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ABSTRACT
This article illustrates the potential of fuzzy logic and approximate reasoning
in the context of environmental evaluation; that is to the evaluation of a set of

development projects characterized along multiple environmental factors or
dimensions. A simple example is given.

INTRODUCTION

There are many situations where a decision-maker is required to discriminate
between a set of alternative projects characterized in terms of a common set of
environmental impacts or factors. Such evaluation methods assist in environ-
mental impact assessment in appraising the “aggregate worth” of projects in
human and environmental terms [1]. Clearly, evaluation problems are sufficiently
complex to require the use of formal methods. Determining the worth of complex
alternatives varying on multiple dimensions presents formidable cognitive dif-
ficulties. Often task complexity is reduced by various heuristics. It has been
observed that decision-makers ignore many significant factors in order to simplify
the problem to a scale consistent with their cognitive limitations [2, 3]. Such
simplification facilitates the discrimination and choice process, but clearly results
in sub-optimal behavior.

Formal methods have been developed for impact evaluation purposes (for
example, [4-7]). Recently, however, methods based on fuzzy sets and fuzzy logic
have been proposed to assist the discrimination between projects characterized in
terms of environmental factors. These methods explicitly acknowledge the uncer-
tainty and imprecision common in environmental evaluation. Smith presented one
such approach based on fuzzy numbers [8]. This article presents a method for
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environmental evaluation involving fragments of imprecise information (condi-
tional propositions, implications) where antecedents are environmental impacts or
factors and the consequent is a measure of satisfaction associated with those
factors. The method is based on aspects of fuzzy logic and approximate reasoning
both of which are based on fuzzy sets.

FUZZY SETS

Formally a fuzzy set A in a set X (a collection of objects, universe of discourse
or base set, denoted generically by x) is a set of ordered pairs A = {(A(X), xIxeX)
where A(x) is called the grade of membership of x in A which maps X into a
membership space, usually the [0,1] interval [9,10]. A simplified representation of
a fuzzy set A when X is finite is A = ZA(x)Ix where the sigma notation indicates
union rather than sum. Kaufmann [11] uses the term “fuzzy subset” rather than
“fuzzy set” as the reference set, X, will not be fuzzy, though the terms fuzzy set and
Juzzy subset are often used interchangeably [11]. For classical or crisp sets, the
membership space is {0,1} consisting of only two possible degrees of member-
ship, namely, complete membership (1) and complete non-membership (0).

A primary application of fuzzy subsets is in representing linguistic variables.
Given a variable V, such as income, let X be the set of values that V can assume
(universe of discourse). Often, only an imprecise value for V is available such as,
for example, “low” income, or “about $25,000.” For example, in a universe of
discourse X = {$10000, $15000, $20000, $25000, $30000, $35000, $40000}, the
linguistic variable “about $25000” may be represented by the fuzzy subset
{0.1110000, 0.5115000, 0.8120000, 1.0125000, 0.8130000, 0.5(35000, 0.1140000}.

Certain operations may be carried out to aggregate fuzzy subsets [11]. If A and
B are two fuzzy subsets defined on base set X, then we may define C as the
intersection (conjunction) of A and B, or the largest fuzzy subset contained in
both A and B. We write C = A N B. The membership function of xeC is given as
C(x) = A(x) AB(x) where a A b=min [a, b]. The union (disjunction) of two fuzzy
subsets A and B may be defined as the fuzzy subset D = A U B containing both A
and C. The membership function of xeD is given as D(x) = A(x) v B(x) where a v
b = max[a, b]. The complement or negation of a fuzzy subset A (denoted A° or
—A) is a set with membership values 1 - A(x).

The intersection operation above assumes that A and B are defined on the same
base set. Given that X and Y are two base sets and let A be a fuzzy subset of X,
then the cylindrical extension of A to X x Y (denoted A) is defined as a fuzzy
subset of X X Y such that A(x,y) = ;A(x),; If B is a fuzzy subset defined on Y, then
the intersection of A and B is C = A N B and C(x,y) = A(x) A B(y). For example,
if X = {x1, x2} and Y = {y1, y2} and A = {1.0Ix), 0.3Ix2}, then 1.} = {1.0I(x1, y1),
LOIx1,y2}, 0.3(x2,y1), 0.3I(x2,y2)}. If B = {0.5ly;, 0.9ly2}, B = {0.5I(x1,y1),
0.91(x1,y2}, 0.51(x2,y1), 0.91(x2,y2)} and C = A ~ B = {0.5I(x1,y1), 0.91(x1,y2},
0.31(x2,y1), 0.31(x2,y2)}.
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A fuzzy relation is a fuzzy subset defined on the Cartesian product of base sets.
For example, the fuzzy relation, R, defined on X X Y has membership function,
R(x,y), representing the degree to which xeX, yeY belong to R. The cylindrical
extension, A above, is a relation defined on X X Y.

