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ABSTRACT

An Artificial Neural Network (ANN) model was developed to mimic the

exact output from a DOS-based Environmental Expert System. Computer

codes developed originally for mainframe computers and transported into the

DOS environment routinely do not receive modifications necessary to per-

form under more modern operating systems unless there is sufficient financial

incentive. Software written for the environmental market, particularly the

classroom market, rarely has this level of incentive, resulting in much previ-

ously usable software being rendered obsolete. Much of this software still can

play a critical role in the education of future environmental scientists and

engineers. The subject research investigated one potential solution to this

problem: the development of ANN models capable of producing the exact

results of the earlier DOS code while having the capability of ready modifi-

cation given new information or circumstances. This research illustrated the

overall utility of ANN’s in this capacity, as a 100 percent compatibility

between the underlying Expert System and the ANN was achieved. In addi-

tion, the ANN was readily modified to include new information. The ANN devel-

oped extends the useful life of the Expert System with minimal developmental

costs, without extensive re-programming or retrofitting of the original code.

INTRODUCTION

Computer software written for environmental applications is typically produced in

limited quantities for a relatively small market, particularly when compared to that
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developed for either business or gaming purposes. Environmental codes are

often written by governmental or academic researchers and in many cases can

trace their lineages to software originally developed for large mainframe systems.

Many of these programs having previously made the transition, albeit with

some operational difficulties, to DOS-based personal computers are increasingly

called upon to operate under other operating systems, particularly Microsoft’s

Windows.

Another problem faced by the user of some of these codes is that changes either

in underlying environmental regulations or in cost or operations databases often

render these programs obsolete even when they can still operate efficiently on

modern office computer systems. Being a small market with minimal economic

incentives, primarily supported by programmers more interested in developing

new models for research papers than in updating existing codes, environmental

software is often “orphaned” in terms of ongoing maintenance or in supplying

critical updates. It is often too time and resource consuming to update models that

are only used by hundreds or possibly a few thousand individuals. Greater rewards

will come to those whose programs have more universal appeal. This is one of

many reasons why computer games (and the machines used to play them) have

better graphics, higher speeds, and better audio than many corresponding environ-

mental modeling packages.

Academics, in particular, are most impacted by these trends. College classes use

more programs at perhaps lessened depth of application than do engineering firms.

Students benefit from testing alternative scenarios within the simulation environ-

ment. These simulations allow for investigation of real-world problems, adding

greatly to the education of young scientists and engineers. Programs developed

either for the mainframe or for early DOS machines, however, are either increas-

ingly off-limits to these users or else perform at reduced levels with the advent

of alternative operating systems. Admittedly, programs developed for these new

operating systems are generally far better than the original DOS codes but, given

the limited market for this type of software, it often becomes more a matter of

losing important codes rather than replacing them.

This article presents one alternative available to academics and working scien-

tists and engineers who, because of tight time and resource budgets, are increas-

ingly forced to either employ alternative methods to those previously used or

to under-utilize a valued software package. Specifically, an Artificial Neural

Network (ANN) was used to test the hypothesis that existing DOS-based systems

could be easily and relatively rapidly updated to perform under newer operating

systems. The expert system Cost of Remedial Action (CORA) was selected as the

DOS-based program for investigation [1].

Expert systems are computer coded decision trees which focus upon

developing solutions to various problems. Users respond to a series of ques-

tions to generate recommended courses of action including diagnosis, monitor-

ing, planning, design, and interpretation [2, 3]. Routinely used for medical and
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chemical interpretation and diagnosis, other applications include hazardous waste

management, groundwater remediation, and risk assessments [4-7].

USING CORA AS THE MODELED EXPERT SYSTEM

CORA was developed and maintained for the Environmental Protection

Agency until the early 1990s. At the time of its last update in 1990 it employed

question and answer format to suggest potential remediation alternatives. The

questions ranged from what type of chemicals and soil types were present to

information concerning the hydrology of the site. The program interpreted each

answer and recommended several applicable remediation schemes. Subsequently,

the total amount of contaminated materials and the recommended level of clean-up

for that site were requested from the user resulting in an approximate cost of the

remediation and clean-up.

