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ABSTRACT

The Biochemical Oxygen Demand (BOD) of a mixture of glucose and
glutamic acid is a standard test solution which provides a reasonably
repeatable value of the 5-day BOD. The objective of this study was to
evaluate the reaction order from respirometer data of BOD of glucose and
glutamic acid mixtures. The mixtures ranged in increments of 10% from
10% strength (90% dilution) to 100% strength (no dilution). There were 10
replications of each strength of sample, so that the BOD of 100 samples
measured at daily intervals for 5 days were available. The data were tested
for goodness-of-fit to three BOD reaction models: a first-order model,
a half-order model, and an order-n model. The root mean squared error
measured the goodness-of-fit. Twenty-six percent of the samples fit the
first-order model best, 63% fit the half-order model best, and 11% fit the
order-n model best.

INTRODUCTION

Reining [1] analyzed the Biochemical Oxygen Demand (BOD) kinetics of a 1:1
mixture which at full strength contained 175 g/m? of glucose and 175 g/m® of
glutamic acid in a Hach Model 191 Manometric BOD apparatus (Hach Chemical
Co., Ames, [A). The samples were prepared according to Standard Methods [2]
with the modification that the glutamic acid was neutralized with 1 N potassium
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hydroxide [3]. This mixture had a theoretical oxygen demand of 357.5 g/m>. The
experimental results consisted of values of oxygen consumed at daily intervals for
5 days. The mixture of glucose and glutamic acid was prepared in 10 different
strengths, respectively, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%,
and 10% of full strength. Ten replications of each strength of sample were
prepared. A major objective of this study was to determine how closely the 5-day
BOD for each strength of sample compared with the theoretical oxygen demand
[1]. A first-order BOD reaction model was applied in which the ultimate BOD
was equated to the theoretical oxygen demand while the 10 measured values
collected on day 5 yielded the mean of the 5-day BOD as 220.1 g/m’. These
two data points resulted in calculation of a first-order reaction rate coefficient
of 0.191 day'. However, there were large deviations between the daily BOD
predictions from the first-order model and the BOD values that were measured on
days 1, 2, 3, and 4, but there was, of course, close agreement between the measured
and predicted 5-day BOD values [1].

Tangpanichdee [4] analyzed an aggregation of Reining’s data [1] in which the
mean of the oxygen consumed values for each strength of sample were calculated
on days 1, 2, 3, 4, and 5. Then these mean values were analyzed with the result
that when the sample strength was 50% or greater, BOD decrease was described
better by a half-order BOD equation rather than by a first-order model, while the
first-order BOD model described the 10, 20, 30, and 40% strengths better as
measured by the root mean squared error. The results of this analysis are shown in
Table 1. The first-order BOD model had smaller mean squared errors in four cases
out of ten, for the samples having 10%, 20%, 30%, and 40% strength, while the
half-order model had lower mean-squared error for the remaining six higher
strength samples. The mean of the mean squared error for all of the data was
smaller for the half-order model. The half-order model predicted a consistent
value for the ultimate BOD with a mean across all of the tests of 221.7 g/m?, in
which there was a narrow range of values from 219.5 to 224.7 g/m’. By contrast
the first-order model predicted a mean ultimate BOD of 245.7 g/m®, but the
predictions showed a trend of increasing ultimate BODs with the increasing
strength of the sample so that the values ranged from a low of 211.6 g/m? to a high
of 276.0 g/m®. Both the first-order and the half-order rate constants exhibited
a trend with the sample strength. The first-order model resulted in a mean rate
constant of 0.55 day! with values ranging from 1.00 day! to 0.34 day'. The
half-order model resulted in a mean rate constant of 4.70 (g/m?®)"?/day and a
range in values from 2.50 (g/m?®)"*/day to 5.90 (g/m?)"?/day. Thus, the half-
order model fit the entire data set better than the first-order model, whether one
compared the rate constant, the ultimate BOD, or the mean squared error. An early
study [5] applied a graphical method based on linearizing the half-order BOD
model to estimate the rate constant and the ultimate BOD from part of the data set,
but a least-squares approach is recognized as having a sounder statistical basis
than the graphical and linearized equation approach [6].



