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Abstract: The ability to target and capture known exons in the human genome, and characterize them by massively parallel sequencing, 
has led to the identification of the genetic causes of many Mendelian disorders. Several factors suggest that exome sequencing will 
be the preferred clinical next generation technology for some time to come. Advantages of high sequencing depth include the low 
cost/coverage compared with genome sequencing, and the fact that non-coding-sequence interpretation is still in the early stages of 
development. In this study of data from the NIH Undiagnosed Diseases Program (UDP), we investigated a novel approach to quantify 
the quality of exome sequencing data. We systematically and thoroughly evaluated the genotypable fraction across well-characterized 
protein-coding exons and found that .88% are genotyped to completion and, on average, .93% of all coding bases were genotyped 
(with target sequencing efficiency of 96%). We also demonstrate a methodology for robust identification of consistently genotyped 
exons using a new statistical metric, the index of dispersion. This methodology allowed us to define the overall genotypeability of all 
167,717 autosomal exons and 95.5% of these had a reproducible pattern of sequencing. Finally, we developed a computational applica-
tion to take advantage of the reproducible and predictable pattern to confidently detect homozygous deletion events of protein-coding 
exons. We exploited the sequence pattern information towards reduction of search complexity to detect homozygous deletion events. 
Of our 11 predictions of homozygous exon-deletion events, we studied 3, performing wet lab experiments that confirmed and validated 
each of them. We conclude that our systematic approach to analyzing exome sequence data across our patient cohort provides a powerful 
computational methodology to evaluate, assess, interpret and predict patterns that are relevant to the pathophysiology of the sequenced 
individuals.
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Introduction
Current methods to identify genetic causes of 
Mendelian disorders rely upon exon capture and mas-
sively parallel sequencing.1–5 This methodology is 
becoming increasingly popular as the cost of sequenc-
ing falls. Typically, between 20,000 and 50,000 
variants are identified per sequenced exome, of which 
between 8,000 and 10,000 are non-synonymous 
variants6,7 and are readily interpretable. As a result of 
gene-agnositc sequencing approach, studies continue 
to reveal unexpected genes as the primary cause of 
new diseases.8–11

In considering exome sequencing as a clinical and 
diagnostic tool, clinicians and basic researchers alike 
face several key challenges, such as preferential selec-
tion of certain genomic regions,12,13 variable defini-
tions of exons by different gene annotation databases,6 
variable and non-uniform genotypeability of a given 
genomic locus by exome sequencing across members 
of a given family, and complete lack of sequence data 
for exons of known disease-causing genes.14 In order 
to routinely employ exome sequencing as a clinical 
tool,9 it is imperative systematically to address these 
hurdles.

We employed a rigorous, systematic analytical 
approach to evaluate the reproducibility of exome 
sequencing data from patients enrolled in the NIH 
Undiagnosed Diseases Program (UDP).15 We inves-
tigated whether statistical analysis of the quality of 
genotypeability within a set of individuals, across 
well-annotated bases in the human exome, could help 
identify candidate variants. Using genotypeability of 
these genomic regions as a metric, we present a novel 
statistical approach for defining reproducibility of 
sequencing. These results show that the majority of 
exons in our data are highly reproducible across the 
individuals that we evaluated. In addition, we show 
that using quantitative metrics for defining well-
sequenced exons permits the use of these regions 
to detect gross chromosomal abnormalities, such as 
large exon-size homozygous deletion events.

Methods
Patients
Patients accepted into the NIH Undiagnosed Dis-
eases Program (UDP) were enrolled in clinical pro-
tocol 76-HG-0238, approved by the Institutional 

Review Board (IRB) of the National Human Genome 
Research Institute (NHGRI), and gave written, 
informed consent. An additional anonymized dataset 
of 801 exome sequences derived from the ClinSeq™ 
study16 was used for validation and filtering data.