The fuzzy implication operation, ‘If A then B’ or A—B is defined in a variety
of ways [12, 13], for examplc, R=A-B=R= A AB=Ax B, R(x,y) AX) A
B(y) [14; R=A—>B= ﬁAGBB_—AxYEBXxB where — A = — A X Y and
B =Xx B, ® denotes the bounded sum (a@®b=1A(a+b))andR(x,y)=1A(1
-A)+B(y));andR=A-»B=-AUB=(-AXY)UuXxB)and Rx,y)=(1 -
AV B(Y).

The point value [15, 16] of a fuzzy subset A = Z{ A(x)Ix} is given by

F(A) = (1/04nz) Jﬂm M(Ay) do.
0

where Olmax is the maximum grade of membership of A and Ag is the alpha level
set of A. An alpha level set is a crisp set Ag = {xIA(x) = o.}. M(Ao) is the mean
value of Aq. The point value “defuzzifies” the fuzzy subset A. For example,
let X = {1, 2,3} and let A = {1.0I1, 0.712, 0.113} be a fuzzy subset of X. Then
forO<a<0.1, Ag=1{1, 2,3}, M(Ax) =6/3=2.For 0.1 < £0.7, Ax. = {1, 2},
M(Ag) =3/2=1.5and for 0.7 < & £ 1.0, Aq = {1} and M(Ag) = 1/1 = 1. Then,

since Omax = 1,
.1 7 1.0
F(A)= 2do+ 32 doc+J 1 da
0 0.1 0.7

=2(0.1)+(3/2)(0.6)+1(0.3)=14
Thus F(A) = 1.4 is the point value of fuzzy subset A.

FUZZY LOGIC AND APPROXIMATE REASONING

Fuzzy logic extends classical or two-valued logic relaxing the requirement for
propositions to be absolutely “true” or absolutely “false” [17-19]. Truth values are
expressed as the values of a linguistic variable “truth” which may assume lin-
guistic values such as “true,” “false,” “not true,” “very true,” etc. The base set of
the linguistic variable “truth” is the unit interval. Thus in classical logic, “truth” is
single valued and unique whereas in fuzzy logic, “truth” is many-valued.

Classical two-valued logic (represented as T2 = {0, 1}) can be extended to
three-valued logic (T3 = {0, 1/2, 1}) in various ways. Such logics denote truth and
falsity as 1 and O and indeterminacy by 1/2. Generalizations of three-valued logics
are n-valued logics. For any given n > 2, truth values are labeled by rational
numbers in the unit interval [0,1] obtained by evenly dividing the interval. The set
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n= {0, 1/(n-1), 2/(n-1), . . ., (n-2)/(n-1), 1} of truth values of an n-valued logic
are interpreted as degrees of truth. For n>2, the n-valued logic of kukasiewicz [20]
is denote-L, (n=2,3, ..., o).k is two-valued logic and L.. is an infinite valued
logic whose truth values are taken T.. from all rational numbers in the interval
[0,1]. When truth values may be any real number in the [0,1] interval, the logic is
referred to as standard Lukasiewicz logic and denoted X.x; where & (‘aleph 1) is
used to represent the cardinality (number of elements) of the continuum. In this
sense, the base logic for fuzzy logic is Kukasiewicz’s.Ex logic.

Fuzzy logic is the logic of approximate reasoning and bears the same relation-
ship to approximate reasoning as does two-valued logic to precise reasoning.
Fuzzy logic allows inferences even though the predicates that are supposed to be
satisfied are only approximately satisfied. Approximate reasoning is the process
of process or processes by which a possible imprecise conclusion is deduced from
a collection of imprecise premises [18]. The constituents of approximate reason-
ing are a st of translation rules and a set of rules of inference. Translation rules
consist of a set of procedures for forming composite propositions from basic
(canonical) propositions “V is A” (also represented as “V = A”) where V is a
variable and A is a fuzzy subset of a base set X. Rules of inference are proce-
dures for making logical deductions from fuzzy propositions. A commonly used
approach to inference in approximate reasoning is compositional inference [21].

