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ABSTRACT 

Beverage containers make up a significant portion (at about 25%) of the 
packing materials that constitute 33 percent of the municipal solid waste 
stream. Despite the containers' similar shapes and sizes, only about 30 percent 
of glass, expanded polystyrene (EPS) and tetrapak containers are recovered. 
With this research, the mechanical separation capability of container materials 
from municipal waste is investigated. Breakage theory is reviewed and 
applied to predict the weight fraction of separated particles by screen size. The 
results show that the empirical parameters of maximum particle size y, 
breakage ratio r, and slope factor q can be established to predict the particle 
size distribution within plus or minus 10 percent. Factorial screening tests 
reveal that container size, material, size-material, and size-shape interactions 
influence the achievable separation. The next research phase will modify the 
breakage theory to incorporate these additional factors and should investigate 
the influence of size, shape, and materials on separation behavior, particularly 
for flexible containers. 

INTRODUCTION 

Beverage containers and packaging materials make up approximately 33 percent 
of the municipal waste stream. Despite similar shapes and sizes, only about 
30 percent of glass, tetrapak, and styrofoam containers are recovered and 
recycled. The remaining two-thirds are disposed of in landfills or incinerators 
unless the containers can be mechanically separated from the waste stream in 
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material recovery facilities (MRFs). However, characteristics that determine the 
behavior of common glass, expanded polystyrene (EPS), and tetrapak containers 
in mechanical separation processes are poorly understood. In order to predict and 
optimize container recovery rates, these container characteristics must be inves­
tigated. The results can then also be used to optimize the design of beverage 
containers so they can be more effectively separated. In order to predict the 
behavior of beverage containers in mechanical separation, the theory of breakage 
is reviewed and applied. 

REVIEW OF BREAKAGE THEORY 

The breakage theory and the results from its use for municipal solid waste are 
reviewed here to generate hypotheses the experimental design for the separa­
tion tests. 

Breakage theory, as used for municipal solid waste (MSW) size reduction [1, 2] 
consists of three elements: 

1. the initial distribution of particle sizes in the feed material, denoted as a 
vector F with elements fi to denote the weight fraction of particles in each 
size range where Σ fi = 1 ; 

2. the selection function, S, a vector of elements SJ, denotes the fractions of 
each particle size range i that are selected for breakage, and, hence, undergo 
size reduction; the complimentary function 1-SJ is the fraction of each size 
range that is not broken; and 

3. the breakage function, Bxy that denotes the fraction of broken particles in 
the product size ranges x, smaller than the input particle size range y. 

The initial, or feed, particle size distribution F for raw municipal refuse (or 
individual components of the waste stream) is represented by the sigmoid curves 
of cumulative weight fraction under particle size x as a function of the log x [3]. 
The feed waste used by Trezek [1] and by [2] fit this type of distribution. In 
contrast, the beverage containers tested in this research consist of uniform objects 
in two size ranges: 102.5 mm for 1,000 mL containers, and 65 mm for 250 mL 
containers. As a result, the container recovery tests use a special case of the 
general sigmoid F distribution, which appears as a single step function from 
0 to 100 percent on the cumulative particle size distribution at the characteristic 
size of the containers. This characteristic input size is the larger of the smaller two 
dimensions of the container. 

The selection function S in its simplest form is a constant Π for all size ranges. 
Trezek found the constant Π selection function to provide good results for 
the breakage of municipal refuse in single, double and triple shredding steps 
[1]. Vesilind et al., however, determined that the Π selection function gave 
large errors when predicting the breakage of single materials e.g., polystyrene, 
wood, paper, cardboard, except for glass [2]. They determined variable selection 
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functions S that provided good results for different materials (see Table 1). Trezek 
tested more complex selection functions for repeated breakage (as in hammermills 
or multiple shredding) and found them to be inferior to the simple Π selection 
function for mixed MSW [1]. 