DNA extraction
DNA was extracted from 10 mL of peripheral whole 
blood from each individual in study using the Pure-
gene kit (Qiagen, Inc, Valencia, CA) according to the 
manufacturer’s protocol as previously described.17

Exome sequencing, alignment  
and genotype-calling
Exome sequencing was performed using genomic 
DNA extracted from peripheral blood. In-solution 
exome capture was performed according to the 
manufacturer’s protocol using SureSelect Human All 
Exon Kits (Agilent Technologies, Santa Clara, CA) 
or the TruSeq Exome Enrichment Kit (Illumina, San 
Diego, CA). The Agilent 38 Mb kit was used for 79 
UDP samples, the Agilent 50 Mb kit was used for 
47 UDP samples, and the Illumina TruSeq kit was 
used for 45 UDP samples. Flow-cell preparation and 
76 to 100-bp paired-end (PE) read sequencing were 
performed per the protocol for the Illumina Genome 
Analyzer IIx and Illumina HiSeq 2000 (Illumina, 
San Diego, CA). For all subsequent analyses, sequence 
data derived from libraries constructed using each kit 
were grouped to give three data sets. The 45 TruSeq 
samples were further grouped into cohorts of 11 (test-
set), 15 (founders) and 19 (probands), respectively.

For the 171 exome data, reads were aligned to the 
human genome reference sequence (UCSC assembly 
hg18, NCBI build 36) using eland (Illumina, Inc, 
San Diego, CA). The program eland was used in 
such a way that paired-end (PE) reads were aligned 
independently, and those that aligned uniquely were 
grouped into genomic sequence intervals of about 
100 kb. Reads that failed to align were binned with 
their PE mates without eland using the PE information. 
Reads that mapped equally well in more than one loca-
tion were discarded. The program Cross_Match, 
a Smith-Waterman based local-alignment algo-
rithm, was used to align binned reads to their respec-
tive 100 kb genomic reference sequence, using the 
parameters, –minscore 21 and –masklevel 0  
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(http://www.phrap.org).18 Genotypes in the next-
generation data were called using a Bayesian geno-
type-caller, Most Probable Genotype (MPG).19 The 
MPG calling algorithm calculates a Bayesian poste-
rior probability of all possible genotypes at a given 
position, and reports a score, which is computed as 
the difference in probabilities between the most prob-
able and the second most probable genotypes.

Sanger sequencing
Sanger sequencing was performed for 40 randomly 
selected exons that were poorly genotyped during 
NGS to confirm sequence rescue according to stan-
dard protocols. We performed PCR amplification 
using HotStar Taq (Qiagen, Valencia, CA). PCR 
products were sequenced by dideoxynucleotide 
chain-termination sequencing (Macrogen, Seoul, 
Korea). Sequences were aligned and analyzed using 
Sequencher software program (v.4.10.1, Gene Codes, 
Ann Arbor, Michigan).

Exon genotypeability and reproducibility
Model
Given N independent random variables x1, x2,…, xN 
each following the same probability law, the quan-
tity D N x x N x

i
i

N

i
i

N

= −( )
= =
∑ ∑( ) ( )1 1

2

1 1
 is known as the 

index of dispersion or variance to mean ratio (VMR). 
The value of D allows for testing the distribution of 
observed data, compared to the null hypothesis of ran-
dom observations. If the variable xi follows a Poisson 
model, then the variance of the distribution is equal to 
its mean, and the value of D is equal to 1. The index 
of dispersion (D) therefore allows testing whether 
observations are uniformly dispersed (D = 0), under-
dispersed (0 # D , 1) or overdispersed (D . 1). The 
uniform and underdispersed data correspond to having 
more variables being equal to or closer to the mean than 
in the Poisson distribution. In contrast, overdispersed 
data indicate that there are clustered random variables 
compared to the Poisson distribution. Statistically 
significant deviations in either direction will lead to 
the rejection of the hypothesis of randomness (null 
hypothesis in Poisson goodness of fit testing).