In traditional logic, one of the most important inference rules is modus ponens,
that is

PREMISE A is true
IMPLICATION If Athen B

CONCLUSION B is true

Here A and B are crisply defined propositions. Fuzzy propositions may be con-
structed using fuzzy subsets. Introducing fuzzy propositions into modus ponens
yields generalized modus ponens. Let A, A*, B, B* be fuzzy subsets. Then
generalized modus ponens is

PREMISE Vis A*
IMPLICATION IfVisAthenUis B

CONCLUSION Uis B*

In order to perform the above generalized modus ponens, inference is based on a
fuzzy implication and a compositional rule of inference. A fuzzy implication or
conditional proposition (“If V is A then U is B”) is represented as A—B, where A
is a fuzzy subset of X and B is a fuzzy subset of Y, and defined by a fuzzy relation
R, a fuzzy subset of the Cartesian product X X Y. A fuzzy relation may be
represented by a matrix. One of the most common forms of implication is based
on the minimum operator, R(x,y) = A(x) A B(y), xeX, yeY.
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If R is a fuzzy relation from X to Y, and A* is a fuzzy subset of X and B* is a
fuzzy subset of Y, then B* = A* o R. In order to interpret the above expression, a
compositional rule of inference is used. The most commonly used method is
the max-min composition in which B* is computed by the max-min product
of A* and R. The operation is similar to that of vector-matrix multiplication
where multiplication is replaced by the min (A) operator and addition is replaced
by the max (v) operator B*(y) = max«x min (A*(x), R(x,y)). Note that when
R=A->Bisrepresented as R=A N B=AXB,R(x,y) = AX) A B(y) and A* =
A, then B* = A* 0 (A—B) = B as an exact identity. However, if other forms of
implication are used (e.g., the arithmetic rule, R = A—B = —A® B) then it is
often the case that B* = A* 0 (A—B) # B; that is, the resultant fuzzy subset, B*,
is not exactly B [22].

Consider the simple example below. Let X = {x1, x2, x3} = {1, 2,3}, Y = {y1,
y2, y3} = {7, 8, 9} and let fuzzy subsets be defined as A = small = {1.011, 0.612,
0.113} and B = large = {0.117, 0.6I8, 1.0i9}. Then the implication “If V is A then
Uis B” or “If V is small then U is large” may be expressed as

1 y2 y3 7 8 9
Xi 0.1 0.6 1.0 1 0.1 0.6 1.0
R=x2 05 1.0 1.0 = 2 05 1.0 1.0

X3 1.0 1.0 1.0 3 1.0 1.0 1.0

where R = (A—B) is defined as R(x,y) =1 A (1 - A(x) + B(y)). Given a premise V
is very small defined as very small = A* = (small) ={1.0l1, 0.3612, 0.0113}, then
the conclusion is B* = {0.36ly1, 0.6ly2, 1.0ly3} where, for yi, y2, y3

v{1.0A0.1,0.36 A0.5,0.01 A 1.0] =0.36,
v [1.0A0.6,0.36 A 1.0,0.01 A 1.0] = 0.6,
v[1.0A 10,036 A1.0,0.01 A1.0]=1.0

respectively. Note that this is not identical to the fuzzy subset very large defined
as very large = (large)’ = {0.0117, 0.3618, 1.0i9}.

A more general situation involving two antecedents is “If V1 is A1 and V2 is A2
then U is B” where Aj, A2, and B are fuzzy subsets of X1, X2, and Y, respectively.
Then A = A1 " Az is defined on X = X1 X X2 and the implication R = A—B is the
fuzzy relation from X to Y. Al, Az are the cylindrical extensions of A1, A2,
respectively. Given Vi is A1* and V3 is Az*, where A1* and A2* are fuzzy subsets
of X1 and X», respectively, then the conclusion is B* = A* o R, where B* is a
fuzzy subset of Y and A* = Ay* n Az*. For example, let X1 = {1, 2, 3}, X2 = {4,
5,6},and Y = {7, 8, 9} and let fuzzy subsets be defined as A1 = small = {1.0l1,
0.612, 0.113}, Az = large = {0.114, 0.6I5, 1.016}, and B = large = {0.117, 0.6I8,
1.019}. Thus the implication is “If V1 is small and V2 is large then U is large.” A1,
A2, A=A N Az and R are as follows
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4 5 6
1 1.0 1.0 10
Ail=2 06 06 06
3 01 01 01

