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Abstract: Elevated levels of plasminogen activator inhibitor type-1 (PAI-1) often occur in concert with the conversion of non-motile 
epithelial elements into a more migratory phenotype. While essential during embryonic development, this restructuring process, referred 
to as epithelial-to-mesenchymal-transition (EMT) is limited in the adult organism, occurring normally during wound repair or more 
atypically in tumor progression. Cell motility, the focal point of EMT, requires the coordinate regulation of multiple mechanisms 
which ensure proper communication between cell surface receptors and the extracellular environment. PAI-1, through multifaceted 
interactions with both extracellular matrix (ECM) and cell surface constituents plays a critical role in modulating many of these events. 
This review focuses on the complex role of PAI-1 in the cellular motile program.
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Introduction
During embryogenesis, the development and 
differentiation of functionally mature adult tissues 
often requires conversion of non-motile epithelial 
elements into a more migratory phenotype, a 
complex cellular restructuring process referred to 
as epithelial-to-mesechymal transition (EMT).1 
Temporal and spatial regulation of EMT, as well 
as the subsequent restitution of an epitheliod phe-
notype (Mesenchymal to Epithelial Transition), is 
regulated by specific growth factors (individually 
or collectively) and by cues from the extracellular 
environment.1–3 In the adult organism, epithelial 
“plasticity” persists; it is generally limited however, 
occurring normally as a component of wound repair 
or more atypically, during tumor progression.1,4–6 In 
such restricted circumstances, growth factor signaling 
largely dictates phenotypic outcome. Epidermal 
growth factor (EGF) receptor amplification and an 
altered cellular response to transforming growth 
factor-β (TGF-β), for example, are often associ-
ated with the progression of epithelial tumor cells 
from a relatively benign to a more aggressive phe-
notype with increased metastatic potential.7–10 Model 
systems that employ the addition of EGF + TGF-β1 

to cultured keratinocytes, to mimic the frequently 
observed TGF-β1 elevation in the tumor microenvi-
ronment and amplified EGFR signaling in late-stage 
malignancies, identified the synergistic up-regulation 
of a subset of pro-invasive genes the most promi-
nent of which encodes plasminogen activator inhib-
itor-type-1 (PAI-1).11,12 Importantly, elevated levels 
of PAI-1 often occur in concert with epithelial cell 
plasticity, paralleling the requirement for enhanced 
cell motility. PAI-1, through its inhibition of uroki-
nase-type plasminogen activator (uPA) is critical 
for regulating the generation of pericellular plasmin 
(Fig.  1) and consequently modulating extracellular 
matrix proteolysis and stromal remodeling. Increased 
expression of PAI-1 has been associated with sev-
eral pathophysiological events including tumor 
progression, inflammation, hypertrophic scarring, 
atherosclerosis, thrombosis, myocardial infarction, 
diabetes and obesity.13–17 In addition to proteolytic 
control, the contribution of PAI-1 to promoting these 
pathologies is thought to occur through multiple 
avenues which additionally impact on cell motility. 
This review focuses on the most recent developments 
in this field and on the complex role of PAI-1 in the 
cellular motile program.
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Figure 1. PAI-1 modulates cell migration by Regulating ECM proteolysis. Physiological control of pericellular proteolysis occurs primarily through the 
regulation of plasminogen activation at the cell surface, which, in turn contributes to downstream MMP activity. Focal proteolysis disrupts ECM architec-
ture, breaking cell-matrix interactions with receptors such as integrins, and releasing bioactive fragments of extracellular matrix molecules, as well as 
growth factors that stimulate migratory behavior. PAI-1, through its ability to inhibit uPA-dependent activation of plasmin, titers this process maintaining the 
scaffolding necessary to facilitate cell migration.
Abbreviations: PAI-1, plasminogen activator inhibitor type-1; uPA, urokinase type plasminogen activator;  uPAR, uPA receptor; MMP, matrix 
metalloproteinase; GF, growth factor.