Index of dispersion of exons
Consider an exon k of length L and let ykj be an indi-
cator variable of genotypeability (genotype-score 

(MPG $ 10)) at position j. We define the genotype-
ability (xk) of a given exon k as the percentage of the 
sum of indicator variables over the length of a given 
exon k as described below.

x yk kj= 1
L

*100
1

L∑





The mean of genotypeability of the exon k in a 
cohort of N individuals is defined as xk  (average 
genotypeability) and its variance is defined as σ k

2 .
Given these variables, we calculated the index of dis-
persion D for a given exon k across N individuals as 
follows:

D
xk

k

k

=
σ 2

We computed the value of D for all well annotated 
exons, given a set of individuals sequenced using the 
the same chemistry and exome capture kit. The code 
to compute values of D for each cohort of individu-
als and all exons was written in PERL programming 
language (version 5.12). Scatterplots and matrices of 
D were generated using the statistical computing soft-
ware R (version 2.12.2; 32-bit build).

Quantitative PCR (qPCR) amplification
qPCR amplification was performed using 200 ng of 
UDP2179 or UDP2473 genomic DNA and Bio-Rad 
SSO Fast EvaGreen supermix (Hercules, CA). The 
amplification was carried out with an initial dena-
turation at 95 °C for 30 s, followed by 30 cycles of 
denaturation at 95 °C for 5 s, annealing and extension 
at 65 °C for 1  s. Unaffected human genomic DNA 
and no template control (NTC) samples were run for 
each set of primers as positive and negative controls, 
respectively.

Statistical methods
Pearson’s Chi-squared test of independence between 
variables D and other sequence related features 
(GC-content and low-mappability) were performed 
in the statistical computing software R (version 
2.12.2) using chisq.test. The chisq.test was applied 
to the contingency tables for each of these different 
variables. Two-sample Wilcoxon Test was performed 
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in R using wilcox.test to assess whether two samples 
of independent observations were from distinct 
populations.

Results
Exome sequencing provides 
genotypeability of .93% and target 
sequencing efficiency of .96%  
of well annotated coding bases
The interpretation of massively parallel sequencing 
success of human exons and especially protein-cod-
ing bases is highly dependent on the choice of gene 
annotation database used during analysis.6 To ensure 
independence in interpretation of sequencing results, 
we standardized the annotation of coding bases as 
defined by the three major gene annotation databases— 
RefSeq,20 UCSC,21 and Ensembl.22 We defined the 
union of coding bases from the above three databases 
to represent the ‘all coding bases’ dataset (ACB: 
37,008,680 bases) and the intersection to represent 
the ‘common coding bases’ dataset (CCB: 32,271,709 

bases) (Fig. 1). After defining these two datasets, we 
interrogated overlap of the annotation databases, cap-
ture kits and target sequencing efficiency of these 
bases in the UDP patient cohort. Target sequencing 
efficiency was defined as the percentage of bases 
observed to be successfully sequenced of all bases 
expected to be sequenced in target regions designed to 
be captured by commercial capture kits (Supplementary 
Table S1). Overall, the CCB constituted 87% of the 
ACB. The Ensembl and UCSC coding bases exclu-
sively annotated 0.7 Mb and 1.9 Mb of the all coding 
bases respectively (Supplementary Fig. S1). Coverage 
of all Ensembl coding bases across all three cap-
ture kits—Agilent 38 Mb, Agilent 50 Mb, Illumina 
TruSeq kits, was strikingly similar (78%), whereas 
coverage of UCSC known gene and RefSeq coding 
bases was 93%–95% for the Agilent 50 Mb and the 
Illumina TruSeq capture kits and 81% for the Agilent 
38 Mb capture kit, consistent with previous reports.6 
The Agilent 38 Mb, Agilent 50 Mb and TruSeq cap-
ture kits, respectively, targeted 85%, 97% and 95% 
of the CCB and 75%, 94% and 88% of the ACB (See 
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Calculation of genotypeability of exons, and finally, Step (3) Calculation of index of dispersion vector. The color blue in genotypeability matrix indicates 
complete genotypeability, and red indicates lack of genotypeability. The color blue in index of dispersion vector depicts exons with values less than ten, 
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Supplementary Fig. S2). The Illumina and Agilent 
platforms target specific mutually exclusive regions; 
the majority of the 25.0 Mb of unique regions tar-
geted by the TruSeq kit were the untranslated por-
tions of the exons (UTRs). Focusing on the CCB, 
we observed that the TruSeq kit had better target-
sequencing efficiency (96.5%) compared to the Agi-
lent 50 Mbkit (91%) (Supplementary Fig. S3), even 
though the latter targeted 31,344,815 bases (97.1% of 
CCB) compared to TruSeq’s 30,768,285 bases (95.3% 
of CCB). Genotypes at each position sequenced were 
called by Most Probably Genotype (MPG) calling 
algorithm, which reports a score that is computed 
as the difference in Bayesian posterior probabilities 
between the most probable and the second most prob-
able genotypes.19 We required bases to have quali-
ties of Q20 or higher and a genotype call to have a 
MPG score of 10 or greater. A MPG score of 10 or 
greater signifies that the theoretical probability of the 
call being incorrect is e-10 or 1  in 22,026 genotypes 
called. On average, TruSeq provided over 93% geno-
typeability (MPG  10) across the common coding 
bases (Table  1). Given these results, we restricted 
further analyses to the sequence data derived from 
libraries generated using the TruSeq capture kit.

