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ABSTRACT

The bubble terminal velocity and the mass transfer behavior of a small
(diameter < 0.2 cm) spherical bubble rising through stagnant water are
reviewed. Equations relating the bubble diameter and gas composition as a
function of depth are presented. The gas-liquid mass transfer co-efficient was
estimated from observed bubble diameter versus time data reported in the
literature. The system of equations has been solved by numerical integration
to predict the behavior of a bubble as it rises through the water column. The
model can predict the rate of dissolution and the change in composition of
the bubble as a function of the depth of release, initial gas composition in the
bubble, liquid phase gas composition, and gas temperature. The mass transfer
correlation was found to compare favorably with the theoretical predictions.
Initial bubble diameter and basin depths are the most significant parameters
that control the gas transfer efficiency of the process. The results can assist in
improving the design of experiments to evaluate the bubble terminal velocity
and the mass transfer coefficient more accurately.
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INTRODUCTION

The exchange of gases between water and the atmosphere is a key process in
nature and in a host of chemical and industrial operations. Release of bubbles
under water is the most common method for enhancing gas transfer to water.
A fundamental understanding of the gas transfer characteristics of bubbles is
therefore essential for analyzing natural systems and designing efficient gas
transfer devices and systems. Numerous researchers have conducted countless
experiments to investigate the factors that influence the formation of gas bubbles
and their gas transfer behavior. This article reviews the gas transfer behavior of
small ascending bubbles, identifies some discrepancies in the reported results,
presents a simple mathematical model to characterize the gas transfer behavior
of bubbles under different conditions, and employs the model to characterize
bubble behavior.

A bubble may be defined as a self-contained body of one gas or a mixture of
gases, separated from its surrounding medium by recognizable interface [1]. A
schematic diagram of a small spherical bubble rising through a stagnant water
column is shown in Figure 1. As the bubble rises, water flows around the bubble.
An examination of streamlines shows that there is considerable variation in the
flow conditions around the bubble. Depending on the bubble size and terminal
velocity, the formation and intensity of eddy currents will vary and, therefore, the
thickness of liquid film will also vary dramatically across the bubble surface. As a
result, the mass transfer coefficient will change from one part of the bubble surface
to another. For application purposes, however, the variation is less important and
the average mass transfer coefficient over the entire surface of the bubble is used
for design and analysis of gas transfer systems. This article focuses on predicting
the average mass transfer coefficient of bubbles.

The total external pressure on any bubble is the sum of atmospheric, hydrostatic,
and surface tension pressure. When bubbles are formed or released under water,
the partial pressures of gases within the bubbles are usually different from the
equivalent liquid phase concentration of the same gas. As the bubbles rise,
gas(es) may transfer between the bubble and the surrounding liquid as a result of
concentration differences. The rate of gas transfer depends on bubble parameters
such as diameter which affects both the surface area for mass transfer and the
bubble terminal velocity, the partial pressure of gas(es) within the bubble, and the
dissolved gas concentrations in the water. As gases enter or leave the ascending
bubble, all these parameters change. Due to the complex nature of the system,
mathematical modeling is the most effective tool to characterize the behavior of
bubbles in water.

As a bubble rises through a stagnant water column, the dynamic behavior of the
bubble water interface depends on the diameter of the bubble. For large bubbles,
the interface moves freely and, therefore, the mass transfer coefficients of large
bubbles are quite high. Small bubbles, on the other hand, retain their spherical
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Figure 1. Gas transfer from a bubble rising through stagnant water.

