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ABSTRACT

This article outlines some aspects of ordered weighted averaging (OWA)

operators as a framework in the evaluation of alternative environmental

projects. OWA operators are considered in the context of the linguistic or

non-numeric aggregation of factors and the importance weight of those

factors. A simple example drawn from Horsak and Damico [1] is given which

involves the location of a hazardous waste disposal facility at one of three sites

based on ten factors. OWA aggregation operators are considered in the

context of the above illustrative example. It is concluded that non-numeric

OWA operators have considerable potential in providing a framework for the

aggregation of linguistic labels in the evaluation of projects with environ-

mental consequences.

INTRODUCTION

The numeric aggregation of fuzzy sets in the context of environmental project

evaluation has been considered elsewhere [2]. Here, the aggregation of fuzzy sets

defined in non-numeric or linguistic terms is considered. Often, in the context

of the evaluation of environmental projects, impacts and factors are either non-

quantifiable or not easily quantified (e.g., wildlife impact) or precise quantitative

information is unavailable or the cost of acquiring it is too high. In these

cases approximate values are often used. For example, the speed of a car might

be categorized in linguistic terms as “fast,” “slow,” “very slow,” “moderately
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fast,” etc. rather than in precise numerical terms, “160 k/hr,” “100 k/hr,” “60 k/hr,”

etc. In project evaluation, the use of words or sentences rather than numbers

provides a less specific, more flexible approach to express qualitative aspects

of projects.

Though some of the applications on non-numeric aggregation have been

devoted to the evaluation of projects characterized along multiple dimensions

[3-6], more relate to group decision-making [7, 8] and the aggregation of evidence

from multiple experts [9, 10]. However, many of the principles in these latter

contexts may be adapted to the context of aggregating the factors/impacts charac-

teristic of environmental projects assessed in linguistic terms.

FUZZY EVALUATION OF PROJECTS IN A

LINGUISTIC ENVIRONMENT

The basic structure for the environmental evaluation of environmental

projects is an outcome matrix, � = [�ij], in which �ij denotes the outcome or

performance of project Pi with respect to factor/impact Fj. P = {P1, P2, ..., P1} is

a set of I mutually exclusive projects and F = {F1, F2, ..., F1} is a set of J

factors/impacts.

In terms of fuzzy set theory, Fj may be construed as a fuzzy subset of P,

representd as Fj = {Fj(P1)|P1, Fj(P2)|P2, ..., Fj(P1)|P1}, where Fj(p) indicates the

degree to which p�P belongs to factor Fj. Note that �ij = Fj(Pi). Typically, weights

w = {w1 w2, ..., wj} are introduced to represent the differential importance of

factors/impacts.

Project evaluation typically involves the identification of a “best” project

which satisfies as much as possible each factor/impact. Here “satisfies” implies

lower values of negative factors/impacts (e.g., cost, wildlife impact) and

higher values of positive factors/impacts (e.g., accident reduction, aesthetics).

Rarely will any real project completely satisfy all factors/impacts. For

brevity, the term “factor” will be used below, where possible, to include also

impacts.
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F1 F2 � FJ

P1 �11 �12 � �1J

P2 �21 �22 � �2J

� � � � �

PI �I1 �I2 � �IJ



LINGUISTIC VARIABLES

A linguistic variable is one whose values are words or sentences in a natural or

artificial language [11]. The concept of a linguistic variable provides a means for

the approximate characterization of phenomena too complex or too ill-defined

for description by conventional quantitative terms.

The choice of a linguistic term set with its semantic is a first step in any

linguistic approach. The terms of a linguistic variable provide the words by which

those involved in the process of project evaluation may express their information.

One approach is to define the linguistic term set by means of an ordered structure

of linguistic terms. The semantic of linguistic terms is derived from their own

ordered structure.

Consider a set of linguistic labels S = {s0, s1, ..., smax} where si, sk� S, si < sk if

i < k and s0, and smax are the lowest and highest elements respectively. Here, max =

#S – 1 where #S is the cardinality (the number of elements) of S. For example, let

S = {s0, s1, s2, s3, s4, s5, s6} = {none, very low, low, medium, high, very high,

outstanding} be a set of linguistic labels. The cardinality of S is 7. Since max = #S

– 1 = 7 – 1 = 6, smax = s6.

An important issue in the context of a linguistic approach is the “granularity”

of the uncertainty by which is meant the cardinality of the term set S. Usually,

sets with odd cardinality are adopted. For example, in the context of linguistic

expressions of probability, a middle term of “about 0.5” was used with the

remaining terms placed symmetrically around it [12]. In addition, a limit of

granularity was around 11 or 13 terms. The linguistic term set S = {s0, s1, s2, s3, s4,

s5, s6, s7, s8} = {none, very low, low, more or less low, medium, more or less high,

high, very high, outstanding} has cardinality 9. The former set where #S = 7 will

be used in the example developed below.