Since 1990, CORA has become more difficult to operate under ever more

rigorous computer systems as well as being somewhat dated with regard to the

costs of the various technologies. CORA, as with any code, could be updated by

rewriting and revising the original computer program but, as an alternative, this

research developed and applied an artificial neural network (ANN) model to

project needed technologies and their attendant costs.

The advantage of updating CORA by using a neural network is that the time

needed to update the system was relatively minimal. Access to the source code or

even extensive knowledge of CORA’s programming language were also not

required. Updated information was readily assimilated. Once the modeling was

completed, any updates typically took less than five minutes to complete. In

addition, little computer information was needed. The publicly available pack-

age used in this effort required only a basic knowledge of computer spread-

sheets augmented with the neural network “add-on.” In this manner, a tool

was developed quickly and efficiently which built upon previous engineering

knowledge with readily available skills and software. Neural networks have

the capacity of learning the complicated decision tree associated with CORA

or other expert systems while being able to update the underlying database

and decision algorithm.

SCOPE OF THE PROJECT

To facilitate investigation, this project was confined only to sites that contained

Volatile Organic Compounds (VOCs) as the contaminant of concern. Although

CORA has the capability of giving remediation alternatives for many other

categories of chemicals that might exist at a site, it was felt that an initial effort

involving a ubiquitous contaminant could readily test the utility of the ANN model

development. In this way a problem of sufficient complexity could be evaluated

while still proving tractable should difficulties arise.
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The ANN model was designed with the same questions as the CORA program

for the types of conditions where VOCs may need to be addressed. The ultimate

goal of the research project was to develop a tool that updated a very powerful and

useful expert system. Further, the effort needed to accomplish this updating should

be considerably less than that needed to recode the original program. The neural

network program that was used in this research project was Neuralyst [5].

The ultimate goal of the training portion of this project was to achieve a 100

percent recognition rate in an efficient manner. The 100 percent recognition rate

occurred when the training of the network subsequently lead to a 100 percent

prediction of the test cases. Converting the test cases into training cases and

using CORA to obtain additional information for other remediation/containment

scenarios eventually achieved the 100 percent success rate. When this criterion

was met, the network was ready for almost any type of containment or treatment

scenarios dealing with VOCs previously addressed by CORA. The ANN was

further modified by development of updated cost estimation methods. Current unit

costs replaced the 1990 database.

NEURAL NETWORKS BACKGROUND

ANNs work by pattern recognition linking input data to outputs in a series of

training and subsequently testing exercises somewhat analogous to calibration and

verification steps of conventional modeling. These exercises are cited as examples

of system “learning.” Functional forms are developed during training which link

the measured inputs and outputs of a problem situation. Testing confirms the

model developed. The resulting model can then be used in prediction of different

conditions. The capacity of the system to “learn” can then be subsequently utilized

whenever technology or costs change.

On the simplest level, a neural network is configured like a human brain with

many simple elements (neurons) that work in parallel. The neurons that make-up

each layer are connected to each other to create a network of neurons much like the

human brain. Input information is processed by a complex array of internal

neurons to produce output information. That is, previously measured information

is propagated from the input layer used to define the problem through the hidden

layers to the output layer which when property configured describes the desired

results.

Training consists of manipulating the number of inputs, the number of hidden

layers, the functional form applied and the learning rate among other variables to

gain conformance with the previously measured outputs. Typically, ANN models

have two to six hidden layers which process the inputs while predicting the

outputs. Input neurons are what is to be solved while output neurons describe the

desired results. The higher the number of hidden layers the more generalizations

can be made in the network. The larger number of layers also allows the program

to use fewer numbers of neurons in the development of the neural network.
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Networks with a lesser number of layers conversely use less computer time. It is

reported that most neural networks can be solved with three layer systems [5].