shape and behave like solid particles [1] and as a result exhibit lower mass
transfer coefficients. The exact diameter at which the transition from solid particle
behavior to a freely moving interface is not clear. Coppock and Meiklejohn
[2] measured gas transfer between air bubbles and gas free water and did not
observe any significant difference in mass transfer coefficient for bubbles having
diameters between 0.15 and 0.30 cm. Hammerton and Garner [3] investigated the
rate of dissolution of individual gas bubbles rising in water and glycerol and found
that the bubbles changed shape (commonly referred to as bubble circulation)
freely at diameters greater than 0.02 cm. Motarjemi and Jameson [4] measured
liquid phase mass transfer coefficient for oxygen bubbles rising in water and
concluded that the surface of bubbles greater than 0.015 cm in diameter became
mobile. However, Calderbank [5, 6] and Calderbank et al. [7] studied carbon
dioxide absorption and demonstrated that bubble diameters greater than 0.22 cm
were required to achieve bubble recirculation. The reasons for these discrepancies
in the reported behavior of bubbles is not clear but may depend on a number of



104 / AHMED AND SEMMENS

factors such as the experimental setup, the gas, and the water quality studied. In
this article, we assume that bubbles having diameters equal to or less than 0.22 cm
behave as solid particles. This bubble size range is typical of the bubbles produced
by fine bubble diffusers in wastewater treatment plant applications.

The dependence of bubble terminal velocity on bubble diameter has been
studied by a number of investigators [4, 8, 9]. In addition to bubble diameter, the
terminal velocity depends on the liquid properties and the presence of con-
taminants (e.g., surfactants, colloidal solids, etc.) in water [10]. Most bubble
terminal velocity measurements were made by measuring the travel time of a
single bubble rising in stagnant water between two reference depths. The investi-
gators did not consider any diameter changes with time due to the exchange of
gases. Therefore, there are some inherent errors associated with bubble terminal
velocity measurement results. The magnitude of this error would be greater with
greater distance between the two reference depths.

The terminal velocity as a function of bubble diameter is shown in Figure 2 [4].
For bubble diameter less than about 0.02 cm Stokes’ Law can predict the terminal
velocity. For diameters greater than 0.26 cm and less than 1.0 cm, the terminal
velocity attains a constant value of approximately 24 cm/sec. The terminal veloc-
ities for intermediate diameter bubbles are also shown in the Figure 2. The three
segments of the terminal velocity versus bubble diameter curve can be fitted with
best-fit polynomials and used to estimate the bubble terminal velocity.
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Figure 2. Measured terminal velocities of bubble in stagnant water
from literature [4].
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The gas transfer behavior of small bubbles has been studied extensively because
of its importance in many chemical and industrial processes. A number of investi-
gators [12-19] made empirical assumptions and used either the Karman integral
method, the perturbation method or boundary layer theory to derive theoretical
mass transfer correlations relating Sherwood number (Sh) with Reynolds (Re) and
Schmidt (SC) number. These correlations were of the form:

Sh=a Re" sc°

The values of the exponents b and c in all correlations are 0.5 and 0.33,
respectively, with the exception of Friedlander [11], Frisch [12], and Kronig and
Bruijsten [13]. The dimensionless correlations proposed by various investigators
and their region of validity are given in Table 1. A number of investigators have
published dimensionless correlations for estimating mass transfer coefficient
using similar experimental systems. The experimental mass transfer correlations
were based mainly on two types of test systems:

Experiments with Drops or Solid Spheres
of Pure Compound

Frossling [14], Williams [20], Calderbank and Korchinski [21], and Griffith
[22] studied the evaporation of pure volatile compounds to estimate the mass
transfer characteristics of small bubbles. Although the experimental methods of
these studies were not the same, the mass transfer coefficient values calculated

Table 1. Mass Transfer Correlation from Literature for
Forced Convection from Small Spheres

Source Region of Validity Correlation
Frossling [14] Not reported Sh = 0.6 Re®® 5c%%
Williams [20] 4 < Re <400 Sh = 1.5 Re®3% 503

Calderbank and Korchinski [21] 1 < Re < 200 Sh = 0.43 Re%% 5c033
Barker and Treybal [23] Not reported Sh = 0.02 Re®833 §c0°

Griffith [22] Re > 1 Sh = 2 + 0.57 Re%® Sc%%

Calderbank and Moo-Young [24]  Not reported ko Sc?® = 0.31 [Apugj

2

p

This Study 0.01 <Re<100 Sh = 0.4911 Re®3824 gc0-33
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from the correlation are very similar as shown in Figure 3. The figure shows
excellent agreement between various correlations.