Wilkins-Port et al

2	 Cell Communication Insights 2010:3

http://www.la-press.com


PAI-1 Regulated Cell Migration: 
Proteolytic Events
TGF-β, an established facilitator of EMT, likely 
promotes invasive behavior through the transcriptional 
activation of genes that impact stromal remodeling 
and cell motility. Matrix structural elements 
(ie, fibronectin, collagen) and matrix-active proteases, 
(eg, urokinse type plasminogen activator [uPA] and 
matrix metalloproteinases [MMPs]) as well as the 
serine protease inhibitor (SERPIN), PAI-1 are up-
regulated in response to TGF-β1.18–24 EGF signaling, 
which is enhanced as a result of increased receptor 
number in various cancers,10 also stimulates the 
expression of various MMPs.22,25–28 Paradoxically, 
the combination of TGF-β1 and EGF synergistically 
up-regulates PAI-1 levels in several cell types,11,12,18–29 
despite the inability of EGF alone to increase PAI-1 
levels in some systems,12,30 and may ultimately support 
spatio-temporal titering of excessive plasmin-based 
proteolysis.

Generally, both TGF-β1 and EGF levels increase 
substantially following acute injury, partially due to 
their release from platelet α granules, but also through 
increased cellular expression, particularly at the wound 
edge.19 These growth factors appear critical to the initial 
stages of cutaneous tissue regeneration through pro-
motion of keratinocyte migration, as well as prolifera-
tion.19,31–33 TGF-β1 and EGF also up-regulate the matrix 
metalloproteinase, stromelysin-2, or MMP-10 in kera-
tinocytes.22,28 During cutaneous wound repair, MMP-
10 is specifically localized to cells in the migrating 
tongue where it appears to enhance migration.22,34 Nota-
bly, PAI-1 expression also increases in keratinocytes at 
the wound margin and is deposited into the migration 
tracks of these cells, suggesting that it, as well, plays 
an integral role in regulating directional migration and 
wound closure.35–38 Studies indicate, for example, that 
in non-healing wounds (also considered a model for 
tumor progression), failure to close may result in part 
from a disproportionate level of EGF and EGFR deg-
radation,39,40 which could arguably shift the elements 
balancing pericellular proteolysis. Over-expression of 
constitutively active MMP-10  in the epidermis has, 
in fact, been shown to produce deleterious effects on 
the coordinated migration of keratinocytes into the 
wound bed; an effect attributed to excessive laminin-5 
(laminin-332) processing.34 Unconstrained MMP-10 
activity also leads to excessive collagenolysis12 which 

impacts negatively on cell migration and ultimately, 
the restoration of tissue integrity. Coordinate up-
regulation of proteolytic enzymes such as the 
MMPs, together with their upstream inhibitor PAI-1 
by individual growth factors provides an exquisite 
mechanism for controlling focal proteolysis (Fig. 1), 
which is essential for cell motility. The presence 
of multiple growth factors contributing similar 
coordinate activities may conceivably augment the 
regulated proteolysis required to sustain or enhance 
motility. Indeed, the combination of TGF-β1 + EGF 
synergistically increases epithelial cell migration26 
and MMP expression,26,27 as well as the expression of 
PAI-1.11,12

