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ABSTRACT

Some of the conventional methods of aggregating the performance of infra-

structure projects with respect to multiple factors/impacts are considered.

It is suggested that alternative forms of aggregation might be more useful;

in particular, the ordered weighted averaging (OWA) operator introduced

by Ronald Yager. Factor importance weights and fuzzy satisfaction of

factors by projects may be aggregated prior to aggregation via an OWA

operator. In this case OWA operator weights may be based on the “atti-

tudinal character” of the decision-maker expressed in terms of the degree

of “orness” and “andness” of the aggregation. One approach is maximum

entropy aggregation where weights are derived to be as “even” (or as

minimally dispersed) as possible subject to satisfying a given “orness” or

“andness” constraint. Recently aggregation processes based on “andness”

have been proposed by Henrik Larsen which have several desirable properties

and may also be considered as alternative forms of aggregation. A simple

example based on a hypothetical but realistic example by Horsak and

Damico is given which involves the location of a hazardous waste disposal

facility (PCB-contaminated transformer fluids) at one of three sites based

on ten factors.

INTRODUCTION

On many occasions, decisions relating to major projects (e.g., the siting of

hazardous waste storage facilities [1, 2] or solid waste disposal facilities [3])

must be made based on available data and information that are vague, imprecise,
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and uncertain by nature. The decision-making process in, for example, the field

of waste management is one of these typical occasions which frequently calls

for a method of treating uncertain and ill-defined data and information. The nature

of vagueness, imprecision, and uncertainty is fuzzy rather than random, espe-

cially when subjective assessments are involved in the decision making process.

Fuzziness derives from the lack of precise boundaries in some of the subsets

of data and information considered in a given situation. Fuzzy set theory offers

a possibility of handling these sorts of data and information which involve

subjective characteristics of the human decision making process.

Following [4, 5], the basic structure for decisions relating to projects with

multiple (ecological, social, economic, aesthetic, etc.) consequences is a decision

matrix which shows the satisfaction of project pi with respect to factor/impact Fj.

P = {p1, p2, ..., pI} is a set of I mutually exclusive projects and F = {F1, F2, ..., FJ} is

a set consisting of J factors/impacts. Commonly in the decision process, weights

w = [w1, w2, ..., wJ] are introduced to represent the differential importance

(salience, significance) of factors/impacts.

In terms of fuzzy set theory, each factor, FJ, may be construed as a fuzzy subset

of the set of projects represented as Fj = {Fj(p1)|p1, Fj(p2)|p2, ..., Fj(pI)|pI}, where

Fj(p) indicates the degree to which project p� P satisfies factor/impact Fj. Note

that the satisfaction of a given project (denoted either as p or pi) is represented

as, F(p) = [F1(p), F2(p), ..., Fj(p)], p� P (see Table 1 for the “outcome matrix” of

projects with respect to factors).

Project evaluation typically involves the identification of a “best” project

which satisfies as much as possible each factor/impact. “Satisfies” implies

lower values of negative factors/impacts (e.g., cost, ecological impact) and higher

values of positive factors/impacts (e.g., accident reduction, aesthetic impact,

savings in travel time). Rarely will any real project completely satisfy all factors/

impacts and will be characterized by variable achievement across factors/impacts.

For brevity, the term “factor” will be used below, where possible, to include

also impacts.
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Table 1.

F1 F2 ... FJ

p1 F1(p1) F2(p1) ... FJ(p1)

p2 F1(p2) F2(p2) ... FJ(p2)

���
...

...
...

pI F1(pI) F2(pI) ... FJ(pI)



EXAMPLE OF ENVIRONMENTAL PROJECT

EVALUATION

Consider an example adapted from Horsak and Damico [1] (also considered

by Anandalingam and Westfall [2] and see Smith [4, 5]) involving the location

of a hazardous waste disposal facility with three possible sites assessed against

ten factors: air quality (dispersive capabilities of site/plant and degree to which

waste emissions could concentrate onsite and offsite, F1); surface water quality

(potential for surface water degradation due to spills associated with handling

storage and waste, F2), groundwater quality (potential for groundwater degrada-

tion due to spills associated with handling and storage of waste, including leaching