Barker and Treybal [23] also presented (Table 1) a correlation to estimate the
mass transfer coefficient from solid spherical particles suspended in agitated
liquids. The calculated values are shown by the lower dotted line in Figure 3. The
mass transfer coefficient values were lower than those obtained from the other
correlations and the exponent of Reynolds and Schmidt number are 0.833 and
0.5, respectively.

Experiments with Bubbles

Calderbank and Moo-Young [24] obtained mass transfer correlation for small
bubbles (diameter < 0.25 cm) using absorption of carbon dioxide gas into water
containing various concentrations of glycerol. It should be emphasized that
although the mass transfer coefficient was found to be independent of bubble
terminal velocity, the actual values are very similar to the other studies as shown in
Figure 3. The selection of carbon dioxide as the solute gas has been criticized
because hydrolysis/reactions in the liquid phase may lead to higher mass transfer
coefficients.
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Figure 3. Comparison of observed values of mass transfer coefficients as a
function of bubble diameter from literature. 1 — Williams, 2 — Griffith,
3 - Frossling, 4 — Calderbank and Moo-Young, 5 — Calderbank and Korchinski,
6 — Barker and Treybal, 7 — average line through Pasveer and Motarjemi and
Jameson data points, and 8 - Coppock and Meiklejohn.
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Several investigators used single air bubbles in an attempt to characterize the
mass transfer behavior. The results are not all in agreement; there are significant
differences in reported data. The discrepancies may be, in part, due to the variation
in the experimental conditions employed. It is also possible that the design of the
experimental apparatus did not effectively reproduce the fluid flow conditions
required to simulate the simple rise of a bubble through a stagnant water column.

Motarjemi and Jameson [4] measured the mass transfer coefficients of small
bubbles of diameter 0.01-0.1 cm, rising at terminal velocities in water. The mass
transfer coefficients were found to be directly proportional to the diameter of the
bubble and were much higher than those predicted by other investigators with
the exception of Pasveer [25]. Pasveer found similar mass transfer coefficient
values for air bubbles. An average line through all values from the two studies is
shown in Figure 3. It was proposed that the bubble surfaces were to some extent
mobile in contrast to the conventional “solid sphere” theory [25]. The effect of
nitrogen in the transfer process was either neglected or not fully explained in
these papers.

The mass transfer coefficient values reported by Coppock and Meiklejohn
[2] are also shown in Figure 3. The air-water mass transfer coefficient values
were found to decrease with increasing bubble diameter and vary from 0.028 to
0.055 cm/sec. However, they used gas free water in their studies and neglected
the transfer of nitrogen and water vapor in their data analysis. Wyman et al. [26]
and Detsch [27] also used air bubbles but these authors published much of their
raw data, which we discuss below and use to check a simple bubble-gas-transfer
model.

In summary, much of the published information on gas transfer from small
bubbles is apparently contradictory. In light of the importance of this subject, it
is somewhat surprising that these discrepancies remain unresolved.