The majority of CCB Exons (.88%)  
are confidently genotyped to 100%  
in exome sequencing data
To determine the proportion of CCB exons that are 
confidently genotyped over all the bases in their 
respective exons, we analyzed the proportion of bases 
in a given exon that scored above the given geno-
type score threshold (MPG $ 10). For this, 188,881 
unique CCB exons were evaluated for genotypeability 
above a confidence threshold of MPG $10 in 11 indi-
viduals (testset) captured by the TruSeq capture kit 
and sequenced on the Illumina HiSeq 2000 (Fig. 1, 
steps 1 and 2). Of 188,881 exons, 165,803 (88%) 
exons were confidently genotyped to completion over 
all the bases in a given exon. Of the total exons, 7,678 
(4%) did not have any bases with confident genotype 
sequencing (0% genotypeability). Of these 7,678 
exons with complete lack of interpretable genotype 
data, 487 (6%) were from the sex-chromosomes. In 
autosomes, chromosome 6 (2,767 exons; 36%), fol-
lowed by chromosome 1 (578 exons; 7%), had the 
highest number of exonic regions with no interpre- Ta
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table genotype data (genotypes over the threshold of 
MPG $  10) over the entire length of a given exon 
(See Supplementary Table S2). Subsequent analyses 
through rest of the experiments were restricted to 
autosomal chromosomes.

Autosomal CCB exons with low average 
genotypeability are significantly enriched 
for extremes of GC content and/or low 
sequence read mappability
To determine if genotypeability of an exon could 
demostrate a relationship with sequence composi-
tion, we analyzed the CCB exons using GC content 
and short-read mappability as defined by the “Broad 
alignability track” from the UCSC genome browser.21 
For this analysis, we removed chromosomes anno-
tated as “hap” and “random”. This left 179,114 auto-
somal exons. We also removed very short exons (,10 
bases in length). The final set for GC analysis and 
low-mappabilty analysis contained 178,105 auto-
somal exons. GC content for each of these exons was 
calculated as a percent of the length of the exon. The 
exons were binned into three categories : Low-content 
(,33%), Medium-GC content (33%–66%) and 
High-GC content (.66%). We also divided all exons 
(178,105) into four categories based on their average 
genotypeablity (number of individuals sequenced, 
N  =  11) : No genotypeability (0%), Low-medium 
genotypeability (.0 to #50%), High-medium geno-
typeability (.50% to ,100%) and Fully genotyped 
(100%). We then tested if the GC content of an exon 
was related to its observed average genotypeability. 
We observed a significant relationship between the 
GC content and the average exon genotypeability, 
with the best genotypeability values observed in 
medium GC content exons (χ2 = 31744.94, df = 6, 

P ,  2  ×  10−16). Both high and low GC content 
were correlated with low genotypeability (Table 2). 
We investigated whether exon length had any effect 
on this relationship. We repeated the same analyses on 
short (,50 bases), medium (50–300 bases) and long 
exons (.300 bases) and observed that the strong cor-
relation between the GC content and genotypeability 
was not affected by exon length (See Supplementary 
Tables S3–S5).