into acquifer, F3); impact on ecology (potential impact on ecological resources

of an area due to routine operations or emergency conditions, F4); impact on

aesthetics (visual impacts of hazardous waste management operations, including

handling, storage, and disposal, F5); impact on population (potential long-term

exposure to emissions due to routine operations or emergencies, F6); impact on

surrounding land use (compatibility of surrounding land use with the hazardous

waste operation, F7); possibility of emergency response (ability of a response team

to combat an emergency associated with a spill or other exposure, F8); distance

from sources of waste (distance through which the waste should travel to get to

the site, F9); and political opposition (political or other organized intervention or

opposition to the hazardous waste operation, F10). Factors are fuzzy subsets of

the projects (sites); for example, F1 = {0.9|p1, 0.7|p2, 0.3|p3} for air quality (F1).

The outcome matrix is given in Table 2.

Note that F3 (groundwater quality) could be excluded as it fails to discriminate

between sites, though it is retained here. It is clear that site 1 (p1) is a strong

competitor for the overall “best” site [4].

Further assume factor weights (based on [1]) as follows w = [1, 0.969, 0.919,

0.714, 0.689, 0.658, 0.460, 0.323, 0.286. 0.193], Horsak and Damico used

weighted conjunctive aggregation to select a “best” site and identified a preference

order, p1 � p2 � p3 [1]. The weighted fuzzy decision D = {D(p1)|p1, D(p2)|p2, ...,

D(pI)|pI} is D = �j=1,JFj
wj with membership grade D(p) = minj=1,JFj(p)wj for p� P

(see [4]).
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Table 2.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

p1 0.9 0.8 1.0 0.9 0.8 1.0 0.8 0.8 1.0 0.5

p2 0.7 0.9 1.0 0.9 0.9 0.5 0.6 0.5 0.6 1.0

p3 0.3 0.2 1.0 0.2 1.0 1.0 0.2 0.2 0.3 0.3



ORDERED WEIGHTED AVERAGING (OWA)

OPERATORS

Though weighted conjunctive aggregation is a useful aggregation method,

flexible aggregation operators exist which more explicitly recognize the

“attitudinal character” of the decision-maker expressed in terms of the degree of

“orness” and “andness” of the aggregation. The ordered weighted averaging

(OWA) operator for aggregating fuzzy subsets was introduced by Yager [6].

The OWA has been elaborated in the context of project evaluation in numeric

terms [4] and in linguistic terms [5]. An OWA operator (of dimension J) is

represented as OWA(�, F(p)) = �j=1,J�jbj where bj is the jth largest element of

the values F(p) = [F1(p), F2(p), ..., FJ(p)].

OWA operator weights, � = [�1, �2, ..., �J], are associated with the position of

bj and are such �j�[0,1] and �j=1,J�j = 1. That is, �j is associated with a particular

ordered position j of the arguments (project satisfaction with respect to a factor)

and is not a reflection of the importance (salience, significance) of the factor in the

context of project evaluation.

The OWA operator includes the commonly used maximum and minimum

operators [4, 6] and the arithmetic mean operator for appropriate choice of

operator weights, � = [�1, �2, ..., �J]. In particular, the OWA operator is

bounded such that OWA([0, 0, ..., 1], F(p)) � OWA(�, F(p)) � OWA([1, 0, ..., 0],

F(p)). Thus from the definition of the OWA operator, OWA([0, 0, ..., 1],

F(p)) = minj=1,J Fj(p), and OWA([1, 0, ..., 0], F(p) = maxj=1,J Fj(p) so that

extreme OWA operators are the “and” and “or” operators [4, 6]. The arithmetic

average corresponds to OWA([1/J, 1/J, ..., 1/J], F(p)) operator. Again, the

“and” (minimum) provides no compensation in that a high grade of mem-

bership with respect to one factor cannot offset (or compensate for) a low

grade of membership with respect to another factor. The “or” (maximum) pro-

vides full compensation. “And” reflects a conservative/pessimistic attitudinal

character on the part of the decision maker, “or” reflects a risk-taking/optimistic

character.