THEORY

The gas transfer across the bubble water interface and the resulting change in
gas composition and bubble size can be predicted using principles of diffusion.
As shown in Figure 1, a spherical bubble is created and released at a depth H and
it ascends through the water column. The bubble contains either a pure gas or a
mixture of gases and is involved in the gas transfer process. Depending on the
relative concentration of a component gas in the gas and liquid phases, the
component may transfer from gas phase to liquid phase or vice versa. The
concentration of any component in the bubble, however, varies with the volume
of the bubble and the transfer of components to and from the surrounding
liquid. As discussed earlier, the mass transfer coefficient and the terminal velocity
of the bubble are functions of the diameter of the bubble and are known from
literature. Focusing on oxygen transfer, the following assumptions simplify
the model:
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1. gas transfer across the bubble surface is the only process by which
interfacial mass transfer takes place;

2. the initial bubble shape is spherical and it retains its original shape through-
out its travel through the water column;

3. the bubble and the reservoir are completely mixed in the sense that they are
each characterized by a single concentration of the component at any time;

4. the liquid reservoir is assumed to be large so that the component concen-
tration in the liquid remains constant during the entire transfer process;

5. the effect of water vapor and dissolved gases other than nitrogen may be
neglected; and

6. the mass transfer coefficient of oxygen and nitrogen are equal.

With these assumptions, the variables in the problem are: 1) number of moles
of oxygen; 2) number of moles of nitrogen in the bubble; and 3) the size of the
bubble as a function of distance of travel. The pressure in the bubble is also a
function of bubble diameter and at a depth (H-z), is given by the following three
components:

pe (atmospheric pressurej . (hydrostaticj . (pressure due toj

at the surface pressure surface tension

Or, P:Ps+y(H—z)+§ (1
r

where P, = pressure at the surface, y is the unit weight of water, H is the depth of
the release point, z is the distance traveled by the bubble from the release point,
o is the surface tension of water, and r is the bubble radius. Differentiating and
multiplying by the bubble volume V, yields:

V(@)= e me (S
R " a2 @

Referring to Figure 3, the mass balance of oxygen (in terms of moles) in the bubble

leads to:
(dnoj__4nr2k no o
dz v | V¥H, " )

where no is the number of moles oxygen in the bubble at z, k is the mass transfer
coefficient of oxygen, H, is the Henry’s Law constant for oxygen, co,, is the liquid
phase oxygen concentration in the reservoir, V is the volume of the bubble, and v is
the bubble terminal velocity at z. Similarly, the mass balance of nitrogen in the
bubble is given by:
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(dnnj__4nr2k nn —en
dz v | V¥H, " “)

where nn is the number of moles of nitrogen in the bubble, Hy is the Henry’s
Law constant for nitrogen, cn,, is the liquid phase nitrogen concentration in the
reservoir. Combining (3) and (4) and simplifying, we can write,

d(no + nn) [dn} 4nr’k( no nn
— = —|=- —co, —cn + (5)
dz dz v (V¥H, V*Hy

From the gas law, n = % Substituting the value of n in equation (5) yields:

—-co, —cn_ +
dz Y v v

[d(PV)} _ 4nr’kRT( no nn
- V*H, V* H, ©)

Now, differentiating the LHS of the above equation, substituting the value of
V(dP/dz) from Eq. (2) and simplifying yields:

dPV) _ [drj (4nr2P _8 ncrj - (4 myr’ j
dz dz 3 3

Substituting and simplifying, eq. (6) becomes,

(drj 1 4nr’kRT( no nn (4 3j
— === —co, —cn, + +| —myr (7)
dz) M v V*H, V*H, 3

where M = (4111‘21)—27'561'\} The (initial) boundary conditions for the above

equation are:
at z =0 (depth = H),
no = amount of oxygen in the bubble in moles,
nn = amount of nitrogen in the bubble in moles, and
r = initial radius of the bubble.

Equations (3), (4), and (7), subject to the above boundary conditions, can be solved
using a Runge-Kutta routine to give gas composition and the radius of the bubble
as a function of depth. The program requires an accurate initial gas content in the
bubble and correlations that define the mass transfer coefficient (k) and the bubble
terminal velocity (v) as a function of the bubble diameter. The model then
calculates the gas composition in the bubble and the corresponding bubble radius
as the bubble rises. In this way the program determines the gas transfer charac-
teristics and behavior of the bubbles as a function of time and depth.



