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ABSTRACT 

The characteristics of large hierarchical systems existing in nature are dis­
cussed from the standpoint of self-regulation problems. By way of example, 
some biophysical, ecological and economic systems are considered. A 
cooperative mechanism of self-regulation which enables the system to func­
tion ideally is proposed. A mathematical model for large hierarchical system 
involving a basic medium and hierarchical transport network responding to 
variations in the basic medium parameters are formulated. The governing 
equations that describe evolution of this system in terms of two continuous 
fields are presented. The meaning of these fields are discussed for different 
natural systems. 

INTRODUCTION 

Large hierarchical systems occurring in nature are characterized by such a great 
information flow that none of the system elements can possess the whole amount 
of information required to govern the system. The aim of the present article is to 
focus attention on the fact that in such large hierarchal systems there can be a 
cooperative mechanism of regulation which involves individual responses of each 
element to the corresponding hierarchical piece of information and which leads to 
ideal system functioning, due to self-processing of information. 
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As a typical example of such systems we may regard living tissue where blood 
flowing through the vascular network of arterial and venous beds supplies cellular 
tissue with oxygen, nutritious products, etc. At the same time blood withdraws 
carbon dioxide and products resulting from life activities of the cellular tissue. 
Both the arterial and venous beds are of tree form, containing a large number of 
hierarchy levels and having similar structures. The system response to distur­
bances in life activity occurs, for instance, through vessel response to variations of 
the carbon dioxide concentration in blood, which gives rise to expansion or 
contraction of arteries (for a review, see, e.g., [1, 2]). A similar situation takes 
place also in respiratory systems where oxygen going through the hierarchical 
system of bronchial tubes reaches small vessels (capillaries). 

The organizational structure of large firms is a clear example of an economic 
hierarchical system. Managers of all functions and all levels make up a manage­
ment network [3]. Roughly speaking, the management network controls the 
money flow toward the organization's "bottom," comprising workers as well as 
the flow of products in the opposite direction. The term "control" here means 
governing the money and product redistribution inside the firm by dint of informa­
tion flow through the management network. In performing technological proc­
esses, wages paid to workers are in a sense transformed into the firm's products. 

The existence of a tremendous variety of goods in the market, in contrast to a 
relatively small number of raw materials, suggests that there must be large hier­
archical systems in the market. In this context we note that the flow of goods, after 
reaching the consumers, gives rise to money flow in the opposite direction. 

Ecological systems are also complex in structure, can involve a larger number 
of "predator-prey" levels, and are grounded on some medium (for example, 
plankton) [4]. Dynamics of ecosystems are governed by biomass and energy flows 
in trophic networks. 

In the present article we consider a model of large hierarchical systems, one that 
generalizes the main characteristics of natural hierarchical systems mentioned 
above. This system is grounded on a distributed basic living medium sustained by 
a nutrition supply system and a draining system that withdraws products resulting 
from life activities. For these purposes, there is a complex transport network 
whose architectonics is organized in such a manner that flow of transport agents 
through the basic medium are the same at each point, all other factors being equal. 
To meet this condition the transport network may involve supplying and draining 
beds of tree form. In principle, the two beds can coincide with each other in real 
space. Interaction between the transport agent and the basic medium causes 
interchange of the supplied and withdrawn living products. The transport supply 
system agent flow through the basic medium should keep the concentrations of 
these products inside a certain region called the vital region, which is the aim of 
regulation. 

Since the motion of the transport agent dissipates energy, it is necessary that a 
certain external force be applied to the system, affecting the overall flow of the 
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transport agent. In living tissue, blood pressure plays the role of this external force 
[1, 2]. In ecological systems, the transport agent flow is caused by gradient of 
general potential along the transport network. It should be noted that exergy can 
play the role of this potential [5]. In economic systems the total utility function [6] 
can be regarded as filling die role of the external force causing products and 
money flow. 

In contrast to artificial systems, natural ones are able to adapt to variations in the 
environment. Under ordinary conditions the behavior of a natural system as a 
whole and the individual behavior of its different elements are likely to follow the 
strategy of minimum expenditure rate. This agrees with the minimum entropy 
production principle stated in nonequilibrium thermodynamics [7]. However, for 
such complex and nonequilibrium systems as biological and ecological ones, 
specification of particular expressions for the entropy production rate is far from 
being solved and the minimum entropy production principle can be applied to 
these systems at the phenomenological level only. 

Keeping in mind the aforesaid, we shall state below a simple mathematical 
model that captures the main properties of these hierarchical active systems and 
exhibits ideal self-regulation. 