With respect to OWA operators, the “orness” of the OWA operator weights

is given as orness(�) = �j=1,J�j(J – j)/(J – 1). “Orness” measures the degree

to which an aggregation operator is “orlike” or “andlike” and provides some

indication of the inclination of the operator to impart more weight to either

higher or lower satisfaction levels. Thus, the greater the “orness,” the more

weight imparted to higher satisfaction levels and the lower the “orness,”

the more weight imparted to lower satisfaction levels. “Orness” is itself an

OWA aggregation with bj = (j – 1)/(J – 1). The degree of “andness” of an

OWA operator with weights � is defined as andness(�) = ¬orness(�) = 1 –

orness(�).
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INCLUDING FACTOR IMPORTANCE IN

OWA OPERATOR AGGREGATION

One possibility for including factor importance is to assume an OWA operator

for project p involving transformed membership values, H(wj,Fj(p)), (the

“effective satisfaction” of factor Fj), a function of both satisfaction level (Fj(p))

and factor importance weight (wj). H(wj,Fj(p)) is also a function of the “orness” of

the aggregation (i.e., the OWA dispositional weights, � = [�1, �2, ..., �J]) though

this is not explicitly shown in the expression [4, 6]. bj is now the jth largest ele-

ment of H(wj,Fj(p)) (j=1,…,J). One undesirable feature of these prior aggregation

functions of factor weights and fuzzy performance is that proposed methods do not

yield the conventional weighted average when “orness” and “andness” are equal

(orness = andness = ½).

Recently, an aggregation process has been proposed by Larsen based on an

OWA operator that recovers the weighted average when andness = ½ [7]. Larsen

suggests that project satisfaction of factor j, Fj(p), and factor importance weights,

wj, be combined as

h(wj,Fj(p)) = andness + wj(Fj(p) – andness)

For andness = 1, h(0,Fj(p)) = 1 (implying that, when wj = 0, h(0,Fj(p)) will

have no influence in the minimum operation associated with andness = 1),

h(1,Fj(p)) = Fj(p) (implying the full impact of Fj(p), when a factor has the

maximum importance, wj = 1). For andness = 0, h(0,Fj(p)) = 0 (implying that,

when wj = 0, h(0,Fj(p)) will have no influence in the maximum operation asso-

ciated with andness = 0), h(1,Fj(p)) = Fj(p) (implying full impact of Fj(p) when a

factor has the maximum importance, wj = 1). When wj = 0, h(0, Fj(p)) = andness.

Also, �h(wj,Fj(p))/�w = – � + Fj(p), so that, if Fj(p) > �, change in h(wj,Fj(p)) is

positive with respect to wj and if Fj(p) < �, change in h(wj,Fj(p)) is negative with

respect to wj (here, � = andness).

The (normalized) importance weighted OWA is

OWA h
OWA h OWA

OWA

N ( , )
( , ) ( ,[ , ,... , ])

( ,[ , ,..
�

� �

�
�

� 0 0 0

11 . , ]) ( ,[ , ,... , ])1 0 0 0�OWA �

Here, h = [h1, h2, ..., hJ], � = [�1, �2, ..., �J] are the OWA positional weights,

w = [w1, w2, ..., wJ] are the factor importance weights and hj = h(wjFj(p)). Also,

OWA(�,h) = �j=1,J �jbj, where bj is the jth largest hj for a particular project. The

importance weighted OWA operator generalizes the OWA operator such that,

when wj = 1 (j=1,2,...,J), the latter is retained. Further, it can be shown that

(see [7]), when andness = ½, then
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A requirement of the above formulation is that factor weights be normalized

such that the maximum weight assigned to a factor is 1, that is, maxj=1,J wj = 1.

When andness = 0, OWA([1,0,...,0],h) = maxj=1,JwjFj(p), an importance weighted

disjunction and when andness = 1, OWA([0,0,...,1],h) = minj=1,J(1 – wj(1 – Fj(p))),

an importance weighted conjunction.

The relationship identical to that presented by Larsen [7, 8], h(wj,Fj(p)) =

andness + w(Fj(p) – andness), was also derived by Yager [9] via the use of (2-rule,

1-input) Takagi-Sugeno-Kang (TSK) fuzzy systems modeling (see [10]). Yager

[9, 11, 12] showed that, in the context of OWA operators, when positional

weights in the OWA are � = [1/J, 1/J, ..., 1/J], this expression yields an equivalent

ordering to the weighted average though not the weighted average itself. Yager

presents a variation of the above as a (3-rule, 2-input) TSK system yielding the

same result [13].