A neural network can solve both linear and non-linear problems. As with

any “learning” experience, the network is initially very prone to mistakes. Once

calibrated, the neural network can become very precise. The network is ultimately

driven by the type of problem to be solved. The neural network begins as a

collection of rules and inputs that must be taught to achieve better results. This

learning process is termed training.

The neural network has many advantages over conventional models which have

been used in the past. Traditional models develop formulae that mimic reality. The

data for a particular situation are used to fit the model. A neural network develops

functional relationships between the input and outputs. Neural networks can be

adapted to the most complex problems where other models may prove limited. The

training process teaches the program the importance of every neuron instead of

focusing on individual locations such as a maximal or minima. Each neuron is

assigned a significance (weight) and is identified by the classification of the

connection. This allows the program to establish useful relationships between the

neurons in the network. The network can easily be as complex as the original

problem without concern for the underlying mathematics. Artificial Neural

Network models have been used in groundwater studies as well as in finance and

other business applications [8, 9].

NEURAL NETWORK PARAMETERS

There are several parameters that are used by a neural network during training.

They include the learning rate and momentum as well as the training and testing

tolerances. These parameters are determined iteratively with relative improvement

in recognition rate being the evaluation criterion.

The learning rate is used to control the way in which the error corrects the

weights in the network for each training case. This error correction is the way the

network trains itself. The range of the learning rate is from 0 to 1,where the lower

number will reduce unstable behavior. Unstable behavior is when the neural

network plateaus during training (number of correct answers does not increase as

time progresses). The lower the learning rate the longer the network will take to

develop, however.

Momentum deals with the amount of previous error that is applied to the weight

adjustment in each training case. If momentum is 0.5, then the weight adjustment

will be 50 percent from the current error and 50 percent of the adjustment will be

applied to the previous case within the neuron. The neuron then takes the starting

value given by the user and, using an exponential decay, reduces the amount of

error associated with the next neuron by 5 percent each time.

Training tolerance tells the neural network how much training is needed to

consider it trained. This number reflects how precisely the network must come to
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the desired answer. Tighter training tolerances force the program to numerically

approach the desired targets. For instance, if the training tolerance is set at 0.2,

then the computer will have to come within + 20 percent of the target answers

to be considered trained. Testing tolerance is similar to training tolerance when

used on the previously segregated testing cases. This tolerance describes the

acceptable proximity of the trained network to the target answers to be considered

a correct response.

MATERIALS AND METHODS

The research was initiated by accessing CORA for a variety of containment

and/or remediation scenario, as illustrated in Table 1. In response to a series of

questions posed to the user, CORA produced a suggested alternative and an

associated cost estimate for each of these simulations. These data were then used

to train the neural network. With some exceptions, the questions CORA asked

were in a true-false format. CORA gave different remediation schemes depending

on the answers to these questions.

The ANN was established by incorporating the types of questions and answers

included in CORA into the training network. Table 2 presents all of the possible

questions necessary for a containment evaluation while Table 3 presents the

corresponding information from the remediation effort. The ANN input data were

collected by selecting true or false responses for these questions. Given the

structure of a specific problem, not all questions are asked for during each

simulation. For instance, if question 6 from Table 2 was answered “false” and

question 7 was answered “true,” then questions 8 thru 10 would not be asked. The

next question would be 11 (is the site considered a hazard to unauthorized

personnel). There were several other instances that involved these if-then ques-

tions in CORA and in the subsequent ANN. Similar conditions applied to

Table 3 questions. Answering Q1, Q2, and Q4 was required to define the scope of a

project [answers: Q1 � Homogeneous Contaminated Unsaturated soils (HCUS) ,

Q2 � Containment, Q3 � Volatile Organic Carbon].