GLUCOSE AND GLUTAMIC ACID / 83

Table 1. Kinetic Characteristics of First-Order and Half-Order BOD
Models When Applied to the Mean Values of Oxygen Uptake
for Each Sample Strength?®

Strength
of sample First-order kinetics Half-order kinetics

k4 Lo RMSE Kij2 Lo RMSE
Percent day (g/md) (@m®?  (g/m¥*2/d  (g/md) (g/m?)?
10 1.00 211.6 0.53 2.50 224.7 2.23
20 0.61 230.3 0.72 3.10 219.5 2.24
30 0.67 228.7 1.60 4.00 223.1 2.99
40 0.59 237.5 3.80 4.50 223.7 3.82
50 0.53 246.1 7.09 5.00 224.7 5.68
60 0.42 256.7 6.56 4.80 219.8 5.47
70 0.50 2451 7.93 5.60 219.5 6.67
80 0.45 252.1 7.01 5.80 220.2 4.73
90 0.37 273.0 13.80 5.80 221.9 11.49
100 0.34 276.0 17.08 5.90 219.4 15.35
Mean 0.55 245.7 6.61 4.70 221.6 6.07
Standard
deviation 0.19 19.95 5.46 1.19 2.23 4.24

@Ultimate BOD, Lo, has been adjusted to the value projected for full strength.
bRMSE = Root-mean-squared error between the model and the data.

PURPOSE

The purpose of this investigation was to examine all of the disaggregated data
set [1] in which the BOD data would be modeled as:

1. a first-order model, or
2. a half-order model, or
3. an order-n model.

The root-mean-squared error was to be the criterion by which model fit to the
data were evaluated.

MODEL FORMULATION

The multi-order BOD model was formulated in differential form as
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where L is the BOD exerted, g/m’, t is time, day, n is the dimensionless reaction
order, and k,, is the rate constant, g'""m3*) -1 [7]_Equation (1) integrates to

1
L(t)=[Ly" —k, (1= )] @)

forn # 1. When n = 1, equation (1) integrates to
L(t)=Lye M 3)

where L is the BOD remaining at t = 0. In the BOD test the amount of oxygen
consumed, y(t), g/m?, is measured rather than the BOD remaining, L(t), but the
terms are related as y(t) = Ly — L(t). Equation (3) becomes the familiar first-order
BOD model

Wt)=Ly(1—e k") S
while equation (2) for n # 1 becomes
1
1- - 5
W) =Ly ~[L5" —k, (1=n)]™ )
When n = Y% for the half-order reaction, equation (5) becomes

2
kl/zf}

WF%—FF—Z (6)

where ks, is the rate constant, g"?> m=>2 d-!.

PARAMETER ESTIMATION AND MODEL EVALUATION

The parameters k,, Ly, and n were evaluated from the experimental data and
the first-order, half-order, or order-n BOD model by using the root mean squared
error criterion [6-11].

M, 2
[¥(t;) = 3(t;)]
RMSE =1/ =] @)
DOF

n

where y(t;) is the measured oxygen uptake value on day t;, y(t;) is the predicted
oxygen uptake value on day t; calculated from equations 4, 5, or 6, depending
on the reaction order, M is the number of data points, and DOF,, is the number
of degrees of freedom for each reaction order, with DOF,; = 3, DOF,,, = 3, and
DOF, =2. Equation (7) was applicable to most of the data, but when n <1 a special
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condition may arise in which all of the BOD is consumed prior to t = 5 days so
that equation (7) has to be modified.

When n < 1 equation (5) is no longer applicable after a critical time which
occurs when all of the BOD has been consumed. The critical time, t., occurs in
equation (5) when the term LIO_" —ky (1 —n)t, = 0, which yields

l-n
k,(1-n)

Forn=1, t.=, but when n < 1, t. has a finite value. t. is not defined forn> 1. The
critical time is important in evaluating BOD parameters and models as equation
(5) requires

y(t)=Ly for t >t 9)

The root mean squared error equation for t > t. is modified to

| v v 1/2
RMSE :{DOFH {g [(t;)= 3t + %l[y(ti )Ly T H (10)

here N is the number of data points for which t; < t.. A suggested method for
calculating t. involves estimating the parameters using all of the data in equation
(7), then estimating t. from equation (8), and noting whether t. was larger than the
time corresponding to the last measured data point [5]. If t, was larger, then it had
no role in the analysis and equation (7) did not have to be modified to equation
(10). However, if the calculated t. was less than the time for the last data point, then
the data set would be divided and equation (10) would be applied to calculate
a new set of ky,, Ly, and n. These values would be applied in equation (8) and
equation (10) would be reapplied. A few iterations suffice to calculate parameters
k., Lo, and n which are consistent with t..

APPLICATIONS

The data [1] were analyzed as described previously. The DOF, was set equal
to M — 2 for the first- and half-order BOD models, and to M — 3 for the order-n
model. In some cases a preliminary value of t. was estimated from the data as one
would see that y(t4) = y(ts), or y(t3) = y(ts) = y(ts). In theses cases t, was estimated
as t. =ty or t, = t3, respectively. After the values of k,, Ly, and n were available, t.
was calculated from equation (8) to determine whether equation (10) had been
applied correctly.