Focalized proteolysis also promotes the discrete 
release of bioactive fragments and growth factors from 
the stromal environment which in turn, influences 
cell proliferation and cell migration (Fig.  1). 
MMP-dependent generation of ECM fragments, 
for example, affects both angiogenic and anti- 
angiogenic activities under physiologically-relevant 
conditions.41,42 MMP-2 and MMP-9, for instance, 
cleave collagen IV, exposing cryptic epitopes in the 
molecule that promote angiogenesis43,44 while matrik-
ines such as arrestin, canstatin, tumstatin and met-
astatin which are also generated from collagen IV 
are anti-angiogenic.41,42 Proteolytically derived frag-
ments from collagen XVIII (endostatin and neosta-
tin), collagen VIII (vastatin), collagen XV (restin) 
and perlecan (endorepellin) also exhibit anti-angio-
genic properties.41,42 Often these ECM fragments 
exert their effect by competitive binding with intact 
ECM molecules to various cell surface receptors.42 
MMP-dependent release of laminin-332 fragments 
promotes epithelial cell migration. Indeed, recombi-
nant domain III of the laminin-332 γ 2 chain (which is 
cleaved from laminin-332 by MT1-MMP and MMP-
2) binds to EGFR and initiates signaling events which 
culminate in enhanced cell motility.45–47 Similarly, 
MMP based proteolysis of fibronectin yields frag-
ments that affect migration (MSF),41,48 angiogenesis, 
(anastellin)49,50 cell proliferation and differentiation.41 
Proteolytic processing of the extracellular environ-
ment, therefore, impacts multiple aspects pertaining 
to the regulation of cell motility; PAI-1, as the major 
up-stream physiological inhibitor of plasmin-based 
proteolysis, (Fig. 1) has a critical role in modulating 
these events.
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PAI-1 Regulated Cell Migration: 
Receptor Interactions
Stromal PAI-1 is a target for cleavage by extra- 
cellular proteases, including elastase, MMP-3 and 
plasmin.51–53 “Cleaved” PAI-1 is unable to interact 
with the plasminogen activators (PA) uPA and tPA to 
inhibit plasmin-based proteolysis but can bind to the 
low-density-lipoprotein-receptor-related-protein-1 
(LRP1) through a PA-complex-independent interac- 
tion (Fig. 2A) to augment migration of smooth muscle 
cells.54 PAI-1 also stimulates directional migration in 
normal human keratinocytes (Fig. 3) and is required 
for TGF-β1 + EGF induced keratinocyte scattering.11 
Notably, high levels of stromal PAI-1 have been 
correlated with poor prognosis in several cancers, 
including breast, lung, ovarian and squamous cell 
carcinomas13,16 suggesting that PAI-1-dependent 

preservation of the surrounding matrix facilitates 
motility of invading cells. Current observations, 
however, also suggest an alternative role for PAI-1 
as a signaling molecule that enhances cell migration. 
Indeed, the different conformations of PAI-1 
(active, latent, cleaved) can bind LRP1 and stimu-
late Jak/Stat1-dependent migration (Fig.  2A).54–56 
Consequently, even though active PAI-1 is routinely 
cleared from the extracellular environment in a com-
plex with uPA/uPAR/LRP1, latent and cleaved spe-
cies of PAI-1, with a preserved migratory function, 
remain embedded in the matrix to sustain cell migra-
tion. This paradigm supports the correlation of high 
PAI-1 levels with poor prognosis.

LRP1, in addition to its function as a major 
endocytic receptor, is also a key signaling media-
tor in several pathways due, in part, to its ability 
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Figure 2. PAI-1 modulates cell migration through cell surface receptors. A) PAI-1 binding to the LRP1 in a non-uPA/uPAR dependent manner, triggers 
Jak/Stat1 signaling events that culminate in enhanced cell migration. It is unclear whether this process necessitates PAI-1 interaction with the ECM. B) PAI-1 
binding to uPA/uPAR results in the internalization of the PAI-1/uPA/uPAR complexes in an LRP1 dependent manner. PAI-1 binding to uPA/uPAR can also 
trigger detachment of cell surface integrins from their ECM ligands and subsequent internalization in an LRP1-uPA/uPAR-dependent manner. In each case, 
receptors (integrin, uPAR, LRP1) recycled back to the cell surface, while uPA and PAI-1 are degraded. C) In this hypothetical model, PAI-1, through its ability to 
titer active plasmin, promotes syndecan-1 dependent migration on unprocessed laminin-332 by preventing cleavage of the syndecan binding site LG4/5. Addi-
tionally, PAI-1 inhibition of plasmin activation facilitates migration on unprocessed laminin-332 by reducing the shedding of syndecan-1 from the cell surface. 
As the proteolytic environment matures and PAI-1 levels decrease, integrins α3β1 and α6β4 (not shown) engage the proteolytically cleaved, or processed 
form of laminin-332 and begin to establish hemidesmosomes.
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to support interactions with multiple adaptor and 
scaffolding proteins.57 The intracellular domain 
of LRP1 (following Regulated Intramembrane 
Proteolysis) also translocates to the nucleus, where 
it appears to negatively regulate amyloid precur-
sor protein (APP) intracellular domain-dependent 
gene transcription through an interaction with 
Tip60.58,59 LRP1 ligand binding and/or its complex 
formation with cell surface moieties such as inte-
grins,60–62 growth factor receptors63,64 and proteo-
glycans65 appears to activate MAP and Src family 
kinases,64,66–69 regulate cell proliferation63,64,70–72 and 
stimulate cell migration.66,73