Notably, all particles of the two brittle materials (glass and polystyrene) are 
completely selected in the largest size range, while flexible cardboard and mixed 
waste are not totally selected in their largest ranges. Glass particles are totally 
selected above 7.1 mm size, while only 84 percent of cardboard particles above 
124.2 mm are selected. This table shows that the selection function is specific to 
the material, and, depends on the input particle size and the brittleness. The glass 
and EPS in our test containers are larger than the largest mean sizes in Table 1 as 
14.3 mm for glass and 50.8 mm for EPS. As a result, the selection functions are 
likely to be 1.0 for glass and polystyrene containers in the test. Tetrapak containers 
sizes (102.5 mm and 65 mm) are between the largest and second mean sizes for 
cardboard in Table 1 and, hence, are assigned selection functions prorated by 
mean size of between 0.35 and 0.84. 

Breakage functions are used to describe the distribution of particles over the 
range of (screen) sizes after breakage. Several breakage functions have been 
suggested from the breakage of brittle materials (e.g., Rosin-Rammler [4]). The 
following breakage functions were actually tested for solid waste [1]. 

Gaudin-Meloy and modified Gaudin-Meloy equations predict the fraction of 
the output waste smaller than size x as a function of the input particle size y for 
single fracture breakage: 

Gaudin-Meloy Bxy = 1 -
f χ Λ 

1 - -
(1) 

where r is an empirical parameter that reflects the number of product particles 
resulting from the breakage of an input particle, or, the number of breaks in a 
selected input particle. A modified version of Gaudin-Meloy [5] adds a second 
parameter, q, to increase the coarse size curve-fitting capacity: 

Modified Gaudin-Meloy Y = 1 -
( χ Λ 

1 - -
(2) 

where q is a slope factor for the particle size distribution (PSD). 
A different function by Broadbent-Callcott was also tested, consisting in its 

modified form of a quotient as a function x/y and of the parameter n as an 
exponent of the exponential of the negative particle size ratio of product particle 
size x to the characteristic particle size yo of the feed. 
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Modified Broadbent-Callcot xy — 

1 -exp 
n η 

[ l -exp(-l)] (3) 

With n = 1, this equation is equal to the original Broadbent-Callcott equation [1]. 
Trezek applied the Π breakage theory with varying values for the Π selection 

function the Gaudin-Meloy and original and modified versions of Broadbent-
Callcott [1]. For primary shredding, the Gaudin-Meloy function with Π equal 
to 0.93 and r equal to 7 provided the best fit of the primary shredded product 
from raw municipal waste. For secondary and tertiary shredding, the modified 
Broadbent-Callcott equation gave the best fit with Π equal to 0.814 and n equal to 
0.845 for secondary shredding and Π equal to 0.44 and n equal to 1.0 for tertiary 
shredding. All results fit the product particle size distributions very well, with 
squared residual values between 0.0011 to 0.0049. 

Vesilind et al. applied the original Broadbent-Callcott breakage function to 
individual materials in the waste stream in an attempt to determine the Π selec­
tion functions [2]. Although no results were presented, they observed that the 
Broadbent-Callcott function did not represent the actual particle size distributions 
very well, except for glass. Thus, some calibration of the breakage function 
parameters may be necessary to fit the product particle size distribution. 

The combined breakage theory uses a matrix equation to predict product size 
distribution vector P as a function of 1) the feed particle size distribution as a 
vector F, 2) the selection function as a diagonal matrix S, and 3) the breakage 
function as a triangular matrix B. Thus, with the error as a vector E, the product 
size distribution P is 

P = B * S * F + ( 1 - S ) * F + E (4) 

or, in full matrix form 
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(5) 

to represent the n equations for each particle size range in the form 

Pi=b M *s , *fi + ( l - s , ) * f , +e, 
P2 = b2i * s, * f, + b22 * s2 * f2 + (1 - s2) * f2 + e2 

pn = bn, * S , - f , + b n 2 * S 2 * f 2 + ... + en (6) 
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where the first i-2 terms on the right hand side represent the contributions of 
broken particles from larger particles, the second to last term represents the 
unbroken particles which stay in the same particle size range, and the last term is 
the error term for each particle size range. With the proper feed particle size 
distribution, selection function and breakage function, this matrix allows the 
prediction of the output product particle size distribution. 