110 / AHMED AND SEMMENS

MASS TRANSFER COEFFICIENT ESTIMATION

A thorough review of relevant literature was conducted to obtain primary data
on gas transfer behavior of small spherical bubbles. Although a large number of
studies are reported in the literature, almost all of them present mass transfer
coefficient data. Only two investigators [26, 27] were found to report the change
in bubble diameter with time data.

Detsch [27] investigated the dissolution of 100 to 1000 pm diameter bubbles
in reagent grade water, artificial seawater, and seawater between temperatures
6°C and 44°C. In the experiments, the bubbles were held at a constant water depth
by a downward water flow. The downward water velocity of the water was the
same as the terminal velocity of the bubbles. Gas transfer from the bubble to
the surrounding water caused the bubbles to grow smaller with time. The test
conditions simulated the free rise of bubbles through a water column except that
the experimental apparatus maintained a constant hydrostatic pressure on the
bubble throughout the duration of the test. The diameter of the bubble was
photographed with time using a microscope and a motorized x-y manipulation
table and the bubble diameter was measured using image analysis software. The
effective resolution of analysis was 2 um. The initial gas composition in the bubble
and the physical parameters of the water was also reported. The observed bubble
diameter versus time data are shown (as discrete points) in Figure 4. In order to

0.090

Bubble diameter (cm)

1000

Time (sec)

Figure 4. Calculated (using the model) and observed (Detsch data)
bubble diameter as a function of time in seawater.
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interpolate the intermediate diameter values, least square straight lines were fitted
through the observed points (not shown). In all cases the R* value was 0.999.
Data Analysis: Equation (5) in terms of t can be written as:

dn ) no nn
— =—4nmr’k| —— —co,, —cn, + (®)
dt V*H V*Hy

0

n, t
o ) no 3 nn
or, Idn = k! 4nr (V* 0 co, —cn, + VEH, Jdt 9)

Since the bubble diameter versus time data were available, the left-hand side of the
equation can be evaluated using the gas law as:

Ny =Ny :w (10)

RT

The quantity under the integral of right hand side of the equation can be evaluated
using initial gas and liquid phase concentrations. Therefore, the instantaneous
mass transfer coefficient as a function of bubble diameter can be determined using
the equation. The bubble terminal velocity corresponding to bubble diameter was
estimated from Figure 2.

In order to normalize the experimental data and to examine the dependence of
mass transfer coefficient on various factors, mass transfer data are conveniently
expressed in terms of dimensionless Sherwood (Sh), Reynolds (Re), and Schmidt
(Sc) numbers. The bubble diameter versus time data were not available at various
temperatures and molecular diffusivities, therefore, a 1/3 power Schmidt number
dependence was assumed from literature [ 14]. Figure 5 plots the experimental data
as Sherwood number versus the Reynolds number. A least-square regression
analysis of the data gave:

Sh = 3.7609 Re"***
Or, Sh=0.4911 Re"*™* 8¢’ (0.01 > Re > 100) (11)

The data in the Figure 5 show an excellent fit with very little scatter (R*=0.989).
The limitation of the correlation is that it is based on the experimental data for
seawater reported by Detsch [27] only. In addition, tap water bubble terminal
velocity were (Figure 2) used to estimate the terminal velocity of bubbles for
seawater. Nonetheless, the above correlation compares favorably with earlier
correlation in the literature as listed in Table 1. The mass transfer coefficients as a
function of bubble diameter were also calculated and plotted in Figure 3 (as open
circles).

The model equations (3), (4), and (7) developed in the previous section can be
modified to represent the Detsch [27] experimental conditions (see Appendix A).
The final equations in terms of time, t rather than the distance z are as follows:
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dno 2 no
=—4nr'k —Co
( i j (V*HO ] (12)
dnn - 4k | ™ —cn, (13)
dt V*H
(drj: 1 — 4t kRT | -2 —-co, —¢n + e (14)
dt M V*H, V*Hy

where M = (4nrzP—§ ncrj. The (initial) boundary conditions for the above

equation are:
att =0 (depth = H = constant),
no = amount of oxygen in the bubble in moles,
nn = amount of nitrogen in the bubble in moles, and
r = initial radius of the bubble.