The input data from CORA for the neural network were initially collected in ten

arbitrary training cases completed with five test cases. The 15 cases resulted from

the questions and answers associated with CORA data runs. After the first set

of data was collected from CORA, the neural network was established. A total

of 154 computer simulations were completed for the containment and remedi-

ation alternatives. Fifty-four were used for containment with 100 utilized for

remediation. Table 4 presents the number of cases and how each case was used in

these simulations. This table presents the number of training and test cases that

were used for every simulation where a case was defined as an example of the

output from CORA used to either train or test the neural network. A run repre-

sented a training session of the neural network that attempted to simulate the
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Table 1. Containment and Treatment Options Evaluated

Remediation
scheme
CORA # Name Containment Treatment

105

201

301

302

305

306

307

308

312

316

317

401

402

403

404

405

406

407

503

504

Surface water diversion/collection

Soil excavation

Onsite incineration

Offsite incineration

Soil vapor extraction

Flaring

Air stripping

Vapor phase carbon

Ion exchange

Solidification

In-situ stabilization

Offsite RCRA landfill

Onsite RCRA landfill—above grade

Offsite RCRA landfill—below grade

Offsite solid waste landfill

Discharge to POTW

Discharge to surface water

Water reinjection

Groundwater monitoring

Site access restrictions

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Note: “X” denotes when a particular remediation scheme could have been employed
by CORA.



CORA outputs. The test data had not previously been placed into the neural

network as a training aid. If the test case had been used to train, the neural network

would already know the answer from previous training.

ANN Updating of CORA’s Technical and Cost Bases

As new remediation technologies become available, the ANN produced in this

effort can be updated by including the developing information into the network as

a new training data set. The original network has the capacity to “learn” the correct

responses when modified with new input data sets. In this way, the ANN devel-

oped can be more readily adapted to changing conditions than can a conven-

tionally coded model.

The ANN completed for VOC containment and treatment options were capable

of producing CORA compatible answers. Updating the costs portion of the

expert system proved necessary. Several alternative approaches were evaluated

before selecting an approach based on unit costs. This allowed every site to be

economically evaluated by eventually knowing the unit cost from the neural

network and the volume of contaminated material from the engineer’s studies. The

costs of the remediation schemes came from several sources. They include the

Environmental Protection Agency [10], Ground-Water Remediation and Analysis
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Table 2. CORA Containment Questionsa

� What waste types apply to the site (Q1)

� What response action do you wish to consider (Q2)

� What types of contaminants are in the soil (Q4)

� Will excavation of the contaminants cause environmental or public impacts
(Q5)

� Is the contaminated soil a hazardous waste (Q6)

� Is the contaminated soil concentration above land disposal restrictions (Q7)

� Is an onsite landfill reasonable (Q8)

� Select all types of contaminants in leachate from landfill (Q8-a)

� Are contaminated soils located in a 100-year flood plain (Q8-b)

� Is a shallow aquifer present that would not allow a below grade landfill (Q9)

� Type of discharge option either water reinjection (Q10)—water infiltration
(Q10-a)—discharge to POTW (Q-10b)—discharge to surface water (Q10-c)

� Could site conditions threaten health or safety of unauthorized visitors (Q11)

� Are exposed soils on the site exposed to erosion (Q12)

� Pick the location of the site: above floodplain (Q12-a)—at base of hill above
floodplain (Q12-b)—in floodplain (Q12-c)

a
The questions are not sequentially numbered due to other questions that resulted in the

treatment section of CORA.
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Table 4. Training and Test Cases from the Neural Network

Run #’s
New training

cases
Total training

cases Test cases

1, 2, 3, 4, 5, 6, 7, & 8
9, 10, 11, & 12
13, 14, 15, & 16
17
18
19
20
21
22

10
9

10
10
10
10
10
10
10

10
24
39
64
79
94

109
124
139

5
5
5
5
5
5
5
5

15

Table 3. CORA Treatment Questionsa

� What waste types apply to the site (Q1)

