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ENVIRONMENTAL EVALUATION: 
FUZZY IMPACT AGGREGATION 

P. N. SMITH 
The University of Queensland, Australia 

ABSTRACT 

This article reviews some of the theory of fuzzy sets or subsets and illus­
trates, by way of a simple example, an application to environmental impact 
assessment. 

INTRODUCTION 

Environmental impact assessment (EIA) is a formalized approach for assessing 
the positive and negative impacts of a development project on human welfare and 
on the environment and provides information which can be used to determine 
whether project characteristics conform to statutory requirements or are perceived 
as being acceptable [ 1 ]. The range of methodologies available to assist EIA can be 
classified as identification methods, predictive methods or evaluation methods 
[2]. Identification methods commonly record the presence or absence of impacts, 
while predictive methods estimate the likely magnitude of impacts distributed in 
space and time. Evaluation methods attempt to assess the "aggregate worth" of 
projects in human and environmental terms. These are commonly either qualita­
tively- or quantitatively-oriented. Each approach has its advocates, though a 
middle ground approach has been proposed [3]. 

Evaluation methods often employ the additive weighting format, which 
involves forming the weighted sum of quantified environmental impacts. For 
example, the Battelle Environmental Evaluation System [4] and methods 
proposed by Odum [5], Sondheim [6], and Prasartseree [7] are examples of 
additive weighting. In addition, Allett proposed an additive weighting method 
which involved aggregating environmental impacts distributed spatially in terms 
of a grid system [8]. 
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Additive weighting facilitates the aggregation of diverse impacts, a process 
common to the whole range of techniques falling under the rubric of multicriteria 
analysis (MCA). MCA has become of increasing interest in recent years, and 
some accounts and/or reviews include Keeney and Raffia [9], Nijkamp [10], 
Nijkamp and Van Delft [11], Rietveld [12], Nijkamp and Spronk [13], Hwang and 
Yoon [14], Zeleny [15], Goicoechea et al. [16], Voogd [17], Roy [18], Hwang and 
Lin [19], Massam [20], and Nijkamp et al. [21]. 

In an environmental impact assessment context, often only one project is 
examined in terms of consequences for the environment, although discrimination 
between a set of projects, such as alternative road alignments, or alternative transit 
options, to identify the project having the least impact is also common. However, 
even in the case of a single project, comparison should always be made with the 
"do-nothing" or "status quo" situation. 

Explicit recognition of uncertainty or imprecision has been a component of 
some EIA methodologies, particularly additive weighting. For example, Odum 
et al. [22] proposed a variant of the additive weighting methodology which per­
mitted weighted scores to vary by 50 percent in either direction. Kahne [23, 24] 
developed a similar Monte Carlo approach in the context of MCA, but also 
applicable to EIA. While methods based on probability theory are of value in 
representing uncertainty, an alternative means of characterizing imprecision and 
uncertainty involves fuzzy sets. 

Fuzziness is a type of deterministic uncertainty and although fuzziness shares 
many similarities with randomness, represented by probability theory, it is con­
ceptually and theoretically distinct from randomness [25, 26]. The source of 
fuzziness in a fuzzy set is the absence of precisely defined class membership and 
not uncertainty concerning membership of an object in a set. Fuzzy mathematics 
based on fuzzy sets and fuzzy logic more adequately acknowledges the vagueness, 
inexactitude, imprecision, and fuzziness characteristic of EIA and decision 
making than conventional quantitative mathematics. 

ADDITIVE WEIGHTING 

The environmental impact assessment of projects may be considered in terms of 
scores φ^ for project Pi and environmental characteristic or impact category Ij. 
Typically, weights {wi, W2,. . . , Wj} are introduced to represent the differential 
importance of impact categories. The impacts, φ ,̂ may be measured on nominal, 
ordinal, interval or ratio scales [27]. 

The basic format of additive weighting is as follows 

Vi = I.j WjVj^ij) 

where Vi is the aggregate impact of project Pi, Wj is the relative importance of 
impact category Ij, φ̂  is the score of project Pi with respect to impact category Ij, 
VJ( ) is some standardization, normalization, performance or value function, and 
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the <t>ij are measured on at least an interval scale. The Vj( ) functions account for the 
positive or negative orientation of impact categories. For example, "electricity 
generation" (say, in 1000 kilowatts per hour) is considered to be positive in the 
sense that higher values are more desirable for both human welfare and the 
environment. Conversely "air pollution" is considered to be negative in the sense 
that higher values (say, CO emissions in parts per million) are less desirable for 
human welfare and the environment. 

The commonly adopted form of additive weighting assumes no uncertainty or 
imprecision in outcomes and/or weights. However, Odum [5], Odum et al. [22], 
and Kahne [23, 24] relax this assumption. The approach of Odum is expressed as 

V i « = Zj(eijW + 0.5)wJV4|j* 

where Vj(k) is the kth iteration of the total impact index for project P,, Wj is the 
relative importance of impact category Ij, (|>ij is the score of project Pi with respect 
to impact category Ij, and <j>j* = maxi{(|>ij}. ei/k) is a uniform random number for 
project Pi and impact category Ij on the kth iteration. All impacts are assumed 
negative. Since 0 < eij(k) <1, (eij(k) + 0.5) will vary between 0.5 and 1.5. This 
variation was permitted in the absence of a priori knowledge concerning impact 
variability. The mean value and standard deviation of Vi(k) (k = 1, 2, . . .) were 
used to order projects in terms of aggregate environmental impact. 