Previous literature has demonstrated that the current form of the Π breakage 
theory using the Broadbent-Callcott equation is unsuitable for predicting the 
product particle size distribution of specific materials, such as wood, certain 
plastics and cardboard [2]. The breakage theory depends on material feed size as 
the primary factor in predicting the product particle size distribution [1]. Although 
the effect of the specific material involved is often considered indirectly through 
the inclusion of empirical coefficients (r,q), little or no consideration has been 
given to the possible effects that a container's material, shape or aperture (open-
mouthed or enclosed) can have on the breakage behavior. Items with curved 
surfaces may be more difficult for shredding edges to successfully grasp and break 
while enclosed items may have greater structural integrity and thus better resist 
breakage. An empirical approach was therefore adopted to: 1) test breakage 
theory for beverage containers with observed breakage results and modify the 
breakage parameters to fit the predicted to the observed PSDs; and 2) test the 
effects of the physical characteristics of size, shape, aperture, and material on the 
breakage and separation behavior of beverage containers. 

The first research statement, therefore, is that the breakage theory in its matrix 
form is capable of predicting the breakage and separation behavior of simple, 
uniform container objects based on the simple feed particle size distribution, the 
selection function chosen from Vesilind et al. [2] for the material and feed size, 
and the Gaudin-Meloy breakage function as shown to be most accurate for 
primary shredding in Trezek [1]. The comparison of predicted and measured 
particle size distributions will test this hypothesis. A calibration of empirical 
parameters will be conducted to optimize the fit if necessary. 

The theory uses input particle size y, breakage ratio r, and slope factor q as 
the three independent variables ("parameters") to predict product size. Although 
the breakage theory shows good results for mixed waste through the adaptation 
of empirical parameters, breakage theory use for containers of different shape, 
closure, and material brittleness seems to be simplistic. Indeed, Vesilind et al. 
results show some of the difficulties, although the fit of measured and predicted 
particle size distributions were not shown for the optimal selection functions [2]. 
Nonetheless, experimental testing of the breakage theory seems reasonable, 
because it is the only theory to date used to predict the product particle size. The 
second research hypothesis states that, in addition to size, other factors are impor­
tant for predicting the product particle size. Separation experiments are designed 
to test for the influence of the suite of variables that were judged to influence 
shredding and separation behavior and to be relevant for container design: 
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1. container size ( 1,000 mL or 250 mL), 
2. geometry of the container (round or rectangular cross section), 
3. closure (with or without top or lid), and 
4. brittleness of the material (glass, expanded polystyrene or tetrapak materials). 

This extended suite was tested through factorially designed experiments. In the 
next section, the experimental design and procedure are discussed. 

EXPERIMENTAL METHODS 

Three beverage container types—1) glass jars, 2) expanded polystyrene (EPS) 
containers (coffee cups), and 3) tetrapak aseptic packages (juice boxes)—were 
selected to represent recoverable materials that may be collected and processed in 
material recovery facilities (MRFs). The characteristics of the three container 
types represented different types of material, making them ideal for these experi­
ments. Two sizes (250 mL and 1,000 mL), shapes (cylindrical and rectangular), 
and apertures (open or closed) were tested for glass and tetrapak containers. EPS 
containers were tested for size only because of the difficulty of manufacturing 
rectangular EPS cups and because aperture did not affect breakage. 