� What response action do you wish to consider (Q2)

� What is the hydraulic conductivity of the soil (Q3)

� What types of contaminants are in the soil (Q4)

� Will excavation of the contaminants cause environmental or public health
impacts (Q5)

� Is onsite incineration precluded based on space or local considerations
(Q5-a)

� Type of discharge option either water reinjection (Q10)—water infiltration
(Q10-a)—discharge to POTW (Q10-b)—discharge to surface water (Q10-c)

� What is the hydraulic conductivity of saturated zone (Q10-d)

� Is the water table greater than 5 feet below surface (Q10-e)

� Is the ash a hazardous waste (Q10-f)

� Is concentration of contaminant in ash above land disposal (Q10-g)

� Is an onsite RCRA landfill for solidified ash reasonable (Q10-h)

� What types of contamination are in the leachate from landfill (Q10-i)

� Would a shallow aquifer preclude a below grade landfill for solidified ash
(Q10-j)

� Is the solidified material landfill footprint in a 100-year floodplain (Q10-k)

� Could site conditions threaten health or safety of unauthorized visitors (Q11)

� Are exposed soils on the site exposed to erosion (Q12)

� Pick the location of the site above floodplain (Q12-a)—at base of hill above
floodplain (Q12-b)—in floodplain (Q12-c)

a
The questions are not sequentially numbered due to other questions that resulted in the

treatment section of CORA.



Center [11], environmental design engineers, city officials, and landfill designers.

Table 5 presents these cost figures.

RESULTS

Network Training

Twenty-two different runs were required by the neural network to emulate

CORA’s responses. These runs are detailed in Table 6. A lesser number would

have sufficed if the project goals were less stringent. That is, this effort was

constrained to achieve a 100 percent recognition rate between the Expert System

and the subsequent ANN for VOC containment and/or treatment. The containment

option required 16 training runs, while the treatment portion utilized six. The

containment scenarios needed more runs because they were used to develop the

number of neural network layers and the network parameters, which were then

utilized by the treatment simulations. The number of runs and data samples was

determined iteratively. If the first trial of the data achieved the desired goal, then

the number of data samples would be sufficient for that particular case. In both

cases, ten additional cases were included to further test the precision of the

network model.

Table 6 displays the run number, number of samples, number of layers, neurons,

parameters, and results for each of the 22 runs. These data show that a training rate

of over 90 percent could be achieved readily; requiring only one run with two

layers and 32 and 21 neurons per layer, respectively. Further, this single run relied

extensively upon default levels included in the ANN code for most of the operating

parameters. Should the scientist or engineer find 93 percent satisfactory, ANN

models can be very readily developed for this problem.

Training to achieve a 100 percent recognition level required that the training

tolerance be varied. While all of the final network parameters were set to code

recommended default values, the training tolerance was set to 0.05. This forced

the neural network to be within 0.05 of the actual number during the training

procedure. This tighter control during training forced the training numbers closer

to the target values. The other network variables were not modified because upon

further review the default values were in the appropriate range to achieve the best

results in a short period of time.

The final networks became very large so that three and four layer systems could

not handle the number of variables and information in a routine manner. The run

time for three training sessions was stopped at two hours without 100 percent

training rate. This was arbitrarily deemed an unacceptable time limit. The 2-, 3-,

and 4-layer systems were eliminated after the completion of containment section.