MAXIMUM ENTROPY ORDERED WEIGHTED

AVERAGING OPERATORS

Except for the extreme weight sets above, different OWA weight sets can yield

the same level of “orness” or “andness.” In particular, all symmetric weight sets

yield orness(�) = andness(�) = ½. Thus, the dispersion given by the entropy

function, entropy(�) = –�j=1,J�jln�j, may be used to further distinguish between

the weight sets [4, 6, 14, 15]. Entropy is a maximum when all weights are equal

to 1/J and a minimum value when one weight is equal to unity and all others

zero (that is, when wj = 1 and wk = 0, k � j).

The maximum entropy OWA (MEOWA) operator is derived as follows.

Given a desired level of “andness,” say andness(�) = �, OWA operator weights

are identified as the solution to the mathematical programming problem which

involves maximizing the entropy (“evenness” of OWA operator weights) subject

to constraints: (i) that andness(�) = �, the desired value; and (ii) that the normal-

ization condition of weights is satisfied. Thus,

Maximize: entropy(�) = –�j=1,J�jln�j

Subject to:

� = 1 – �j=1,J�j(J – j)/(J – 1) (andness constraint)

�j=1,J�j = 1 (normality constraint)

�j � 0 (j = 1, ..., J)

Note that the above nonlinear programming problem is expressed using an

“andness” constraint, rather than the more familiar “orness” constraint [14, 15].

MEOWA operator weights thus have the form
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where the parameter, �, is derived by substituting �j in the “andness” constraint

equation. When � � �, andness(�) = 1 and when � � –�, andness(�) = 0.

Given h(wj,Fj(p)), importance weighted maximum entropy ordered weighted

average (MEOWA) operator weights may be generated for a given level of

“andness.” Maximum entropy weights for J = 10 factors and 0.5 � andness � 0.9

are shown in Figure 1. Maximum entropy weights for 0.1 � andness � 0.5 are

symmetrical to those shown in Figure 1. MEOWA weights for andness = 1 are

� = [0, 0, ..., 1] and for andness = 0, � = [1, 0, ..., 0].

It should be noted that alternative methods to maximum entropy OWA

weights have been proposed. Fuller and Majlender propose minimal variability

weighting vector under a given level of “orness” [16]. Wang and Parkan proposed

a minimax disparity approach for obtaining OWA operator weights [17]. Minimax

disparity weights for 0.5 � andness � 0.9 are shown in Figure 2. Minimax

disparity weights for J = 10 factors and for 0.1 � andness � 0.5 are symmetrical to
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Figure 1. Maximum entropy weights for J = 10 factors and

0.5 � andness � 0.9.



those shown in Figure 2. Minimax disparity weights for andness = 1 are � = [0,

0, ..., 1] and for andness = 0, � = [1, 0, ..., 0].

MEAN OPERATORS

Larsen also presented an extended (in the sense that the parameter is restricted

to � � 1 so that arguments can assume the value zero) generalized mean operator

which assumes prior weighting of performance scores, h(wj,Fj(p)) = hj = andness

+ wj(Fj(p) – andness), as above [8]. This is expressed as
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Figure 2. Minimax disparity weights for J = 10 factors and

0.5 � andness � 0.9.



The parameter, �, is given as = (1 – �)/� (� = andness). Here “andness” is

different to that used in OWA aggregation (see [18, 19]) for elaboration in

this respect). “Andness” is assumed as monotonic function of the parameter, �.

Again, to get the weighted average when andness = ½, � �(h) is normalized so

that (� = andness)

�
� �

�  !"#"# ���#"$%��  !&#�
� �

� �

N ( )
( ) ([ , ,... , ])

h
h
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0 5.
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j j
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j 1,J

� �

�

�

�

Also for andness = 0 and andness = 1, we have respectively, an importance

weighted disjunction �
0
N (F(p)) = maxj=1,J wjFj(p), and an importance weighted

conjunction, �
1
N (F(p)) = minj=1,J (1 – wj (Fj(p) – 1)).

The (unnormalized) EGM operator performs somewhat similar to the unnor-

malized MEOWA operator (see [8]).