As discussed in the previous section, the equations were solved numerically to
give bubble diameter as a function of time as shown by solid lines in Figure 4.
Although the mass transfer coefficients were extracted using the same data, the
figure shows very good fit with little scatter.

Wyman et al. [26] conducted laboratory experiments to determine the rate of
solution and change of composition of air bubbles in stirred seawater as a function

100 ¢
10 ¢
- ;
= :
1+ e
y =3.7609 x**** R*=0.9893
0.1 T T
0.01 0.1 1 10 100
Re

Figure 5. Sherwood number as function of the Reynolds number for
small bubbles in seawater (Detsch data).
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of depth. The apparatus consisted of glass bulbs with two ports; one for intro-
ducing air bubbles and the other for controlling the pressure using a mercury
tube and a reservoir. The bulbs could be pressurized corresponding to those at
depths of 5 to 200 m. The seawater used was filtered and equilibrated with air at
the desired water bath temperatures (1 to 27°C). During a test, an air bubble
was held at the center of the bulb by rotating the bulb by a drive. The change of
bubble diameter with time was measured through a glass window using an ocular
micrometer. Due to the rotation of the glass bulb, the direction of flow of water was
in the tangential direction. The initial diameter of bubbles was about 0.5 cm which
was much larger than the small bubble limit (i.e., ~ 0.2 cm). Therefore, the data
were not analyzed and combined with Detsch [27] data. The bubble diameter
versus time plot clearly showed that the rate of reduction of bubble diameter
decreased with time. This may be due to the higher mass transfer coefficient values
of large bubbles in comparison to small bubbles.

RESULTS AND DISCUSSION

Mass Transfer Behavior of Small Bubbles

The gas transfer model was employed to examine the mass transfer behavior of
small bubbles rising in a large volume of stagnant water such that the external
dissolved gas concentrations remained constant. Unless otherwise stated, the
temperature for the following cases was set at 20°C.

Oxygen and Air Bubbles Rrising through Deoxygenated Water

This first case examines the behavior of 0.1 cm bubbles of either air or pure
oxygen rising from a release depth of 5 m. The water is assumed to be deoxy-
genated so that the external dissolved oxygen is zero and the dissolved nitrogen
is in equilibrium with the atmospheric nitrogen partial pressure of 0.87 kPa
(0.79 atm). The bubble diameter and release depth represent values typical in
wastewater treatment plant aeration tanks although, as noted above, we do not
take into account bubble-bubble interactions or changes in dissolved gas concen-
tration in our analysis.

The calculated change in bubble diameter as a function of depth is shown in
Figure 6. The “no transfer” case is presented to show how the bubble diameter
changes as the bubble rise through the water if no gas transfer is allowed. In this
case the bubble expands as a result of reduced surface tension and hydrostatic
pressure and the diameter increases as shown. With gas transfer, the diameter of
bubbles still increases with decreasing depth but to a lesser degree. It is also
apparent that the diameter of the air bubble appears to increase more than that
of the oxygen bubble.
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Figure 6. Oxygen and air bubble diameter as a function of depth.