FORMAL MODEL 

Let us consider a system consisting of the distributed basic medium Ŵ and 
the transport hierarchical network oM (Figure 1). The transport network involves 
dendriform supplying and draining beds (the left- and right-side networks in 
Figure 1). The medium JA is a d-dimensional homogeneous continuum. The state 
of the medium uU is described by die field Θ evolving according to the equation 

f = 9-ηθ + ΰν2θ (1) 

Here q is the generation rate of the state variable Θ due to life activity, D is the 
diffusivity, V2 is the rf-dimensional Laplace operator, and η is the volumetric rate 
of the transport agent flow. We note that the generation rate q, ini principle, can 
depend on the spatial coordinates F'and the time t as well as the variables Θ and η. 
The term—ηθ in Eq. (1) describes the dissipation rate of the variable Θ due to 
exchange of life activity products between the medium M and transport agent. 

In order to complete Eq. (1) we need to describe evolution of the field η which 
is controlled by the transport agent flow in the network Ji and, thus, to describe 
architectonics and properties of the hierarchical transport network. Geometry of 
both the beds is assumed to be the same, so we specify it for the supplying bed 
only. The stem of this bed splits into g = 2d branches of die first level Figure 1. 
Each of the first level branches, in turn, splits into g branches of die second level 
and so on. The branches of the last level (N) are directly connected witb basic 
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Figure 1. The structure of hierarchical system. 

medium M. The bed is organized in such way that each branch i of a given level n 
supplies a certain domainUtJ, as a whole (called a fundamental domain of level n). 
All the fundamental domains of a given level n form the basic medium <M, 
The fundamental domains of the last level will be also referred to as ele­
mentary domains. Each elementary domain is bound up with one of the last 
level branches. The last level number N is assumed to be much larger than unity: 
N» I, and its length IN may be regarded as infinitely small. Whence it follows, 
in particular, that inside an elementary domain the variable Θ may be treated 
as a constant. 

Going through the supplying bed, the transport agent flow continuously splits 
into smaller streams, and, passing through the last level branches, delivers 
products needed for life activity to the basic medium. At the same time, the 
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transport agent is saturated with the products of life activity. Thereby the variable 
Θ is also assigned to the transport agent flowing through the draining bed. 

The pattern of transport agent flow on the network <ΛΙ obeys, first, the conserva­
tion law at branching points. In particular, for a given branching point B for 
example, of the draining bed we can write 

/ , Λ'η — •'out ,~. 

where J„ and Jout are the transport agent flow on branches going in and out of the 
point B, and the sum runs over all the branches leading to this point. Second, the 
total dissipation rate due to transport agent flow through the network Ji 

DW = E|Vi--/o£e« (3) 

attains its minimum subject to the transport agent flow conservation. Here Λ, is a 
kinetic coefficient corresponding to branch i, Εαί is the external force that gives 
rise to the total flow of transport agent and, thus, flow of the products needed for 
the basic medium life, Jo is the flow through the stem, and the sum runs over all 
the branches of the network <Ji. The supplying and draining beds are assumed to 
be identical. Therefore the flow pattern on the supplying and draining beds as well 
as the coefficient {Λ,·} must be mirror images of each other, with reversed flow 
direction. 

The agent flow through the draining bed gives rise to flow of life activities 
products. In particular, agent flow 7i on branch ί causes the flow of life activity 
products /iGi, where 9i is the state variable assigned to branch i. Distribution of the 
state variable Θ over the draining bed is determined by agent flow pattern {/i} on 
it and the conservation of life activity product flow. In particular for a given 
branching point B we can write 

X UßHin = [JfiHout (4) 
B 

The variable Θ distribution over the draining bed and the basic medium are 
related by the condition that the total dissipation rate of the variable Θ in a 
elementary domain MJH of the basic medium must be equal to the life activity 
product flow through the corresponding branch of the last level, i.e., 

Jfit=\ dF*Qr\ 
Λ\· © 

Furthermore, by definition, the agent flow pattern and the field η are connected by 
the expression 
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III 
d7*y\ 

In order to complete the present model we should specify the response of the 
transport network to variations in the field Θ. Due to the supplying and draining 
beds being mirror images of each other, we may describe this response for the 
draining bed only. We assume that for each branch, for example, the branch i, time 
variations in transport coefficient A, are directly controlled by the variable 9i 
assigned to this branch, and obey the equation 

τ ^ + Λ,. = Λ2(1-θ,.) (7) 

for Ai > 0. The quantity Ai may vary in the region Ai > 0. Here τ is the delay 
time of the network response and Λ^ is the formal transport coefficient for fixed 0i 
= 0 whose value is assumed to be equal for all branches. The value An depends 
onnas 

A° = A°2ndp(«) (8) 
oo 

where p(«) is a smooth function such that V p(n) is convergent and Ao is a 
n = 0 

constant. The smoothness of the function p(n) follows from the requirement 
that branches of all the levels take part in control of the transport agent flow 
redistribution. 