Larsen presented an alternative “andness”-directed importance weighted

averaging (AIWA) operator defined as [18]:
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Again, it can be shown that when andness = ½, then
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Also for andness = 0 and andness = 1 we have, respectively, an importance

weighted disjunction and importance weighted conjunction as for the EGM

operator.

Aggregations involving the normalized importance weighted MEOWA

(NORM_MEOWA), the normalized extended generalized mean operator

(NORM_EGM) and the “andness”-directed importance weighted average

(AIWA) as a function of andness are shown in Figures 3 through 5.

Clearly, site p1 appears to be the better project followed by p2 and p3 for all

levels of “andness.”

Relationships between the unnormalized MEOWA, the normalized MEOWA

(NORM_MEOWA), the normalized extended generalized mean (NORM_EGM),

and the “andness”-directed weighted average (AIWA) as a function of “andness”

are shown in Figures 6 through 8 and show close similarities.

It is clear from Figures 6 through 8 that p1 dominates both p2 and p3, and

that p2 dominates p3, irrespective of the level of “andness.” However, this need

not necessarily be the case, in that a project may be superior at from one

perspective related to one level of “andness” and inferior at from another per-

spective. That is, that the “trajectories” of projects cross at particular levels of

“andness” corresponding to the decision-makers attitude. For example, consider

the decision matrix shown in Table 3, in which projects (sites) p2 and p3 are more

“competitive” with p1 than previously. Then, for example, the normalized EGM
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Figure 3. Normalized MEOWA (NORM_MEOWA) for projects p1-p3

and 0 � andness � 1.
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Figure 4. Normalized EGM (NORM_EGM) for projects p1-p3

and 0 � andness � 1.

Figure 5. AIWA for projects p1-p3 and 0 � andness � 1.



344 / SMITH

Figure 6. (Unnormalized) MEOWA and (unnormalized) EGM for

project p1 and 0 � andness � 1.

Figure 7. Normalized MEOWA (NORM_MEOWA) and normalized EGM

(NORM_EGM) for project p1 and 0 � andness � 1.



(NORM_EGM) as a function “andness” is shown in Figure 9. Here, p1 or p2 or p3

could be identified as “best” depending on the level of “andness” reflecting the

decision-maker’s degree of optimism/pessimism.

CONCLUSION

More flexible aggregation (between minimum and maximum) of weights and

satisfaction of factors has been investigated. Factor weights and project satis-

faction of factors have been aggregated prior to aggregation using an OWA

operator. In this case, OWA operator weights are based on the “attitudinal
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Figure 8. AIWA and normalized) EGM (NORM_EGM) for

project p1 and 0 � andness � 1.

Table 3.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

p1 1.0 0.3 0.9 0.2 0.2 0.8 0.8 0.8 0.7 0.5

p2 0.7 0.9 0.9 0.4 0.9 0.6 0.5 0.5 0.6 1.0

p3 0.9 0.8 0.2 1.0 0.3 0.2 0.5 0.5 0.5 0.7



character” of the decision maker expressed in terms of the degree of “orness” and

“andness,” of the aggregation. Further, the decision-maker is able to see the

implication of factor weighted project performance graphically as a function of the

“andness” of the aggregation. Mostly, with complex projects, a high degree of

“andness” will be desired but perhaps not the extreme degree (minimum operator).

The maximum entropy aggregation involves weights derived to be as “even” (or

as minimally dispersed) as possible while satisfying a given “andness” constraint.

The aggregation process proposed by Larsen based on MEOWA operators

recovers the weighted average when andness = ½ [7]. In addition, an extended

generalized mean operator (EGM) (involving prior aggregation of factor

weights and performance scores) proposed by Larsen is closely related to the

MEOWA operator [8]. The “andness”-directed importance weighted averaging

(AIWA) operator, incorporating factor importance weights directly, proposed

by Larsen [18] has also been considered and shown to yield similar results to

the normalized EGM operator and MEOWA operator. Though there is con-

siderable scope for further investigation of aggregation processes relating to

factor importance and satisfaction in discriminating between projects with

environmental consequences, it is claimed that such “andness”-directed operators

provide a useful and flexible range of aggregation possibilities available to the

decision-maker.
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Figure 9. Normalized EGM for projects (sites) p1-p3 and 0 � andness � 1
based on decision matrix involving more “competitive”

performance between sites.
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