The product size distribution for each individual test was then characterized by 
the modal (highest) interval density of shredded material. Because the screen size 
intervals vary, the highest mass percentage of shredded material per any interval 
screen size range (%/mm) was chosen to represent the maximum concentration of 
shredded material that could be expected from that particular container configura­
tion. Within each container type, these modal interval density values were found 
to be normally distributed as they form a straight line passing through their own 
centroidal point (mean value of the variant, 50% probability) when plotted on 
normal probability paper [6]. Although only four values were available for the 
EPS containers, given the apparent normal distributions of the other two container 
types, the EPS modal values are also assumed to be normally distributed. 

Product particle size distributions were predicted with breakage theory for each 
of the two container sizes and three container materials. Selection values of 1.0 for 
glass and EPS, and of 1.0 ( 1,000 mL) and 0.695 (250 mL) for tetrapak containers 
were derived by interpolation of cardboard results as reported in Vesilind et al. 
[2], see Table 1. 

The Gaudin-Meloy breakage function with an r value of 7.0 was used based on 
Trezek's findings for primary shredding of raw MSW [1]. In subsequent trials, 
r values were varied and the modified Gaudin-Meloy breakage function with 
empirically determined values of q was tested. Table 2 summarizes the (a) feed 
particle distribution F, (b) the selection function S, and (c) the Gaudin-Meloy 
breakage function coefficients r and q for the original, modified and final pre­
diction trials. 
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The shredding and screening experiment was designed as a 23 factorial to 
empirically test the effects of three independent variables: 1) size, 2) shape, and 
3) aperture; and variable interactions size-shape (1 x 2), size-geometry (1 x 3), 
shape-aperture (2 x 3), and size-shape-aperture (1 x 2 x 3). 

The shredding and separation tests were run with four container configurations 
for each glass and tetrapak container and with two different sizes of EPS con­
tainers. The results were averaged within each container configuration. The results 
are shown as the means and standard deviations particle size distribution (PSD) 
parameters as Rosin-Rammler characteristic particle size Xo (screen size at 
which Y - 63.2% of particle pass) and slope n (slope of log {(ln[l/(l-Y)]} vs. log 
X). The averaged particle size distribution curves for each container type and size 
are shown in Figure 1. The resulting modal densities and the corresponding 
screen sizes are also shown in Table 3. As expected, the glass product particles 
are the smallest and are tightly distributed a Rosin-Rammler (RR) characteristic 
particle size Xo of 35 to 38 mm (1,000 mL) and around 33 mm (250 mL). The 
high values for the RR slope n of 6.7 to 7.4 and the high modal densities of 2.7 
to 2.9 percent/mm further indicate that glass product particles fall within a narrow 
size range between 15 to 25 mm. EPS containers break into larger, particles 
with the characteristic particle size equal to about 60 mm. The particle size 
distribution, however, is flatter as indicated by lower RR slope n of 1.96 and 
lower modal density of 1.59 percent/mm at 25 to 50 mm screens. Tetrapak product 
particle sizes are the largest, with Xo average sizes of 111 mm (1,000 mL) and 
87 mm (250 mL). Rosin-Rammler slopes n are lowest at 1.22 (1,000 mL) to 1.97 
(250 mL). The modal PSD densities are low at 1.08 percent/mm (1,000 mL) 
to 1.92 percent/mm (250 mL) and occur at the 80 to 125 mm screen size 
(see Table 3). The results reflect the differences in brittleness of the material, 
while within container variation may be explained by size, shape, and aperture 
(see below). ' 

For the purposes of the ANOVA, the configurations were considered the treat­
ments while the replicates were considered as blocks. Some of the container 
configurations were run with fewer than three replicates. The eight missing modal 
interval densities were estimated by the values that minimized the sum of the 
squares of the errors in the ANOVA. This common procedure [6] results in an 
approximate ANOVA with the degrees of freedom for the error term reduced by 
the number of estimated values. However, this ANOVA is considered in conjunc­
tion with the factorial analysis results. 