PAI-1 activity has been associated with 
activation of ERK signaling events,74 regulation 
of cell proliferation through Akt,75,76 modulation of 
TGF-β signaling through αvβ3,77 recruitment of 
cellular effectors during renal fibrosis78 and control 
of fibronectin matrix assembly through αvβ5 and 
α5β1  integrins.79 PAI-1 also regulates levels of cell 
surface integrins by triggering their internalization 
in an LRP-dependent manner,61,77,80 resulting in cell 
detachment from a variety of substrates61,80 (Fig. 2B). 
The mechanism supporting this function appears 
to differ however, from that which modulates PAI-
1stimulated migration directly via LRP1, as uPA is 
required for detachment, but not for the migratory 
response.54,55,61,80 Nevertheless, it is apparent from 
these studies that PAI-1 can utilize multiple avenues 
to impact on cell migration through LRP1 (Fig. 2A 
and 2B). Studies suggest that ligand binding to LRP1 

affects Schwann cell motility through activation 
of the Rho family GTPases.73 Notably, Rho family 
GTPase activity has been connected with enhanced 
expression/induction of Jak/Stat signaling.81,82 The 
potential contribution of these interactions in PAI-
1-stimulated cell locomotion via the LRP1 however, 
remains to be determined.

Syndecan-1 binding to the LG 4/5 domain of 
unprocessed laminin-332 appears necessary for 
keratinocyte migration83,84 and may, therefore, contri- 
bute to the rate at which wound healing proceeds.85–87 
Notably, cleavage of the α3  subunit of laminin-332 
by plasmin, which occurs between the integrin and 
syndecan binding sites within the LG domain (Fig. 2C), 
converts laminin-332 from a pro-migratory factor to 
one that impedes cell motility and supports hemides-
mosome formation.88 A potential role exists, therefore, 
for PAI-1  in modulating syndecan-dependent kerati-
nocyte migration during wound healing. In this model 
(Fig.  2C), keratinocytes at the wound margin begin 
to synthesize and deposit unprocessed laminin-332, 
supporting syndecan-1 binding through the LG 4/5 
domain. PAI-1, which is also up-regulated in cells 
at the wound edge, stabilizes this interaction by 
preventing plasmin-based proteolytic processing 
of laminin-33288 and syndecan-1  shedding.89,90 The 
presence of vitronectin (VN) at the wound edge can 
augment this event through its ability to extend the 
half-life of active PAI-1 (discussed below), as well 
as engage syndecan-191 and focalize PAI-1. As the 
proteolytic environment matures, PAI-1 and VN are 
endocytosed and degraded.92,93 Syndecan-1 binding is 
lost due to proteolytic processing of laminin-332, as 
well as syndecan-1 ectodomain shedding and α3β1 
binding to processed laminin-332 begins to slow 
keratinocyte migration and initiate hemidesmosome 
formation.88

PAI-1 Regulated Cell Migration: 
Interactions with Vitronectin
PAI-1-VN interactions impact on several 
mechanisms associated with cell migration. VN 
stabilizes and extends the half-life of active, PA-
binding PAI-1, amplifying the inhibition of focal 
proteolysis and thereby preserving the stromal 
architecture necessary for cell migration.94,95 This is 
particularly important following cutaneous injury 
where restoration of barrier function and tissue 

Control (0) PAI-1 (100 nM)