RESULTS AND DISCUSSION 

Under the adopted assumptions, Eq. (2-7) can be reduced to the equation 
governing evolution of the field η in the basic medium, which is of the form 

τ | ΐ = η „ - η ( 1 - β ) ((?) 

where ηο is the constant volumetric flow rate of transport agent for fixed Θ = 0. As 
follows from Eqs. (1) and (9), the variable Θ cannot leave the interval (0,1) for a 
long time for any generation rate q, and there is a local relationship between the 
volumetric flow rate η and the state variable Θ. The two properties allow us to 
regard the problem stated above as a model for an active hierarchical system with 
ideal self-regulation. The term ideal self-regulation here means that, first, the 
system cannot leave its vital region for a long time; second, variations in the state 
variable Θ at a certain point of the basic medium give rise to variations in the agent 
flow rate η at the same point only. In other words, disturbances in the field Θ inside 
a certain domain do not cause system responses at points lying beyond this 
domain. 
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We now discuss the main features of this model that are responsible for the ideal 
self-regulation. Minimizing function (3) subject to Eq. (2) for all the branching 
points, we find that the distribution of the transport agent flow over the network Ji 
is determined by a certain potential E and, for a branch /, the transport agent flow 
Ji = Δ£ί/Λϊ, where M\ is the potential difference across the branch i. So the less Ai, 
the greater the flow Ji on the branch i. Let us assume that, for example, in the 
domain Q (Figure 2) the variable Θ exceeds its normal value to the balance in life 
activities being disturbed. In order to smother the increase in the variable Θ, the 
system should increase the transport agent flow rate η in the domain Q. The 
system responds by decreasing the kinetic coefficients {Ai}p along the whole path 
(p on the network JI that leads from the stem of the supplying bed to the domain 
Q and, then, from this domain to the draining bed stem (Figure 2). Information 
required of this system behavior is delivered by the distribution of the variables 
{6i}p over the path p on the draining bed. In fact, increases of the variable Θ in the 
domain Q must give rise to the corresponding increases of all the variables {9i}p, 
as follows from equations (4) and (5). By virtue of Eq. (7), increases in 0i lead to 
decreases in coefficient Ai. This relation between the field Θ and the kinetic 
coefficients {A,} of the network JI is the essence of the self-regulation process in 
the active hierarchical system under consideration. 

Variations in the field Θ located in domain Q can, in principle, cause alteration 
of the transport agent flow rate at the exterior points due to the flow redistribution 
over the network Ji. However, in contrast to the points of the domain Q, at the 
exterior points, for example, at points of a domain Q' (Figure 2), decreases of 
different kinetic coefficients belonging the collection {A;} & give rise to variations 

Figure 2. Schematic representation of the cooperative mechanism 
of ideal self-regulation. 
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in the field η different in sign. Figure 2 schematically shows the sign of this effect 
for different branches of the path £>. In the given model, due to the specific forms 
of Eq. (8) and the right-hand side of Eq. (7), the net effect is reduced to zero. For 
other forms of these functions the second term in Eq. (9) will be of non vocal form; 
i.e., time variations in the field η at a given point will also be determined by values 
of the variable Θ at other points. In living natural tissue, for example, in order to 
reduce this effect of the nonideality, arterial and venous beds contain a system of 
anastomoses, i.e., vessels joining arteries or veins of the same level [2]. In such 
ways, the architectonics of large natural systems are organized is such a manner as 
to make their functioning as ideal as possible. 

It should be pointed out that the distribution of the variable Θ over the draining 
actually provides the system with the information on the distribution of Θ over the 
basic medium in a form that enables the system to respond immediately to 
counteract disturbances in life activities. Indeed, according to Eq. (7), a given 
branch i of the draining bed responds solely to variations in the variable θί being 
in effect the mean value of the field Θ in the domain where the total transport agent 
flow is directly controlled by this branch (Figure 2). 

For different natural systems the variables Θ and η are distinctive in meaning. 
For example, for living tissue the variable Θ can be treated as concentration of 
carbon dioxide, or the tissue temperature; the variable η corresponds to the 
blood flow rate, the blood pressure plays the role of the external potential Eext, and 
d = 3. A similar situation takes place in respiratory systems, where the variable Θ 
is the oxygen concentration. In economic systems me quantity η is the flow rate 
of goods and the variable Θ is the price. In this case the external potential Eext is 
likely can be treated as the total utility function of the production process in a 
certain industry. In models for organization and functioning of firms the basic 
medium is the firm "bottom," comprising workers, and the variables η and Θ are 
quantities proportional to the wages of workers and the amount of products, 
respectively. For economical systems the basic medium dimension d can be large, 
and differ among industries. Concerning ecological systems the variables η and Θ 
seem may be regarded as the rate of biomass flow and the energy content of 
biomass. 
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