The desired goal of 100 percent was achieved with the five-layer system in the

containment section. It was then used for the training of the treatment model. If a

smaller (or larger) layer system is ever needed, the ANN can be readily altered and

the network reloaded instantly.
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Table 5. Updated Costs for CORA

CORA # Name Unit costs

105

201

301

302

305

306

307

308

312

316

317

401

402

403

404

405

406

407

503

504

Surface water diversion/collection

Soil excavation

Onsite incineration

Offsite incineration

Soil vapor extraction

Flaring

Air stripping

Vapor phase carbon

Ion exchange

Solidification

In-situ stabilization

Offsite RCRA landfill

Onsite RCRA landfill—
above grade

Offsite RCRA landfill—
below grade

Offsite solid waste landfill

Discharge to POTW

Discharge to surface water

Water reinjection

Groundwater monitoring

Site access restrictions

$10,963/Aca

Approximately $2-$5/yd3

$164–$730/ton

$200–$1,000/ton

$100/ton

$300/hole for pipes

Depends on electricity costs—
requires 1.5 hp/foot of stripping

$1,000-$40,000 for the machine
carbon = $2–$3/lb

$0.30–$0.80/1000 gal treated

$100/ton including excavation

Shallow—$40–$60/yd3

Deep—$150–$250/yd3

$15/yard—excludes transportation

$500–$1140/cy range from
7000–220000cya

$490–$1121/cy range from
7000–220000cya

$4.00/cy plus $1.50/ton

$5.25/gal first 1000 gal,
$2.00/gal after

NPDES permit = $7,000b

$1.00/gal haz, $0.55/gal
non haz—excluding pump truck

$2,000/well/month plus
quarterly monitoring

$28.50/ft includes fencing
and signsa

a
These costs came from CORA and were updated from 1990 dollars to current dollars with

a factor of inflation of 3 percent.
b
This price depends on the city that issues the NPDES permit

(this price is for Sand Springs, Oklahoma).
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Table 6. Results of the Training Runs

Run
number

Number of
samples

Number
of layers

Neurons
per layer

Network
parametersa

Results
(correct) Comments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10 train
5 test

10 train
5 test

10 train
5 test

10 train
5 test

10 train
5 test

10 train
5 test

10 train
5 test

10 train
5 test

24 train
5 test

24 train
5 test

24 train
5 test

24 train
5 test

39 train
5 test

39 train
5 test

39 train
5 test

39 train
5 test

2

2

3

3

4

4

5

5

2

3

4

5

2

3

4

5

32,21

32,21

32,30,21

32,30,21

32,30,45,21

32,30,45,21

32,30,45,30,21

32,30,45,30,21

32,21

32,30,21

32,30,45,21

32,30,45,30,21

32,21

32,30,21

32,30,45,21

32,30,45,30,21

Default values

Training Tol. = 0.05
Testing Tol. = 0.15

Default values

Training Tol. = 0.05
Testing Tol. = 0.15

Default values

Training Tol. = 0.05
Testing Tol. = 0.15

Default values

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

Training Tol. = 0.05
Testing Tol. = 0.15

93%

88%

94%

90%

93%

89%

91%

90%

96%

93%

92%

95%

—

96%

99%

100%

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Need more data

Would not train
eliminated 2

layer networks

Need more data

Need more data

100% training for
containment—
10 more cases

to test



Example Comparisons

The following example presents a comparison of the output from the neural

network model with those generated by CORA. This hypothetical site is of the

type commonly encountered. The example was further divided into five cases

which, although similar, had subtle differences to test the resolution of the ANN

model to evaluate data and suggest alternative renovation approaches. Two cases

(1 and 2) involved a containment scenario, while the remaining three cases (3-5)

utilized treatment.

The following information was used as background for the site for all five of

the test cases:

• A homogeneous contaminated unsaturated soil;

• Non-hazardous volatile organic carbons (VOCs) as the chemical of concern;

• Clay soil;

• A site where the physical nature was dangerous to trespassers;

• Exposed soils that may erode;

• A site that can be excavated;

• A small site that restricts any type of onsite landfill;
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Table 6. (Cont’d.)