In the above term set, si < sj if i < j. Usually it is required that the linguistic

term set satisfy the following conditions that si � sj = si if si � sj and that si � sj = si if

si � sj. In addition, a negation operator for a linguistic label is defined as neg(si) =

smax – i. Thus, for example, neg(s2) = s6 – 2 = s4, (i.e., neg(low) = high) and neg(s0) =

smax (i.e., neg(none) = outstanding).

EXAMPLE OF ENVIRONMENTAL PROJECT EVALUATION

Consider an example adapted from Horsak and Damico [1] (also considered in

[2] and by Anandalingam and Westfall [13]) involving the location of a hazardous

waste disposal facility with three possible sites assessed against ten factors: 1) air

quality (dispersive capabilities of site/plant and degree to which waste emissions

could concentrate onsite and offsite, F1); 2) surface water quality (potential for

surface water degradation due to spills associated with handling storage and waste,

F2; 3) groundwater quality (potential for groundwater degradation due to spills

associated with handling and storage of waste, including leaching into aquifer, F3);
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4) impact on ecology (potential impact on ecological resources of area due to

routine operations or emergency conditions, F4); 5) impact on aesthetics (visual

impacts of hazardous waste management operations, including handling, storage,

and disposal, F5); 6) impact on population (potential long-term exposure to

emissions due to routine operations or emergencies; F6); 7) impact on surrounding

land use (compatibility of surrounding land use with the hazardous waste opera-

tion, F7); 8) possibility of emergency response (ability of a response team to

combat an emergency associated with a spill or other exposure, F8); 9) distance

from sources of waste (distance through which the waste should travel to get to the

site, F9); and 10) political opposition (political or other organized intervention

or opposition to the hazardous waste operation, F10). Factors are fuzzy subsets of

the projects (sites), for example F1 = {s6|P1, s4|P2, s2|P3} for air quality (F1) where

a conversion from numeric membership grades (in [12]) to linguistic labels is

achieved using the Label(�) function (see below). The matrix � = [�ij], is given

as follows

Thus, Fj(p)�S = {s0 s1, s2, s3, s4, s5, s6}. In terms of linguistic data, project P1 (site

1) is a strong competitor as the “best” site. Further assume weights as follows

w = {s6, s6, s6, s5, s4, s4, s3 s2, s2, s1}, again derived using the Label(�) function

from numeric weights, {1, 0.969, 0.919, 0.714, 0.689, 0.658, 0.460, 0.323, 0.286,

0.193} in [12]. Therefore, wj�S also. It is clear that air quality, surface water

quality, and groundwater quality are of fundamental importance.

LINGUISTIC QUANTIFIED STATEMENTS

In classical logic, quantifies in statements or propositions, in particular “for all”

and “there exists” (“not none”), may be used to represent the number of items

satisfying a given predicate. Zadeh introduced fuzzy subsets as the basis for

linguistically quantified statements or propositions [14]. The general form of a

quantified statement is “Q F’s are A,” where Q is a linguistic quantifier (e.g., “few”

“most,” “at least n”), F is a class of objects and A, a fuzzy subset of F, is some

property associated with the objects. For example, in the quantified statement
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P1 s6 s5 s6 s6 s5 s6 s5 s5 s6 s3

P2 s4 s6 s6 s6 s6 s3 s4 s3 s4 s6

P3 s2 s1 s6 s1 s6 s6 s1 s1 s2 s2



“most local roads are short,” the quantifier Q is “most,” F is a set of “local roads,”

and “short” is a property/characteristic of local roads.

Two types of quantifiers, absolute and proportional, were introduced by Zadeh

[14]. Absolute quantifiers are used to represent amounts that are absolute in nature

(“about 5,” “more than 10”) and are defined on the set of non-negative reals, �+.

They are closely related to the concept of the count or number of elements.

Proportional quantifiers (“most,” “few,” “at least half”) represent relative amounts

and are defined on the unit interval, [0, 1].

In the context of project evaluation, “Q F’s are Ap” where Q is a linguistic

quantifier, {F1(p), F2(p), ..., FJ(p)} is a set of factors against which a project p�P

is assessed and Ap is a fuzzy subset of F indicating the predicate “satisfied

by p.” “Satisfied” is interpreted as above. Examples of linguistic quantified

statements in the context of fuzzy evaluation of projects include “most factors

are satisfied by project p” or “at least n factors are satisfied by project p.” This

is a type I statement [15].