The differences in bubble behavior between the air and pure oxygen bubble can
be explained by examining the changes in gas content as the bubbles rise through
the water. The variation of gas content of the oxygen and the air bubbles as a
function of depth is shown in Figures 7a and 7b, respectively. For both bubbles,
oxygen transfer from the bubble to the surrounding liquid causes the oxygen
content to decrease as the bubbles rise. In the case of pure oxygen, the oxygen
partial pressure is approximately 5 times higher and, therefore, oxygen transfer
rate is also approximately 5 times faster. Another significant difference in
behavior between the bubbles arises from differences in nitrogen gas transfer.
For an oxygen bubble, there is a significant backdiffusion of nitrogen from the
liquid to the bubble, with a corresponding increase in nitrogen content as the
bubble rises as shown in Figure 7a. By comparison, for an air bubble, the nitrogen
content of the bubble actually decreases slightly as shown in Figure 7b. The
hydrostatic pressure on the bubbles is responsible for this reduction in nitrogen
content. When the air bubble is released at a depth of 5.0 m, the pressure inside the
air bubble is 50 percent higher than the atmospheric pressure and this encourages
nitrogen to transfer from the air bubble to the water.

In the aeration industry, the oxygen transfer efficiency (OTE) is a measure
of the performance of aeration systems. OTE is defined as the percentage of
the oxygen originally in the bubble that is transferred to the water by the time
the bubble reaches the surface. Interestingly, although pure oxygen bubbles
transferred more oxygen, when the OTEs of air and oxygen bubbles are compared
the two gases behave almost identically, as shown for different initial bubble
diameters in Figure 8. With an initial bubble diameter of 0.03 cm 100 percent OTE



GAS TRANSFER FROM SMALL SPHERICAL BUBBLES /

115

Depth (cm)

4.E-05
Z 3EB05 —//
=
S 2E05- Oxygen
s Nitrogen
s LE-05+
QO
0 100 200 300 400 500 600
Depth (cm)
Figure 7a. Changes in bubble gas composition arising from gas
transfer in an ascending oxygen bubble released at a
depth of 5 m in deoxygenated water.
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Figure 7b. Changes in bubble gas composition arising from gas
transfer in an ascending air bubble released at a
depth of 5 m in deoxygenated water.




116 / AHMED AND SEMMENS

100 <
—=— Oxygen

§ O A]r

M 50 1

E—(

© 25

0 ‘ [
0 0.05 0.1 0.15 0.2 0.25
Bubble Diameter (cm)

Figure 8. Calculated oxygen transfer efficiency as a function of
bubble diameter for oxygen and air bubbles released
at a depth of 5 m in deoxygenated water.

was achieved for bubbles released at a depth of 5.0 m. It was apparent, however,
that the OTE dropped quickly as the bubble diameter increased. Additional
predictions of OTE for different release depths indicated almost identical behavior
of air and gas bubbles below 5.0 m as shown in Figure 9.

Figure 10 examines the behavior of a 0.06 cm diameter pure oxygen bubble
rising from a depth of 15.0 m that achieves a 100 percent oxygen transfer
efficiency. As mentioned earlier, the dissolved oxygen concentration of water
is assumed to be zero and the dissolved nitrogen is in equilibrium with the
atmospheric nitrogen. The bubble completely dissolves in water. The calculated
numbers near the surface become extremely small and unreliable and therefore are
not shown in the plot. The relative gas content (in percent) of the bubble as a
function of depth is shown in Figure 11. The oxygen content declines with
decreasing depth with a simultaneous increase in nitrogen content. As all the
oxygen is transferred into the surrounding liquid the bubble contains nitrogen
only, as indicated in the Figure. Figure 12 shows that the oxygen flux is from the
bubble to the liquid and decreases gradually along the depth. The flow of nitrogen
is from liquid to the bubble initially. However, due to the loss of oxygen the bubble
becomes nitrogen rich and the partial pressure of nitrogen exceeds the equilibrium
atmospheric nitrogen pressure at a depth of about 9.50 m. At this point, the
nitrogen flux reverses its direction. The gas phase oxygen and nitrogen concen-
tration in the bubble is shown in Figure 13. The horizontal line in the figure
represents gas phase nitrogen concentration in the surrounding water. Again, it
shows that the nitrogen concentration in the bubble exceeds the equilibrium
concentration at a depth of about 9.50 m.
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Figure 11. Change in bubble gas composition arising from
gas transfer in an ascending oxygen bubble
released at a depth of 15 m in deoxygenated water.
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Figure 13. Change in gas concentration arising from gas transfer
in an ascending oxygen bubble released at a depth
of 15 m in deoxygenated water.