Run
number

Number of
samples

Number
of layers

Neurons
per layer

Network
parametersa

Results
(correct) Comments

17

18

19

20

21

22

64 train
5 test

79 train
5 test

94 train
5 test

109 train
5 test

124 train
5 test

139 train
5 test

5

5

5

5

5

5

32,30,45,30,21

32,30,45,30,21

32,30,45,30,21

32,30,45,30,21

32,30,45,30,21

32,30,45,30,21

Training Tol. = 0.05

Training Tol. = 0.05

Training Tol. = 0.05

Training Tol. = 0.05

Training Tol. = 0.05

Training Tol. = 0.05

59%

90%

94%

90%

96%

100%

Need more data

Need more data

Need more data

Need more data

Need more data

100% training for
treatment—

10 more cases
to test

a
Default network parameters were as follows: Learning Rate = 1, Momentum = 0.9, Input

Noise = 0, Testing Tolerance = 0.3, Training Tolerance = 0.1, and 1 Epochs per update �
These values were used unless otherwise stated. In this case, the default values were used
except for the changes noted.



• A site that is located above the flood plain; and

• A site that is located near surface water.

The information that varied among the cases:

• The type of remediation scheme employed (containment/treatment);

• Concentration of the soil (above/below land disposal restrictions);

• Incineration (yes/no); and

• Concentration of ash (above/below land disposal restrictions).

Case 1 looked at a containment scheme where the concentrations of the soil

were not above land disposal restrictions while Case 2 investigated the same

scenario except that the contaminant concentrations in the soils were above these

restrictions. The first two treatment schemes, Cases 3 and 4, compared on-site

incineration as a treatment alternative. Case 3 did not use this option while Case 4

produced an ash that was not above the landfill disposal restrictions. This com-

pared to the similarly configured Case 5 where the ash was above the land disposal

restrictions.

Questions and answers employed by CORA as inputs to the neural network

include:

Case 1

Q1: What waste types apply to the site? Homogeneous contaminated unsatur-

ated soils

Q2: What response action do you wish to consider? Containment

Q4: What types of contaminants are in the soil? VOC’s

Q5: Will excavation of the contaminants not cause environmental or public

health impacts? True

Q6: Is the contaminated soil a hazardous substance? False

Q7: Is the contaminated soil concentration above land disposal restrictions?

False

Q11: Could site conditions threaten health or safety of unauthorized visitors?

True

Q12: Are exposed soils on the site exposed to erosion? True

Q12-a.b.c: Pick the location of the site: Above Floodplain (Q12-a)

The actual questions instead of question numbers are included in Table 2.

The independent CORA and neural network simulations produced the same

outputs. Recommendations from both models included:

• site restrictions;

• groundwater monitoring;

• surface water diversion;

• soil excavation; and

• offsite solid waste landfill.
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Case 2

Featured the same questions and with the exception of Q7, the same answers

as Case 1.

The results again showed complete agreement between the two modeling

approaches. Further, Case 2 results were the same as Case 1 with the exception of

the exclusion of an offsite solid waste landfill. The contaminant concentrations in

this case exceeded the landfill restrictions.

Case 3

Questions that were asked by CORA (and answers generated) for this treatment

case were:

Q1: What waste types apply to the site? Homogeneous contaminated unsatur-

ated soils

Q2: What response action do you wish to consider? Treatment

Q3: What is the hydraulic conductivity of the soil? Clay

Q4: What types of contaminants are in the soil? VOC’s

Q5: Will excavation of the contaminants not cause environmental or public

health impacts? True

Q5: Is on-site incineration option precluded based on space or local con-

siderations? True

Q11: Could site conditions threaten health or safety of unauthorized visitors?

True

Q12: Are exposed soils on the site exposed to erosion? True

Q12-a.b.c.: Pick the location of the site: Above Floodplain (Q12-a)

The actual questions instead of question numbers are located in Table 3.

The results from Case 3 included:

• site access restrictions,

• groundwater monitoring,

• surface water diversion,

• soil excavation, and

• offsite incineration.

As before, the ANN results were in complete agreement with CORA. Differ-

ences were noted however, between the Case 1 and 2 containment evaluations by

the addition of offsite incineration.