An extension of this quantified statement is “Q B F’s are Ap” where B =

{B(F1)|F1, B(F2)|F2, ..., B(FJ)|FJ} is a fuzzy subset of F, such that B(Fj) indicates

the importance of factor Fj. Examples of this type of quantified statement are

“most important factors are satisfied by project p” and “at least n important

factors are satisfied by project p.” These are type II statements. Zadeh has

presented approaches to establishing the truth of such statements [14].

Yager defines regular increasing monotone (RIM) quantifiers (e.g., “all,”

“most,” “many,” “at least x percent”) such that Q(0) = 0, Q(1) = 1, and Q(r) � Q(s)

if r > s [16]. One particular family of RIM quantifiers is Q(r) = r� (� � 1).

NON-NUMERIC ORDERED WEIGHTED AVERAGING

AGGREGATION OPERATORS

Ordered weighted averaging operators introduced in a numeric environment

[17] have also been considered in a non-numeric or ordinal environment [18].

The ordinal OWA operator involves weights � = {�1, �2, ..., �J} in which �j,�S

and �1 � �2 � ... � �J and �j=1,J{�j} = smax is defined as

OWA = �j=1,J{�j � bj}

{b1, b2, ..., bJ} is associated with {F1(p), F2(p), ..., FJ(p)} such that bj is the jth

largest value Fj(p). As an illustrative example, consider outcomes {s2, s4, s6} and

OWA operator weights {s2, s5, s6}. Then b1 = s6, b2 = s4, b3 = s2, and OWA = (s2 �

s6) � (s5 � s4) � (s6 � s2) = s4.

The OWA operator with weights, �� = {s0, s0, ..., smax} is denoted OWA� and the

OWA operator with weights, �� = {smax, smax, ..., smax}, is dnoted OWA�. It can

be shown that OWA� � OWA � OWA� [18]. The “orness” of an OWA operator

is given as
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orness(�) = �j=1,J(�j � Label((J – j)/(J – 1))

where �j�S and the function, Label(�), defined as

Label(x) = si i/#S � x < (i + 1)/#S i = 0, ..., max

together with Label(1) = smax, maps a numeric value x�[0, 1] to a linguistic label

si�S (see Figure 1).

”Orness” is an ordinal indication of the inclination for the OWA operator to

impart more weight to higher (ordinal) membership grades than lower ones.

It is easy to show that the “orness” of �� = {smax, smax, ..., smax} is orness(��) = smax

whereas the “orness” of �� = {s0, s0, ..., smax} is orness(��) = s0. Note that

Label(smax) = 1 and Label(s0) = 0.

Bordogna et al. [19] have considered two methods, one which uses an ordinal

OWA operator which aggregates values in a non-numeric environment based on

[18] and one which uses an OWA operator to aggregate linguistic values in a

numeric environment. The latter involves a weighted ordered weighted averaging

(WOWA) operator.

In the non-numeric method, consider a set of linguistic labels, S. Then an

implementation of the quantified statement “Q B F’s are Ap” is given by an OWA

operator associated with a RIM quantifier, Q, (represented at OWAQ). OWA

operator weights are given as �j = Label(Q(j/J)) (j = 1, ..., J) where the Label(�)

function converts the membership grade of the proportion of factors satisfied to an

element of S. Note that in the quantified statement, Ap(Fj) � Fj(p) (j = 1, ..., J)

which are drawn from S. Thus,

OWAQ = �j=1,J{�j � bj} = �j=1,J{Label(Q(j/J)) � bj}

{b1, b2, ..., bJ} is associated with arguments {F1(p), F2(p), ..., FJ(p)} such that bj is

the jth largest value of Fj(p).

The importance of factors is included by modifying the values to be aggregated.

One possibility has been given as follows [18]:

H(Fj(p),wj,orness(�)) =

(wj � (neg(orness(�)))) � (Fj(p) � neg(wj)) �

(Fj(p) � (neg(orness(�))))

where wj�S, Fj(p)�S and orness(�)�S. When orness(�) = smax, H(Fj(p),wj,smax) =

wj � Fj(p) and the OWA operator reduces to �j=1,J(wj � Fj(p)) [3] and when

orness(�) = s0, H(Fj(p),wj,s0) = Fj(p) � neg(wj) and the OWA operator reduces to

�j=1,J(neg(wj) � Fj(p)) [20]. Note that the (ordinal) membership grades of fuzzy

subset, B, are factor importance weights, that is, B(Fj) � wj �S (j=1, ..., J).