Figure 3. PAI-1 enhances keratinocyte migration. Primary human 
keratinocytes isolated from neonatal foreskin, were seeded onto tis-
sue culture plastic coated with collagen type-1 (30 ug/ml), in complete 
(growth factor supplemented) keratinocyte medium (Cascade Biologics, 
Invitrogen; Carlsbad, CA) and grown to confluence. The medium was 
then changed to Defined Keratinocyte SFM (Invitrogen) without growth 
factors for 24 hours, after which monolayers were scrape-wounded with 
a pipet tip, washed and incubated in Defined Keratinocyte SFM ± PAI-1 
(100 nM) for 24 hours. Monolayers were then fixed with paraformalde-
hyde and briefly stained with crystal violet to delineate the wound edge, 
then measured for change in wound site closure. Images were collected 
at 5x magnification on a Nikon OptiPhot-2.
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integrity is dependent upon keratinocyte migra-
tion. PAI-1 and vitronectin are both released from 
the alpha granules of platelets during hemostasis, 
where their joint presence would presumably facili-
tate the formation of a fibrin clot and subsequently 
contribute to provisional matrix remodeling.96,97 
PAI-1 expression is additionally up-regulated in 
keratinocytes at the wound margin36,37 highlighting 
the involvement of this SERPIN in initiating tissue 
repair. Vitronectin, which exhibits limited expres-
sion under normal physiological conditions,98–101 
is also enhanced under circumstances requiring 
stromal remodeling, such as wound repair102–104 and 
tumor progression105–110 suggesting a continuing, 
albeit dynamic, molecular interaction of physiologic 
significance.

While PAI-1-VN complexes facilitate migra-
tory processes by preserving stromal architecture, 
the interaction of these two proteins also affects 
cell migration through mechanisms that directly 
modulate cell surface receptor binding (Fig.  4). 
VN promotes cell migration via RGD-dependent 
interactions with αvβ3 and αvβ5  integrins,111–114 
as well as through binding to the urokinase-type-
plasminogen-activator-receptor, uPAR.115,116 The 
binding site for PAI-1 on VN, however, approxi-
mates those for both integrin and uPAR binding117 
and, as a result, the interaction of PAI-1 with VN 
interferes with the ability of VN to engage these 
receptors115–119 (Fig.  4). Similarly, the PAI-1 and 
LRP1  interaction-dependent migration is blocked 

by VN binding to PAI-155 (Fig. 4). Collectively, it 
is clear that the interaction of these two molecules 
has the potential to affect cell motility on multiple 
levels.

PAI-1, in addition to regulating cell-to-substrate 
attachment, also regulates cellular detachment from 
VN by two distinct mechanisms. The affinity of 
PAI-1 for VN is sufficient to trigger the release of 
uPAR from vitronectin.115,116,118 In addition, PAI-1 in 
the presence of uPA/uPAR complexes, can initiate 
detachment of integrins from their ECM ligands and 
promote their endocytic clearance.61,80 Subsequently, 
these receptors are recycled back to the cell surface 
to re-engage matrix molecules and promote cell 
migration57 (Fig. 2B).

Summary
Clearly, cell motility, which involves attachment 
and detachment of cell surface receptors from the 
ECM, requires focused regulation of a series of 
complex events and the coordination of multiple 
mechanisms which ultimately ensure appropri-
ate communication between cell surface recep-
tors and the extracellular environment. PAI-1, 
through its multifaceted interactions with both 
ECM and cell surface constituents plays a cen-
tral role in modulating many of the temporally-
regulated and spatially-controlled events that 
contribute to managing this intricate process in 
both physiologic and pathophysiologic contexts. 
Understanding the factors and stimuli that influ-
ence PAI-1 expression levels and activity there-
fore offers us an attractive avenue for the future 
of drug development.
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binds to the VN molecule in a region that overlaps the uPAR and inte-
grin binding sites. Consequently, the higher affinity PAI-1-VN inter-
action disrupts the capacity for VN to engage these receptors. In a 
similar manner, VN binding to PAI-1 inhibits PAI-1 binding to LRP1 and 
Jak/Stat1 mediated migration.
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