Kahne developed a similar Monte Carlo approach in the context of MCA, but 
also applicable to EIA. This was expressed as 

V; « = Ij coj (k> Pij
 (k> 

Rij is a set of real numbers (e.g., the interval [7-10] or [1-3]) with elements pij in 
the set expressing the variability in performance of project P, with respect to 
impact category Ij. The pij are assumed to be uniformly distributed in the interval 
R,j = [aij, bij] with cumulative distribution function FR(PÌJ) = (pij - ay)/(bij - ay). Wj 
is a set of real numbers (e.g., the interval [1-3] or [5-7]) with elements o>j 
expressing the variability in importance of impact category Ij. The COJ are also 
assumed to be uniformly distributed in the interval Wj = [q, dj] with cumulative 
distribution function Fw(cuj) = ((Oj - Cj)/(dj - q). At each iteration k, a random 
number r in the interval [0, 1 ] is generated and the inverse transformations, pij(k) = 
F R ' V ) = aij + r(bij - ay) and a>j(k) = Fw'V) = q + r(dj - Cj) applied for each 
impact category, multiplied together and summed to form Vj**. The frequency 
distribution of Vi(k) may be used to identify that project with minimal overall 
environmental impact. 

FUZZY SETS 

An alternative approach to acknowledging uncertainty involves the concept of 
fuzzy sets. The fundamental concept in mathematics is that of a set—a class or 
collection of objects. Objects (or elements) are assigned to sets because they share 
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properties or conform to a rule. Examples of sets include the set of odd integers, 
{1, 3, 5, . . .} and the set of real numbers greater than 7, {xlx>7}. Conventional, 
classical or crisp sets contain objects that satisfy precise properties required for 
membership, e.g., the set of integers between 1 and 5, {1, 2, 3, 4, 5}. The integer 
2 belongs to this set and the integer 9 does not. Crisp sets are characterized by a 
membership function which assumes the value 1 if an object belongs to the set and 
0 otherwise, and correspond to two-valued logic—is or is not, yes or no, 1 or 0. 
Fuzzy sets contain objects that satisfy imprecise properties to varying degrees, 
e.g., the set of integers close to 7. The integer 6 belongs to this set to a greater 
degree than the integer 10. Fuzzy sets are characterized by a membership function 
assuming values from 0 (complete non-membership) to 1 (complete membership) 
and correspond to a continuously-valued logic. The membership function is the 
basic idea in fuzzy set theory; its value represents the degrees to which objects 
satisfy imprecisely defined properties. 

Some general discussions of fuzziness and fuzzy mathematics include Zadeh 
[28-31], Kickert [32], Leung [33], Dubois and Prade [34], Schmucker [35], 
Kandel [36], Novak [37], Zimmermann [38], Kosko [25] and Klirand Folger [39]. 
Basic introductory texts on fuzzy sets include [38,40-42]. 

The age of human beings might be defined in terms of a base set [0, 100] years 
on which the linguistic terms of "old," "young," "middle-aged," "very old," etc. 
might be defined as labels of fuzzy sets (Figure 1). Similarly, linguistic terms such 
as "medium" may be expressed on a base set of real numbers (say, the interval 
[0, 1]) as numbers in the base set close to 0.5. Thus fuzzy sets labeled as 
"medium" and "close to 0.5" are equivalent. On this base set, "high" might be 
represented by numbers close to 1 and "low" as numbers close to 0. 

The base set of objects (age, numbers), on which linguistic terms are defined, is 
context dependent. For example, "young" in the context of the age of Huon pine 
trees which live for several hundred years would be defined on a different base set 
than for the age of human beings. Further, a "short" distance in a neighborhood 
context is defined differently than a "short" distance in a regional context and 
"small" in the context of quantum mechanics is defined differently than "small" in 
the context of astronomy. 

In terms of expressions of the performance of projects with respect to environ­
mental impact categories, the base set used in the example below is the interval 
[0, 1], but equally the interval [0, 10] or [0, 100] might be used. Linguistic terms, 
have meaning within the base set of objects (numbers). 

A fuzzy set A in a set X (a collection of objects denoted generically by x) is a 
set of ordered pairs A = {(A(x), Ιχε X) where A(x) is called the membership (grade 
of membership, degree of compatibility, degree of truth) of x in A which maps 
X into a membership space, usually the [0, 1] interval [28, 36]. A simplified 
representation of a fuzzy set A when X is finite is A = Σ A(x)lx where the 
sigma notation indicates union rather than sum. Formally, a fuzzy set is a mapping 
A: X—» Z where Z is the membership grade domain which Zadeh [28] assumes to 
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be the unit interval Z = [0,1 ]. For crisp sets, Z = {0, 1}. Thus, in the classical case, 
Z consists of only two possible degrees of membership, namely complete mem­
bership (1) and complete non-membership (0). 

