.337 
2 
2.213 
3 
4 
5 
6 
7 

C 
mg/L 

9.00 
1.790 
1.351 
2.438 
3.218 
5.771 
7.679 
8.726 
9.301 
9.616 

Calculated 
by Equation 

(20) 
(20) 
(20) 
(20) 
(20) 
(21) 
(21) 
(21) 
(21) 
(21) 
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CONCLUSIONS 

A dissolved oxygen equation for a stream has been developed in which the 
biochemical oxygen demand is expressed as a half order kinetic reaction. The half 
order reaction kinetics permit the BOD to decay to zero in a finite time. This 
phenomenon is not observed with first order kinetic models. When sedimentation 
and benthic demand occur, one can obtain a relationship between BOD and time, 
however, the relationship gives the BOD only implicitly as a function of time. 

The dissolved oxygen equation based upon half order kinetics is readily solved 
when benthic demand is absent. When benthic demand is present, an analytical 
solution appears intractable and a numerical solution may be appropriate. The 
location of the minimum dissolved oxygen concentration can be calculated readily 
except when benthic demand is present. Half order kinetics are appropriate for 
glucose and glutamic acid wastes. It is speculative whether dilute concentrations 
of sugar factor wastewater follow half order kinetics as they break down in a 
receiving water. 

NOMENCLATURE 

C = dissolved oxygen concentration in the stream, mg/L 
Q = saturation value of dissolved oxygen, mg/L 
D = dissolved oxygen deficit, (Q, - C), mg/L 
Do = dissolved oxygen deficit at time zero 
ki = biochemical oxygen demand rate constant taken as equal to the deoxy 

genation rate constant, day-1 

k2 = reaeration rate constant, day-1 

ki/2= half order biochemical oxygen demand rate constant, (mg/L)1/2/day 
L = biochemical oxygen demand yet to be satisfied, mg/L 
Lo = ultimate biochemical oxygen demand, mg/L 
t = time, day 
ti = time for which L = 0, day 
tc = time at which the minimum dissolved oxygen concentration occurs, day 
y = amount of oxygen consumed at any time (Lo - L), mg/L 
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