RESULTS AND ANALYSIS 

Breakage Theory Predictions 

In the original trial predictions, the predicted characteristic particle sizes Xo 
using the selection function and breakage ratio values from Trezek [1] and 
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Vesilind et al. [2] (see Table 2) are significantly smaller than the measured values 
(see Figure 1). For glass, the breakage theory underestimates the characteristic 
size by 15 to 18 mm (at 18 mm vs. 33 to 38 mm measured), for EPS, the difference 
is 42 mm (at 18 mm predicted vs. 60 mm measured) and for tetrapak containers, 
the difference increases to 92 mm. 

In a subsequent, modified trial prediction, the product sizes were inspected and 
the values for the exponent r were calibrated in the breakage model to test for 
better fit. The average ratio of product particle size to feed particle size were 
determined from the separation test results to estimate new r values. The adjusted 
r values were 5.3 (1,000 mL) and 3.9 (250 mL) for glass, 2.4 (1,000 mL) and 1.5 
(250 mL) for EPS, and 1.3 (1,000 mL) and 0.93 (250 mL) for tetrapak (Table 2). 
These modified r values were used to recalculate predicted product particle sizes 
(see Figure 1). Figure 1 shows the comparison of the results with measured 
particle size distributions. In addition, r values were rated to plus 100 percent and 
minus 50 percent of the calculated, modified values. 

Adjustments were made to breakage ratio, r, values to improve the fit of the 
breakage function to measured PSD's. These curves are also shown. Notable 
differences remain between predicted and measured characteristic particle sizes 
Xo (read in Figure 1 at the 63.2% level) and for smaller particles. 

The third trial of predictive breakage theory used the modified Gaudin-Meloy 
breakage function and varied the slope coefficient q from 1.5 to 2.5 (see Table 2). 
The resulting changes in slope provide much better fit for glass and EPS particle 
size distributions with differences in characteristic particle size Xo of less than 
5 mm for the best fitting curves (q = 2.0 to 2.5). Tetrapak predictions are better, 
but discrepancies remain in the larger particle sizes (about 60 to 80 mm). These 
differences stem from the use of the input distribution F (102.5 mm or 65 mm) as 
y, the largest particle size. The largest shredded tetrapak particles measured up to 
165 mm and exceeded the largest input particles. As a result, when the largest 
measured particle size y' = 165 mm was substituted into the breakage functions, 
the predicted fit (PSD's) the measured PSD's very well. Slight discrepancies 
remain at particle sizes below 50 mm. 

Applying the Gaudin-Meloy breakage function with empirical values for the 
selection function S and for the breakage ratio r yielded poorly fitting predictions 
for all three container types. The modified Gaudin-Meloy breakage function 
with empirically determined slope factor q and maximum particle size y yielded 
accurately fitting particle size distribution curves to predict characteristic particle 
size Xo and modal density of glass, EPS and tetrapak containers to within plus or 
minus 10 percent accuracy. 

The maximum particle size, breakage ratio r, and slope factor q are possibly 
affected by container size, shape, geometry, and material. The influence of these 
factors is tested by factorial analysis of the test results. 
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FACTORIAL TEST SERIES 

Glass Containers 

The results of the glass container runs analyzed by factorial analysis produced 
the following model. 

η = 2.719 - 0.151X, - 0.056x2 + 0.067x3 + 0.149x,x2 
- 0.028χ,χ3 - 0.013x2x3 - 0.093x,X2X3 (7) 

η represents the model outcome, here the modal density; the constant is the 
average value of all configurations (or runs), which is subsequently altered by 
adding or subtracting the x-terms. The actual effect of each factor, when going 
from the -1 to +1 level, is double the magnitude of the coefficient for that factor 
listed in the equation. The standard error of each effect is ±0.0999, except for the 
constant, which is ±0.05. 