CONCLUSIONS

The article presents a mathematical model for simulating the mass transfer
behavior of small single spherical bubbles (diameter < 0.2 cm) as they rise through
stagnant water column. The bubbles are assumed to retain their spherical shape
and there is no bubble-bubble interaction. The model also incorporated effect of
physical properties of the gas(es) in the bubble and the liquid medium (such as
temperature, surface tension, liquid phase gas concentrations etc.). The following
dimensionless correlation has been proposed to estimate the gas transfer coeffi-
cient for small spherical bubbles in stagnant seawater:

Sh=0.4911 Re™***sc™*  (0.01 >Re > 100)

The model characterizes the behavior of small bubbles in seawater, under
idealized conditions. It should be noted that the model, in its current form,
might not be applicable to actual bubble aeration systems. However, with the
availability of the model, experiments may be designed and conducted to esti-
mate the bubble terminal velocity and mass transfer coefficient as a function of
bubble diameter more accurately. The effect of various factors affecting the mass
transfer coefficient and the terminal velocity of small bubbles also needs further
investigation.
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NOMENCLATURE

bulk liquid phase oxygen concentration (M/L%)

bulk liquid phase nitrogen concentration (M/L%)

diameter of the bubble (L)

molecular diffusivity of gas in water (L? /T)

total depth of release (L)

dimensionless Henry’s law coefficient for oxygen
dimensionless Henry’s law coefficient for nitrogen

mass transfer coefficient across bubble water interface (L/T)
sum of moles of oxygen and nitrogen in the bubble (M)
number of moles of oxygen in the bubble (M)

number of moles of nitrogen in the bubble (M)

sum of moles of nitrogen and oxygen at time t (M)

sum of moles of nitrogen and oxygen at time (t+At) (M)
total pressure on the bubble (M/LT?)

atmospheric pressure in the system (M/LT?)

universal gas constant (L%/°KT?)

radius of the bubble (L)

absolute temperature of the system, °K

volume of spherical bubble (L?)

terminal velocity of bubble through stagnant water column (L/T)
distance traveled by the bubble from the point of release (L)
unit weight of water (M/L?T?)

surface tension of water (M/T?)

density of water (M/L?)

kinematic viscosity of water (L%/T)

Dimensionlesss Numbers

Sh

Re

Sc

Sherwood Number = E
vd
Reynolds Number = —
Y

Schmidt Number = %

APPENDIX A

Since the depth was kept constant in the experiments [27], the pressure may
be represented as:

P=P, +y(H—z)+§
r
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Or, P=P, +yH+§
r
Differentiating,
@ 2odr
dt  r’ dt (AD)
Since z = vt, Egs. (3) and (4) may be written as:
dno ) no
=—4nr'k —co
S e )
dnn ) nn
=—4nr°’k| —— —cn
(dt j (V*HN WJ (A3)
Adding Egs. (A2) and (A3), we get,
d(no + nn) :[dn}:—4nr2k no —co, —cn, + nn
dt dt V*H, V*H,
Since PV = nRT, the above equation reduces to:
{dPV} =4’k RT| 2 —co, —cn, + 2 (A4)
dt V*H, V*H,
Differentiating the LHS of the above equation, substituting for (dP/dt) and sim-
plifying yields,
)
dt dt dt
=[4 nr j(_ZGdrj + 4TEI'2P(drj
3 P dt dt
dr 8
=| — || 4nr"P——mor
(dr j( 3 j (#3)
Using Eq. (AS), Eq. (A4) reduces to:
dr 1 2 no nn
— |=— (-4nr"’k RT)* —co, —cn, +
(dtj M( ) (V*HO v " V*HNJ (A6)
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