The results of the calculations of the parameters ki, L; k>, Lo; and k,,, Lo, n, are
shown in Table 2 as well as the corresponding RMSE values. The most appropriate
model had the smallest RMSE.
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RESULTS

Table 2 lists the results obtained when all of the BOD data collected for each of
the 10 strengths of samples were analyzed for Lo, k,, RMSE, and reaction order-n.
Each strength of sample also was analyzed for the above parameters measured
from the mean values of BOD recorded each day. Table 3 summarizes the results
tabulated in Table 2 by showing the number of times the first-order, half-order,
and order-n BOD models had the best fit to the data for each strength of sample. Of
the 100 BOD samples which were analyzed, 10 BOD samples for each strength,
22% fit the first-order BOD model best, 56% fit the half-order model best, and
22% fit the order-n BOD model best, with best fit evaluated by the root-mean-
squared error criterion. When the models that fit the mean values of BOD data
for each strength of sample were tabulated, 10% fit the first-order model best,
60% fit the half-order model best, and 30% fit the order-n model best.

It is apparent that the first-order and the half-order BOD models tend to have
their best fit for different parts of the sample strength range. For example, the
first-order model is likely to fit the data more frequently for the lower strength
samples and less frequently as the sample strength increases. The half-order model

Table 3. Summary to Show How Frequently the
Data Fit a BOD Model?

Number of times samples had a best fit for the models,

Strength of including mean

samples,

% First-order Half-order n-order
10 3 2 5 M
20 7, M 1 2
30 3 3 4, M
40 1 6 3, M
50 2 4, M 4
60 2 6, M 2
70 2 7, M 1
80 1 9, M 0
90 1 9, M 0
100 0 9, M 1
Sum 22, 1M 56, 6M 22,3M

@M signifies the mean values of BOD data fit this model best as measured by RMSE
criterion.
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is likely to fit the data frequently for all strengths of samples, but it fits most
frequently as the sample strength increases. The order-n BOD model is always
a second or third place contender for the best fit to the data across all sample
strengths, where it is associated with the 40% and lower strength samples,
although it ranked second for the 100% strength samples.

Fewer calculations are involved in fitting a model when the mean values of the
BOD data are analyzed rather than all data for each sample, so it is of interest to
determine how frequently the model which fit the mean values corresponded to the
model that fit the individual data sets. Table 3 shows that for 90% of the sample
strengths there was agreement between the most frequently found BOD model and
the model found from the mean values. At 30% strength of sample the first-order
or the half-order model fit all of the data, but the analysis of the mean values
indicated an order-n model had the best fit. Interestingly enough, examination of
Table 2 shows that the order-n model selected n = 0.782 as the reaction order that
had the best fit. This value of n is nearly the mean value of the first-order and
half-order reaction orders.

Table 4 shows the critical times that were calculated for each sample. Critical
time has a meaning only when the reaction order, n, is less than 1. When the
reaction order is 1 or greater the BOD reaction model shows an infinite amount of
time is required for all of the BOD to be consumed. The frequency with which
various reaction orders occurred are tabulated in Table 5.

Figures 1 and 2 show the behavior of the first-order BOD model parameters,
including the rate constant, as a function of sample strength. Similarly, Figures 3
and 4 show the behavior of the half-order BOD model parameters, including the
rate constant, as a function of sample strength. The half-order model shows less
variation than the first-order model when ultimate BOD is compared with sample
strength in Figures 1 and 3. The rate constants k; and k;, show considerable
variation with sample strength in Figures 2 and 4.

CONCLUSIONS
This study resulted in the following conclusions:

1. Twenty-two percent of the samples fit the first-order BOD model best, 56%
fit the half-order BOD model best, and 22% fit the order-n model best when
using the root-mean-squared error criterion as the measure of best fit.

2. Only five BOD measurements were available on a sample, so the number
of degrees of freedom had a large effect on the calculated root-mean-
squared error. The number of degrees of freedom make it more likely that
the first- and half-order BOD models would fit the data better than the
order-n BOD model.
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Table 4. Critical Time, tc, vs. Sample Strength in which the
Row Labeled Mean Shows the Parameters Calculated
from Mean Values of the BOD Data

Strength of n-Order
samples, Half-order
% Run no. n=05 n t., day
10 1 3.803 1.851 ©
2 1.686 1.117 ©
3 3.442 0.834 5.734
4 2.557 0.625 3.085
5 3.007 0.502 3.029
6 3.204 0.047 2.084
7 3.662 1.557 ©
8 3.532 2.082 ©
9 4.186 1.350 ©
10 4.563 1.813 ©
Mean 3.714 1.326 0
20 1 3.298 1.114 ©
2 3.531 1.848 ©
3 3.817 0.729 5.630
4 4.502 0.749 7.565
5 5.242 0.712 8.589
6 4.517 0.748 8.726
7 3.539 1.506 ©
8 5.802 0.468 5.446
9 7.196 0.557 7.422
10 4.496 0.773 8.357
Mean 4.265 0.878 13.304
30 1 2.704 1.140 ©
2 1.613 1.409 ©
3 3.696 0.760 5.743
4 4.014 0.677 5.487
5 5.597 0.469 5.320
6 3.614 0.321 2.923
7 6.343 0.420 5.497
8 4.054 0.221 2.961
9 3.940 1.434 ©
10 4.037 1.299 ©
Mean 4.013 0.723 5.759
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Table 4. (Cont'd.)