4 5 6

X 1 01 06 10
A,=2 01 06 10
3 01 06 10

X2 Ay Az A=A1NA,

>

1.0 01 0.1
06 0.1 0.1
0.1 0.1 0.1
1.0 06 06
06 06 06
0.1 06 01
1.0 1.0 1.0
0.6 1.0 06
0.1 1.0 01

WM = W R W=
o e e NV WY WT W N G -

7 8 9
1.0 1.0 1.0
1.0 1.0 1.0
1.0 1.0 1.0
0.5 1.0 1.0
0.5 1.0 1.0
1.0 1.0 1.0
0.1 0.6 1.0
0.5 1.0 1.0
1.0 1.0 1.0

~

11
[ECIG IR SV S N O I NS I
o N = N O T T N S

Now assume that V is A;* = very small and V is A;* = very large, where very
small = {1.011, 0.3612, 0.0113}, and very large = {0.0114, 0.3615, 1.0i6}. Then A*
= A* N Ag* is as follows

X1 Xz Ar* A+ A*=A*NA*

1.0 0.01 0.01
036 0.01 0.01
0.01 0.01 0.01
1.0 036 0.36
036 036 036
0.01 036 0.01
1.0 1.0 1.0

0.36 1.0 0.36
0.01 1.0 0.01

(S I I O I S R O R S
(o W= e WV WV WV, TN N G N
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Then B* = A* o R = {0.3617, 0.6i8, 1.019}. Again, this is not identical to very
large = {0.0117, 0.3618, 1.019}.

It is also possible to combine propositions disjunctively as, for example, in “If
Viis Aj or V3 is Az then U is B” where Aj, Az, and B are fuzzy subsets of X, X»,
and Y, respectively. Then A = A1 U A; is defined on X = X; X X».

Weights may be placed on the propositions of generic form “V is A.” Sanchez
proposes that for conjunctions, AY¥ = (1-w) v A, A¥ (x) = (1-w) v A(x), and for
disjunctions Aw = W A A, Aw(X) = W A A(x) [23]. Thus for conjunctions, w = 0,
A%x) =1 and A is neutral and w = 1, A!(x) = A(x) and the weight has no effect.
For disjunctions, w = 0, Ap(x) = 0 and A is neutral and w = 1, Aj(x) = A(x) and the
weight has no effect.

In general, m multiple implications or conditional propositions each with n
antecedents, may be expressed as follows

If Vi=A11and V2=Aj2...Vy=Aj1p then U=DBjelse
IfVi=A21and V2=A22...Vn=A2nthen U=Bzelse

IfVi=Amiand V2=Am2...Vn=Amnthen U=Bm

where Ay is a fuzzy subset of X, Ap is a fuzzy subset of X», etc., and B; is a fuzzy
subset of Y, and where “else” is interpreted as “and” or “or” {24, 25]. However, if
Y and each Xj (j=1, . . ., n) have cardinality g, then X = X; x X3 X...x X,
has cardinality g" and R has cardinality g"*'. For example if Y and each base set X
have 10 elements, then for n = 5, X has g" = 10° elements and R defined on X X Y
has g™ = 10° elements.

ENVIRONMENTAL EVALUATION BASED
ON FUZZY LOGIC

One way of overcoming the dimensionality of the resulting set X has been
suggested [25, 26]. Another approach is to assume a known set of projects P = { Py,
Py, ..., Pi} and to assume that each of the linguistic variables Vi, Va,..., Vy
have base set P; that is, X; = X2 =. . . =X = P [16]. In this case, linguistic values,
Ajj, are evaluated by exemplification with P. Then di: If G is A; then S is B, is
translated to a fuzzy relation D; defined on P X Y, since A;= Ay N AN ...N
Ajn is defined on P.

Conditional propositions or implications (that is, fragments of imprecise infor-
mation) consist of a measure of the satisfaction of some or all of the factors on
which evaluation is to be based. Satisfaction is measured on a base set Y = [0.0,
0.1, ..., 1.0]. The fragments of information, d1, dz, . . ., dm, may involve dif-
ferent sets of factors, Let,