Now consider this method in the context of the above illustrative example.

Assume a RIM quantifier, “most,” defined by Q(r) = r2. OWA operator weights are

given by � = {Label(Q(1/10)), Label(Q(2/10)), ..., Label (Q(10/10))} = {s0, s0,
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s0, s1, s1, s2 s3, s4, s4, s6} where �j = Label(Q(j/J)) = Label((j/J)2) (j = 1, ..., J). The

level of “orness” of OWA operator weights is orness(�) = �j=1,10(�j � Label((J – j)/

(J – 1)) = s2, so that H(Fj(p),wj,s2) is given as

where, for example, H(F4(P1),w4,s2) = H(s6,s5,s2) = (s5 � neg(s2)) � (s6 � neg(s5)) �

(s6 � (neg(s2)) = (s5 � s4) � (s6 � s1) � (s6 � s4) = s5 � s6 � s6 = s5. In terms of

“effective satisfaction,” it is clear that P1 dominates P3 in the sense that P1

performs equally or better than P3 with respect to each factor. Thus, OWAQ(P1) =

s4, OWAQ(P2) = s4 and OWAQ(P3) = s3. Projects P1 and P2 are “best” from this

perspective.

WEIGHTED ORDERED WEIGHTED AVERAGING

AGGREGATION OPERATORS

A weighted OWA (WOWA) operator which generalizes the numeric OWA

operator has also been defined as

WOWA = �j=1,J �jbj

where bj is the jth largest Fj(p) (j=1, ..., J) [21-23]. Weights, wj, are such that

wj�[0,1] and �j=1,Jwj = 1 reflect the importance of Fj(p). WOWA operator weights

are defined as �j = W(�k=1,juk) – W(�k=1,j-1uk) where uj is the weight associated

with bj. Thus, if b1 = F3(p), then u1 = w3. W(�) is a monotone non-decreasing

function that interpolates the points (j/J, �k=1,j�k) together with point (0,0), if the

weights used in the OWA operator, {�1, �2, ..., �J}, are given. If factor weights

are all equal (i.e., wj = 1/J; j=1, ..., J), then the WOWA operator reduces to the

OWA operator with weights �j = �j (j=1, ..., J). Alternatively, given a monotonic

non-decreasing function, W(�), it is possible to derive �j (j = 1, ..., J) from W(�)

without the initial step of defining OWA operator weights [24].

The numeric method considered by Bordogna et al. [19] implements the quan-

tified linguistic statement “Q B F’s are Ap” and involves the aggregation of

linguistic values in a numeric environment based on a WOWA operator. That is,

linguistic performance values Fj(p)�S and linguistic expressions of the importance

of factors, wj�S are mapped into numbers in the [0,1] interval by applying the
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P1 s6 s5 s6 s5 s4 s6 s4 s4 s4 s4

P2 s4 s6 s6 s5 s4 s3 s4 s4 s4 s4

P3 s2 s1 s6 s1 s4 s4 s3 s4 s4 s4



inverse (linguistic label to numeric function), Label–1(�), defined as Label–1(si) =

i/max (i = 0, 1, ..., max) (see Figure 2). The WOWA operator is WOWAQ = �j�1,J

�jbj, with operator weights determined by a RIM quantifier, Q, so that �j =

Q(�k=1,juk) – Q(�k=1,j-1uk).

Numeric equivalents for linguistic factor importance weights are given by

w = {1, 1, 1, 0.833, 0.667, 0.667, 0.5, 0.333, 0.333, 0.167}. The linguistic

performances of projects are transformed using the label to numeric function,

Label–1(�) yielding

where, for example, F2(P1) = 0.883 (since Label–1(F2(P1)) = Label–1(s5) = 5/(#S – 1)

= 5/6 = 0.883). Note that this transformation will be used here even though

numeric data for both outcomes and weights was originally given by Horsak and

Damico [1]. Numeric WOWA operator weights are given by �j = Q(�k-1,juk) –

Q(�k=1,j - 1uk), where the weight uj is associated with bj (the jth largest element of

{Label–1(Fj(P1)} (j=1, ..., 10)). Thus, WOWAQ(P1) = 0.872. Further, Label(0.872)

= s6, WOWAQ = 0.725 (Label(0.725) = s5), WOWAQ = 0.311 (Label(0.311) = s2).

Here, project P1 is “best.” Note that the WOWA weights will, in general, be

different for each project as will orness(�).