Case 4

This case addressed a treatment scheme that allowed onsite incineration.

The questions asked by CORA and the answers provided were the same as

for Case 3 until question 5a, “Is on-site incineration option precluded based
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on space or local considerations?” was answered “false.” This generated an

alternative path through both models resulting in the following, additional

questions and answers:

Q10-a,b,c,d: Type of discharge option? Discharge to surface water (Q10-d)

Q10-f: Is the ash a hazardous waste? False

Q10-g: Is the concentration in ash above land disposal requirements? False

The actual questions instead of question numbers are located in Table 3.

This modified the results generated by both models such that for Case 4

• onsite incineration,

• ion exchange,

• discharge to surface water, and

• offsite solid waste landfill

were added to the recommended treatment sequence. This modification illustrated

the sensitivity of these models to changes in field conditions. While CORA

has long shown this capability, it was considered very positive that the ANN

performed in an equivalent manner. The addition of the ion exchange unit to the

recommended processes and activities illustrated more than a simple additive

property of including just onsite incineration. The discharge to surface waters

of treated effluent and the utilization of an offsite solid waste landfill further

supported this observation.

Case 5

Case 5 was the last example completed. While similar to Case 4, it differed in

that contamination concentration of the ash exceeded the land disposal restrictions

resulting in the following different questions and/or answers:

Q10-g: Is the concentration in ash above land disposal requirements? True

Q10-h: Is an onsite RCRA landfill for solidified ash reasonable? False

The actual questions instead of question numbers are located in Table 3.

Case 5 involved more and different remediation alternatives than did the other

cases. When compared to Case 4, the following processes or activities, resulting

from the contaminant concentration being above the land disposal requirement,

were different:

• in-situ stabilization,

• Solidification, and

• offsite RCRA landfill.

Table 7 summarizes the results of all of these five cases for both CORA and the

ANN model. This table shows that the developed ANN recommended the same

technology as CORA. In all cases the results were directly comparable with a 100
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percent matching rate between these two programs. This indicated that the neural

network was ready for use on similar projects. Model calibration and verification

had been achieved.

The final phase of this project was to update the original cost information for

select CORA suggested remediation approaches. Data from Table 5 were used

to determine subproject costs for work items recommended by the ANN in

conjunction with estimates of the contaminant mass suggested by the user. These

updated costs allow other users of this neural network to have a base cost for

twenty types of remediation schemes for both containment and treatment remedi-

ation. As with CORA generated cost projections, the costs are subject to change

over time and with actual site conditions. These cost projections however, can be

readily modified within the ANN platform as newer data become available.

SUMMARY AND CONCLUSIONS

A DOS-based environmental expert system capable of identifying alternative

groundwater and soil remediation options and their attendant costs was converted

to artificial neural network (ANN) modeling platform as a means of updating the

original code. The original expert system upon which this research was based was

still capable of performing these tasks but had become more difficult to operate
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Table 7. Comparison of Results between CORA and the
Calibrated ANN Model

Case
number

Remediation number (from CORA)b

Results 105 201 301 302 312 316 317 401 404 406 503 504

1
1

2
2

3
3

4
4

5
5

CORA
NNa

CORA
NN

CORA
NN

CORA
NN

CORA
NN

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

a
NN = Neural Network.

b
The actual remediation names instead of the numbers are

located in Table 5.



given current computer systems. In addition, the underlying expert system had

become somewhat dated in terms of cost basis used for some technologies.

The effort ultimately required 54 data cases and 16 training runs to accurately

produce the 100 percent pattern recognition rate deemed necessary. The trained

neural network can replace the original expert system to precisely suggest remedi-

ation alternatives for VOCs in a homogeneous contaminated saturated soil. While

updated cost data are included in the revised model, the approach selected affords

future users the opportunity to also readily update the ANN with different types of

chemicals and new or innovative technologies.
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