The significant effects consist of the size (xi) and the size/shape (xi,X2) inter­
action at the 95 percent confidence level. Increasing the glass container size 
from 250 raL to 1000 mL will decrease the modal interval density by 0.301 
percent/mm. The combination of increasing the size and switching from cylin­
drical to rectangular glass containers increases the modal interval density by 0.299 
percent/mm. The effect of size for glass containers changes the constant by only 
0.151 percent/mm to either extreme size level. This is a change of approximately 
6 percent. 

The compact form of the model appears therefore as 

η = 2.719-0.151 x,+0.149 x,x2 (8) 

where the other terms are omitted because they are insignificant. 
ANOVA was also applied to the glass data. Based on a one-sided F-test at the 

0.05 and 0.01 level of significance, the size factor and size-shape interaction were 
significant. Other factors were insignificant (see Table 4a). This is consistent with 
the factorial results. 

Expanded Polystyrene Container Tests 

Cylindrical, open EPS containers of 1,000 mL and 250 mL size were tested in 
replicate. A two-sample Mest was performed to evaluate if the mean modal 
densities of the two EPS containers were different. Based on this comparison, the 
means are different at the 0.05 significance level, but not at the 0.01 level. By 
inspection of the PSD curves, however, the difference in resulting distributions of 
1,000 mL and 250 mL particles is small. Thus, while statistically significant, the 
differences may not be practically important. 
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Table 4. Statistical Analysis of Breakage Tests 

a) Glass Container — ANOVA 

Deg. of Fcaic = 
Source of. Free, MS MS/MS Sig @ Sig @ 
Variation d.f. SS (SS/d.f.) Error 0.05 0.01 

Replicates 
Size 
Shape 
Size Shape 
Geometry 
Size Geom. 
Shape Geom. 
3-factor 

0.0346 
0.334 
0.061 
0.28 
0.059 
0.019 

1 0.001 
I 0.121 

0.0346 
0.334 
0.061 
0.28 
0.059 
0.019 
0.001 
0.121 

0.876 
8.456 
1.544 
8.304 
1.494 
0.481 
0.0253 
3.063 

No 
Yes 
No 
Yes 
No 
No 
No 
No 

No 
No 
No 
No 
No 
No 
No 
No 

b) EPS Container—t-Test 

t-calc. t-tab @ 0.05 Sig @ 0.05 t-tab @ 0.01 Sig @ 0.01 

4.430 4.303 Yes 9.925 No 

Source: Tam, 1994. 

c) Tetrapak Container — ANOVA 

Deg. of Fcaic = 
Source of 
Variation 

Replicates 
Size 
Shape 
Size Shape 
Geometry 
Size Geom. 
Shape Geom. 
3-factor 
Error 

Free, 
d.f. 

2 
2 
2 
4 
2 
4 
4 
6 
6 

SS 

0.5026 
4.379 
1.810 
1.459 
0.243 
0.001 
0.252 
0.066 
0.972 

MS 
(SS/d.f.) 

0.251 
2.190 
0.905 
0.365 
0.122 
0.00025 
0.063 
0.011 
0162 

MS/MS 
Error 

1.549 
13.519 
5.586 
2.253 
0.753 
0.00154 
0.389 
0.0679 

Sig @ 
0.05 

No 
Yes 
Yes 
No 
No 
No 
No 
No 

Sig @ 
0.01 

No 
Yes 
No 
No 
No 
No 
No 
No 



188 / TAMANDZEISS 

Tetrapak Containers 

The average modal density from both sizes (1,000 mL and 250 mL) is constant 
at 1.5 percent/mm. This average is derived from the testing of four large and 
four small container configurations and thus represents a midpoint. The factorial 
analysis for the tetrapak containers produced the following linear model: 

η = 1.499 - 0.420X| - 0.200x2 + 0.076x3 0.222x^2 
- 0.018x,x3 0.095x2x3 + 0.059x!X2x3 

The standard error of each effect is ±0.1957, except the far constant which is 
±0.0979. These results show that container size is the most significant effect. 
The effect of shape is marginally significant. Increasing the size of the container 
from 250 mL to 1000 mL will decrease the interval density by (20.42, or) or 0.841 
percent/mm. Therefore, the 0.841 percent/mm change represents a deviation of 
0.420 percent/mm to either size level from the midpoint. This would represent a 
midpoint-to-extreme change of approximately 28 percent. 