When the base set X is not finite, an appropriate notation is A = Jx A(x)/x where 
the integral sign indicates union. Thus the fuzzy subset A of X is continuous rather 
than pointwise. A. fuzzy number is a fuzzy set which is usually assumed to have the 
properties of both normality and convexity [34, 43, 44]. Normality requires that 
the maximum membership of the fuzzy subset in R (which may not be unique) is 
1 ; that is, that at least one real number is fully contained in the subset. Convexity 
ensures that the membership function will be piecewise continuous and that at the 
point (or interval) where the membership function is equal to 1, the membership 
function will be nondecreasing on the left and nonincreasing on the right. Thus the 
membership function exhibits peakedness in the vicinity of its highest point 
(or interval) [45]. A fuzzy number may be represented as M = (mi, iri2, m3, ITH) 
(Figure 2). Particular types of fuzzy numbers include trapezoidal fuzzy numbers 
(where mi < 1Ή2 < 1TI3 < ITI4) and triangular fuzzy numbers, where mi < rri2 = 1113 < 
Π14, and fuzzy numbers based on S- and Π- functions [30, 46]. These fuzzy 
numbers are illustrated in Figure 3. 

In terms of a performance space, say the interval [0, 1], suitably defined fuzzy 
numbers (here fuzzy numbers based on Π- and S-functions) may be assigned 
linguistic values such as "low," "medium," and "high" (Figure 4). In addition, 
hedges might be introduced such as "very" and connectives such as "not." Hedges 
modify primary linguistic values such so that terms such as "very high" and "not 
low" are possible. In Figure 4, fuzzy numbers have been used to represent "very 
high" and "very low." 

FUZZY ADDITIVE WEIGHTING 

In terms of fuzzy variables a form of additive weighting may be expressed as 
follows 

J 
Vi = { ® Wj ® φϋ } ®J , i = 1 . . . . . I 

j = i 
where Vi denotes the fuzzy aggregate impact of project Pi, Wj denotes the fuzzy 
relative importance of impact category Ij defined in the interval [0, 1], φ^ denotes 
the fuzzy performance of project Pi with respect to impact category Ij defined in 
the interval [0, 1], and ®, Θ and ©denote fuzzy multiplication, fuzzy addition and 
fuzzy division, respectively. The φ̂  here denote the performance of projects such 
that the positive and negative orientation of impacts are considered. 

Algebraic or arithmetic manipulation of fuzzy numbers (such as the multipli­
cation and addition operations in fuzzy additive weighting) is based on the 
extension principle [46]. The extension principle permits any algebraic operation 
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defined for non-fuzzy sets to be extended to fuzzy subsets, referred to as extended 
algebraic operations. The extension principle, though well defined is difficult to 
compute and various approaches have been devised, including standard fuzzy 
arithmetic [42] used in the example below. 

Example 

Consider 4 projects (route alignments) and 7 impact categories as follows: 

li: Impact on water quality 
I2: Travel time savings 
I3: Impact on land values 
I4: Impact on flora 
I5: Impact on fauna 
IO: Noise impact 
I7: Construction, acquisition, maintenance costs 

Assume impacts as illustrated in Impact Matrix 1 where the entry in a given cell 
represents the performance of a project Pj (row) with respect to an impact category 
Ij (column) and "VL" = "very low," "L" = "low," "M" = "medium," "H" = "high," 
and "VL" = "very high." Project Pi is the most environmentally sensitive and most 
costly, while project P4 is the least environmentally sensitive and least costly. 
Projects P2 and P3 are somewhere in between. Assume weights as follows, {wi, W2, 
w3, w4, w5, w6, w7} = (L, M, M, M, M, L. L}. 

The aggregate impacts, based on fuzzy additive weighting, are illustrated in 
Figure 5 which suggests that the ordering of projects in terms of performance 
(least environmental impact) is Pi > P2 > P3 > P4. The detail of these calculations 
are given elsewhere, together with procedures for more formally identifying an 
ordering of projects [47]. In Figure 5 the fuzzy numbers (dotted lines) to the right 
and left represent, respectively, the best possible (all outcomes VH) and the worst 
possible (all outcomes VL) performances under the weighting scheme given. 
These represent bounds on the possible performance of projects. 
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CONCLUSION 

A method of fuzzy additive weighting has been presented which is appropriate 
in the context of qualitative linguistic statements of the performance of projects in 
terms of defined impact categories. In addition, linguistic expressions of impor­
tance are used to weight impacts. Linguistic expressions of project performance 
and the importance of impact categories are labels of fuzzy sets (fuzzy variables) 
defined on a [0, 1 ] base set. 

The resolution or "granularity" of the performance and importance dimensions 
involved five levels ("very low," "low," "medium," "high," "very high"). How­
ever, a finer resolution might allow for other linguistic expressions such as "low to 
medium," "medium to high," and "very very high." The level of granularity 
appropriate to given contexts requires further exploration, as do the precise defini­
tion of the fuzzy sets involved, and assessing ways to identify a crisp ranking of 
projects in terms of environmental impact [47], 
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