di: If G1 = Aj1and G2 = Az and . . . and Gp = Aijn then S = Bj
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where Ay, Ag, ..., A are fuzzy subsets of P, and B; is a fuzzy subset of Y. The
expression “G; = Ay and G; = A and . . . and G, = Aiw” might be more simply
represented G = A; where Aj = Ay N Ap N . ..M An and Ai(p) = Au(p) A An(p)
A ... A Au(p), peP. If a fragment, d;, excludes a particular factor, Gy, then the
fuzzy subset of the base set of projects, P, is Ax = {Aw(P)IP1, Au(P)IP,, . ..,
Au(PpIP;} = {1.0lP,, 1.0IP,, ..., 1.0/P;} which effectively means that Gy can
be anything. Otherwise, if G; is included in fragment di, Ay = Gj = {G;(P)IPy,
Gi(P)IP,, . . ., Gi(PYIP1}. G;is a fuzzy subset of projects with grades of member-
ship Gj(p) indicating the degree to which peP achieves G;. Then, di: if G = A, then
S = B; is a fuzzy implicational proposition. This is translated into a fuzzy subset
(relation) D; of P x Y where Di(p,y) = 1 A (1 - Ai(p) + Bi(y)). Thus for fragment d;
(i=1,. ., m), D;is a fuzzy subset of P X Y and the overall evaluation function for
fragments is given as D = D; " D; n... N Dy where D(p,y) = ADi(p,y). To
calculate the satisfaction associated with each project, the max-min rule of com-
positional inference, Hy = Cyx o D is applied, where Hy is the satisfaction asso-
ciated with project Py, Cy is the description of project Py as a fuzzy subset of P, and
D is the evaluation function. Thus, Hi(y) = max[Cx(p) A D(p,y)]. In this case,
Cu(Pg) = 1 fork=q (k, q=1, ..., ) and C(Py) = O for k#q. Thus, Hi(y) and D(Py,y).
The fuzzy subsets of the unit interval, Hy, are then ranked according to their
point value.

As an example, consider four transportation projects (alternative route align-
ments) assessed against six factors Gi (travel-time savings), G2 (social impact),
G3 (noise impact), G4 (flora/fauna impact), Gs (water quality impact), and, Ge
(capital cost). Let the fragments of information be as follows

di: If G1 = very high and G2 = low and G3 = low and G¢ = not low then
S = fairly satisfactory

d2: If G1 = high and G2 = low and G3 = low and G4 = low and Gs = low then
S = more than satisfactory

ds: If G1 = very high and G7 = very low and G3 = low and G4 = low and Gs =
low and Gg = low then S = perfect

d4: If G1 = high and G2 = low and G3 = low and G¢ = low then S = satisfactory

ds: If G1 = very high and G2 = low and G3 = low and G4 = low and Gg = low
then S = very satisfactory

de: If G1 = not high and G2 = not low then S = fairly unsatisfactory

LetY ={0.0,0.1,0.2,0.3,04,0.5,0.6,0.7, 0.8, 0.9, 1.0} and let satisfactory be
defined as S(y) =y, yeY. That is, fuzzy subset S = (0.010.0, 0.110.1, 0.210.2, 0.310.3,
0.410.4, 0.510.5, 0.610.6, 0.710.7, 0.810.8, 0.910.9, 1.011.0}. Then fairly satisfactory
is defined as fuzzy subset FS = S¥2 = {0.0i0.0, 0.3210.1, 0.4510.2, 0.550.3,
0.6310.4, 0.7110.5, 0.7710.6, 0.8410.7, 0.8910.8, 0.9510.9, 1.011.0}, more than satis-
factory as fuzzy subset MS = S*2 = {0.010.0, 0.0310.1, 0.0910.2, 0.1610.3, 0.2510.4,
0.3510.5, 0.4610.6, 0.5910.7, 0.7210.8, 0.8510.9, 1.011.0}, very satisfactory as fuzzy
subset VS = §%= {0.010.0, 0.0110.1, 0.0410.2, 0.0910.3, 0.1610.4, 0.25l0.5, 0.3610.6,
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0.4910.7, 0.6410.8, 0.8110.9, 1.0/1.0} and unsatisfactory as fuzzy subset US = 1-S
= {1.010.0,0.910.1, 0.810.2, 0.710.3, 0.610.4, 0.510.5, 0.410.6, 0.310.7, 0.210.8, 0.110.9,
0.011.0}. Fairly unsatisfactory is defined as fuzzy subset FUS = US'* = {1.010.0,
0.95i0.1, 0.8910.2, 0.8410.3, 0.7710.4, 0.7110.5, 0.6310.6, 0.5510.7, 0.4510.8,
0.3210.9, 0.011.0}. Perfect is defined as fuzzy subset P = {0.010.0, 0.010.1, 0.010.2,
0.0i0.3, 0.0i0.4, 0.010.5, 0.010.6, 0.010.7, 0.010.8, 0.0/0.9, 1.0i11.0}. These fuzzy
subsets are illustrated in Figure 1 (note that the base setis {0, 1, ..., 10} and not
the interval {0,10]).