Given this evaluation, the model appears as 

ηΤ Ρ = 1.499 - 0.420X, - 0.200x2 ( 10) 

with the remaining terms eliminated because they are insignificant. 
The one-sided ANOVA F-tests revealed that size was significant at both the 

0.05 and 0.01 significance levels. Shape was significant only at the 0.05 level. 
These findings are consistent with results of the factorial analysis. 

A final test of material brittleness was conducted. The modal densities were 
analyzed in relation to material brittleness. Glass containers produce the highest 
modal densities at 2.7 percent/mm, followed by EPS with 1.6 percent/mm and 
tetrapaks at 1.2 percent/mm. The differences are significant between glass and 
EPS and tetrapak are significant. The differences show increasing particle size 
densities with increasing propensity to fracture. Glass is highest, followed by EPS 
and tetrapak. However, container size reverse this trend as 250 mL tetrapaks 
produce higher densities. 

The comparison of the shredding behavior confirms that the different container 
materials do produce different modal densities. It appears that the modal density 
increases as the brittleness of the material increases and as size decreases. 

The factorial and ANOVA results show that for glass, size-shape interac­
tions, for EPS size, and for tetrapak size and shape affect the modal densities of 
the product PSDs at the 95 percent confidence level. Only tetrapak size is, 
however, significant at the 99 percent level. Moreover, the differences in modal 
densities for EPS and tetrapaks are practically small. In contrast, however, the 
container material brittleness increases model density over 100 percent from 
1.2 percent/mm for tetrapaks, to 2.8 percent/mm for glass particles. 
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As a result, size and shape are marginally significant for brittle materials, but 
size is a highly significant factor for pliable container materials. Aperture has 
no consistent effect. 

DISCUSSION AND CONCLUSION 

Separation experiments with glass, expanded polystyrene (EPS), and tetrapak 
containers of 1,000 mL and 250 mL sizes were used to test the predictive 
capability of the breakage theory and to determine whether container charac­
teristics (size, shape, aperture, and material) affect mechanical separation of 
beverage containers. 

The modified Gaudin-Meloy breakage function with empirically derived selec­
tion function S, breakage ratio r, and slope factor q provided good fit with 
measured product particle size distributions (PSDs) and modal particle densities 
(as %/mm screen size). Thus, the breakage theory can be adapted to model 
container behavior if the proper values for maximum particle size y, breakage 
ratio r, and slope factor q can be empirically determined. These factors will 
probably vary with the type of shredder and the size, shape, geometry, and 
material of the container. The composition of the mixed refuse or the co-mingled 
recyclable stream may also affect container breakage behavior. Brittle materials 
appear to be more accurately predictable with breakage theory because they are 
less affected by size, shape, and other characteristics. 

Glass and EPS product particle size distributions appear to be only marginally 
affected by size and shape because they fracture as brittle materials. However, 
tetrapak product particle size is significantly affected by input particle size. The 
results show that container material, size, and size-material and size-shape 
interactions affect the separation behavior, particularly of soft ductile materials. 
Small containers of more brittle material will separate into more concen­
trated fractions on smaller screen sizes. This research is an initial step toward 
predicting municipal solid waste components' separation behavior. Container 
(and other particles) characteristics need to be systematically tested, both as single 
materials and co-mingled with the solid waste stream and other recyclables. 
The breakage behavior of specific materials needs to be modified and further 
investigated if product design is to be changed to enhance recovery from the 
waste stream. Particularly the behavior of soft, ductile, and pliable materials needs 
to be investigated. 
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