Strength of n-Order
Samp|eS, Half-order
% Run no. n=05 n t;, day
40 1 3.348 0.832 5.322
2 3.50 1.934 0
3 3.503 0.446 3.262
4 4.409 0.411 3.923
5 5.569 0.505 5.633
6 4774 0.551 5.138
7 2.760 1.320 0
8 4.347 0.648 5.546
9 4.243 0.668 5.581
10 5.383 0.595 6.765
Mean 4.161 0.710 6.098
50 1 3.675 0.755 5.470
2 3.304 1.445 0
3 4.230 0.607 5.067
4 4.817 0.161 3.392
5 5.267 0.613 6.724
6 4.704 0.652 6.420
7 3.525 0.686 5.064
8 3.738 0.756 5.875
9 4.435 0.593 5.157
10 4.796 0.282 3.743
Mean 4,235 0.754 7.536
60 1 3.642 0.743 5.207
2 3.506 1.442 0
3 4.422 0.583 5.198
4 7.253 0.529 7.993
5 5.781 0.561 6.661
6 5.370 0.525 5.685
7 6.390 0.741 12.311
8 6.889 0.601 8.766
9 4.470 0.777 8.502
10 4.837 0.664 6.988
Mean 4.788 0.537 5.089
70 1 4514 0.661 6.237
2 3.742 0.881 10.042
3 4.467 0.593 5.311
4 4,992 0.540 5.387
5 4.646 0.630 5.790
6 4.094 0.666 5.274
7 4.075 0.718 5.879
8 4141 0.722 6.104
9 6.754 0.636 9.432
10 4.439 0.620 5.575
Mean 4.415 0.619 5.347
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Table 4. (Cont'd.)

Strength of n-Order
samples, Half-order
% Run no. n=05 n t;, day
80 1 4.058 0.641 5.034
2 3.546 1.131 0
3 4.724 0.542 5.122
4 5.025 0.583 5.864
5 5.201 0.556 5.927
6 5.082 0.599 5.116
7 5.221 0.544 5.778
8 8.171 0.567 9.789
9 5.145 0.544 5.614
10 7.272 0.535 8.066
Mean 4.593 0.578 5.204
90 1 3.951 0.669 5.067
2 5.772 0.501 5.838
3 5.733 0.243 4.090
4 4.686 0.551 5.174
5 6.252 0.549 6.979
6 3.755 0.696 5.002
7 4.527 0.583 5.127
8 6.094 0.414 5.202
9 5.642 0.560 6.342
10 6.353 0.449 5.768
Mean 4.919 0.531 5.219
100 1 3.779 0.715 5.120
2 4.259 0.609 5.092
3 4.146 0.620 5.050
4 6.553 0.566 7.385
5 6.910 0.509 7.169
6 5.979 0.598 7.442
7 5.238 0.533 5.604
8 5.790 0.447 5.290
9 6.226 0.406 5.271
10 5.677 0.509 5.792
Mean 5.079 0.527 5.360
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Table 5. Summary to Show How Frequently the Data Fit
a BOD Model of Various Reaction Orders

Number of times samples had a reaction order in this range,

Strength of including mean, denoted by M
samples,

% n=-1 05<n<1 n<0.5
10 6, M 3 1
20 3 6, M 1
30 4 2, M 4
40 2 6, M 2
50 1 7 M 2
60 1 9, M 0
70 0 10, M 0
80 1 9, M 0
90 0 7, M 3
100 0 8, M 2
Sum 18, 1M 67, 9M 15

3. The ultimate BOD predicted from the half-order model showed a smaller
variation across the range of dilutions than the prediction from the
first-order model.

4. The first-order BOD model fit the data best for 10% and 20% strength
samples, while the half-order BOD model fit the data best for all other
strength samples.

5. The half-order BOD model showed 65% of the samples had t. values
which indicated all of the BOD was consumed in less than 5 days, while
100% of the samples’ BOD was consumed in less than 8.171 days.
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Figure 1. Behavior of first-order ultimate BOD as a
function of sample strength.
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Figure 2. Behavior of first-order BOD model rate constant as a
function of sample strength.
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Figure 3. Behavior of half-order ultimate BOD as a
function of sample strength.
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