Let the factors be measured on the base set P = {P1, P2, P3, P4} of projects as
follows

HTTS = {0.5IPy, 0.6IP2, 0.7IP3, 1.0[P4}
LSI  ={0.7IP1, 0.6IP2, 0.3IP3, 0.2IP4}
LNI ={0.7(P1, 0.7IP2, 0.4iP3, 0.3IP4}
LFFI = {1.0IP1, 0.5IP2, 0.5IP3, 0.31P4}
LWQI = {0.7IP, 0.4IP2, 0.3|P3, 0.1IP4}
LCC = {0.0IP1, 0.5IP2, 0.6P3, 0.8/P4}

where HTTS = High Travel-Time Savings, LSI = Low Social Impact, LNI =
Low Noise Impact, LFFI = Low Flora/Fauna Impact, LWQI = Low Water
Quality Impact and LCC = Low Capital Cost. The relative performance of the
projects against different factors is illustrated by the polygonal profile plot in
Figure 2. Thus P, is the most environmentally sensitive project and P, is the least
environmentally sensitive project emphasizing engineering/economic factors. The
calculation of the fuzzy subsets, A;, of projects associated with fragment d;

(i=1, ..., 6) are shown in Table 1. A;= Ay N Az N Az N Ay N Ais N A is given
in the right column of Table 1.
Thus

A1 = {0.25|Py, 0.36IP2, 0.30IP3, 0.20/P4}
A2 = {0.50iP1, 0.401P2, 0.301P3, 0.10IP4}
A3 = {0.00IPy, 0.36/P2, 0.091P3, 0.041P4}
A4 = {0.001P1, 0.501P2, 0.30IP3, 0.20IP4}
As = {0.00/Py, 0.36IP2, 0.30iP3, 0.20IP4}
Ag = {0.03|Py, 0.40IP2, 0.30IP3, 0.00IP4}

The fragments are therefore:

di: IfG= Ay, then S=FS
d2: If G = A2, then S = MS
d3: IfG=A3,thenS=P
d4: If G = A4, then S =VS
ds: IfG=As,thenS =S8
de: If G = Ag, then S = US
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Then the fuzzy subsets of P x Y, D, i=1, . . ., 6 are shown in Table 2. The final
decision is D = Dy A D2 N D3 Dy " Ds N Dg where D(p,y) = Ai Di(p,y). These
calculations are shown in Table 3. Note that Cx = {Cy(P1)IPy, Cx(P2)IP;, Cu(P3)IP3,
Ck(P4)|P4. Thus, if k=1, then C1 = {Cl(Pl)lpl, Cl(Pz)lpz, Cl(P3)|P3, Cl(P4)|P4 = { 1|P1,
0IP,, OIP;, OIP4, OIPs}. Calculating the point values for Hy, k=1, . . ., 4, where Hi =
Ci o D, yields F(H;) = 0.59, F(H;) = 0.51, F(Hs) = 0.53, and F(H,) = 0.55. Thus
P, is the “best” project.

The above approach has assumed that the weights of factors in the fragments are
equal. When differential weights are introduced, the “aggregate worth” of projects
change. For example, consider the weights WE¥®" = {w, wa, W3, W4, Ws, We} =
{1.0, 0.1, 0.1, 0.1, 0.1, 1.0} emphasizing non-environmental or engineering/
economic factors (travel-time savings, capital cost) at the expense of environmen-
tal criteria and W™ = {w}, w2, w3, wa, ws, wg} = {0.1, 1.0, 1.0, 1.0, 1.0, 0.1}
emphasizing environmental factors at the expense of engineering/economic
factors. In the former case, F(Hj) = 0.57, F(Hz) = 0.55, F(H3) = 0.68, and F(Hy) =
0.91; that is Py, the least environmentally sensitive project is “best.” In the latter
case, F(Hi) = 0.69, F(Hz) = 0.54, F(H3) = 0.48, and F(H4) = 0.43; that is, P, the
most environmentally sensitive project is “best.” Though, the above weights sets
are extreme, they do illustrate the potential for differentially weighting antece-
dents. In practice, more realistic weight sets could be evolved.

CONCLUSION

An application of a fuzzy logic method for the evaluation of projects charac-
terized in terms of multiple environmental factors has been given. The method
facilitates the incorporation of fragments of imprecise information (implications)
involving some or all of the factors as antecedents and a level of satisfaction as a
consequent.
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