LINGUISTIC OWA AND WOWA AGGREGATION OPERATORS

Again assume Fj(p)�S to be aggregated. Then a linguistic ordered weighted

averaging (LOWA) operator [25-28] which combines linguistic values by direct

computation of the labels (based on the OWA operator [17] and on the convex

combination of linguistic labels [24]) has been defined as

LOWA = 	
J{�j, bj, j = 1, ..., J}

= �1 
 b1 � (1 – �1) 
 	
J-1{�h/�k=2,J �k, bh, h = 2, ..., J}

where {�1 �2, ..., �J} are numeric LOWA operator weights (such that �j �[0,1] and

�j=1,J�j = 1). bj is the jth largest Fj(p) (j=1, ..., J). If J = 2, then	2{�j, bj, j = 1,2} = �1


 b1 � (1 – �1) 
 b2 = �1 
 sj � (1 – �1) 
 s1 = sk, where sj � si and for sk, index k

is calculated as min(smax, i + round(�1(j – i))). For example, consider outcomes

{s1, s2, s5} and weights � = {0.7, 0.2, 0.1}. Then
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

P1 1 0.833 1 1 0.833 1 0.833 0.833 1 0.5

P2 0.667 1 1 1 1 0.5 0.667 0.5 0.667 1

P3 0.333 0.167 1 0.167 1 1 0.167 0.167 0.333 0.333
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LOWA = 	
3{0.7, 0.2, 0.1, s5, s2, s1}

= 0.7 
 s5 � (1 – 0.7) 
 {0.2/(0.2 + 0.1) 
 s2 � 0.1/(0.2 + 0.1) 
 s1}

and since for 	2{0.67, 0.33, s2, s1}, k = min(6, 2 + round(0.67(2 – 1))) = min(6, 3)

= 3. Thus

LOWA = 0.7 
 s5 � (1 – 0.7) 
 s3 = s4

since k = min(6, 3 + round(0.33(5 – 3))) = min(6, 4) = 4. The weights in the LOWA

may be derived from a quantifier as �j = Q(j/J) – Q((j – 1)/J). The LOWA differs

from the ordinal OWA in terms of the nature of the operator weights which are

numeric in the former and linguistic in the latter, and in terms of the different

requirements on the weights in each. Appropriate inclusion of the factor weights

within the LOWA requires further exploration. However, a linguistic WOWA

(L-WOWA) operator [24] defined as

L-WOWA = CJ{�j, bj, j = 1, ..., J}

= �1 
 b1 � (1 – �1) 
 CJ-1{(�h/�k=2,J �k), bh, h = 2, ..., J}

is applicable in this context. Again, bj is the jth largest F(j(p) (j=1, ..., J). Numeric

factor importance weights are defined such that �j=1,Jwj = 1 and uj is the factor

weight associated with bj. The L-WOWA operator weights are defined as �j =

W(�k=1,juk) – W(�k=1, j-1uk) where W(�) is a monotonic non-decreasing function

satisfying the requirements of a WOWA.

In terms of the L-WOWA operator approach, again assume a quantifier “most”

defined above and numeric importance weights. For project, P1, � = {0.026, 0.05,

0.028, 0.117, 0.111, 0.204, 0.175, 0.09, 0.138, 0.061}. Then L-WOWAQ(P1) = s4,

L-WOWAQ(P2) = s4, and L-WOWAQ(P3) = s1. Here, projects P1 and P2 are “best.”

However, it is noted that a more discriminating ordering of projects results from a

direct expansion of the LOWA rather than recursive implementation of the convex

combination. In this case, the round(�) need only be implemented once to convert a

numeric value to a linguistic label. Thus, L-WOWAQ(P1) = s5, L-WOWAQ(P2) =

s4, and L-WOWAQ(P3) = s2.

CONCLUSION

This article has outlined some of the significant features of non-numeric or

linguistic OWA aggregation operators as a framework for the evaluation of

alternative projects with significant environmental consequences. These methods

facilitate the use of soft or linguistic expressions of project outcomes with respect

to factors and impacts and linguistic expressions of the importance of those

factors. An example adapted from Horsak and Damico [1] involving the location

of a hazardous waste-disposal facility with three possible sites assessed against ten

factors was considered in terms of the operators.
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Various aggregation methods have been considered including the non-numeric

(ordinal) OWA operator, the numeric WOWA operator based on a linguistic to

numeric function, and the LOWA and L-WOWA operators. Inclusion of factor

weights is achieved either by modification of project outcomes along each

factor or by incorporation in WOWA operator weights guided by an appropriate

linguistic quantifier. These methods are believed to have potential to assist in the

assessment of projects where only imprecise or approximate data is available. In

addition, the methods are applicable for the initial screening of a wide range of

projects prior to more detailed examination of a selected subset.
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