To investigate further if the lack of genotypeable 
data was due to mappability of short-reads, we looked 
at the relationship between short-read mappability of 
an exon and its observed average genotypeability. It 
is well established that sequencability of a given exon 
obtained from mapping short reads to a reference 
sequence is a direct function of the success in correctly 
placing the short reads on their original locations on 
the reference genome. For this purpose, we used the 
“Broad alignability track” from the UCSC genome 
browser. The Broad alignability track displays whether 
a region is made up of mostly unique or mostly non-
unique sequence. To generate the track, every 36-mer 
in the genome was marked as “unique” if the most 
similar 36-mer elsewhere in the genome had at most 
2  mismatches. Position ‘x’ in the alignable track is 
marked by 1 if .50% of the bases in [x-200,x+200] 
are “unique” and by 0 otherwise.21 We found a signifi-
cant relationship between the mappability of an exon 
and the observed average genotypeability of that exon 
(χ2 = 13165.31, df = 6, N = 178105, P , 2 × 10−16). 
(Supplementary Table S6). The exons with high-
mappability values were genotyped to near comple-
tion with most having full genotypeability (100%). 
Finally, we analyzed the relationship between the 
repeat regions of the genome as defined by the repeat 
masker track of the UCSC genome browser and exon 
genotypeability (Supplementary Table S7). We found 

Table 2. Distribution of GC content of CCB exons (178,105) grouped by their average genotypeability in 11 UDP individuals 
sequenced using the TruSeq exome capture kit on Illumina HiSeq 2000.

GC content (%) categories Average genotypeability categories
No genotypeability 
(0%)

Low-medium  
genotypeability 
(.0% to #50%)

High-medium  
genotypeability 
(.50% to ,100%)

Fully  
genotyped 
(100%)

Low-GC content (,33%) 95        15      294    3,553
Medium-GC content (33%–66%) 3,152 1,249 15,321 140,830
High-GC content (.66%) 1,139 1,885   6,106    4,466
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these regions was calculated as described in the Meth-
ods section (Fig. 1). Based on the characteristics of D 
(see Methods), the exons were classified into three 
main categories : (a) Constant/underdispersed exons; 
D , 1, (b) Random / low-overdispersed exons; 1 # 
D # 10, and (c) High-overdispersed exons; D . 10. 
These three bins had 160,115 (95.5%), 4,447 (2.7%) 
and 3,155 (4.1%) exons respectively (Table 3). The 
category of constant/underdispersed exons consists 
of a subset of all exons whose genotypeability results 
are highly similar between all individuals sequenced, 
while on the other extreme, highly overdispersed 
exons category describes the subset of regions for 
which the genotypeability sequencing results differ 
widely. To assess degree of completeness of a given 
exon’s genotypeability, all exons were binned based 
on their average genotypeability value (total number 
of individuals analyzed : N = 11) into 5 major groups: 
No genotypeability (0%), Low genotypeability 
exons (0 to #30%), Medium genotypeability exons 
(.30 to #70%), High genotypeability exons (.71 
to #100%), and Complete genotypeability exons 
(100%). Given the categories above, we investigated 
the distribution of exons as a function of their over-
all genotypeability. The majority of exons (140,325; 
83.7%) were genotyped to completion over their full 
length (Table 3).

Next, we tested if underdispersion of genotype-
ability of a given exon (0 , D , 1) can be used 
as a metric to reliably select exons with consistent 
genotypeability coverage patterns and distinguish 

a significant relationship between the repeat masked 
regions and low genotypeability (χ2  =  26282.69, 
df = 3, P , 2 × 10−16).

From the set of exons that either had high GC 
content or low mappability, we randomly selected 
40 exons with high GC (25) and low mappability 
(15) to test if these exons can be rescued by Sanger 
sequencing. Of the 40 randomly selected exons, 
36 (90%) were successfully sequenced and con-
firmed by Sanger sequencing under various optimiz-
ing conditions (See Supplementary Table S8). Of 
these 36 confirmed exons, 22 were from extreme GC 
and 14 from low-mappability regions. Based on these 
findings, we investigated if exons with a consistent 
genotypeability signature can differentiate regions 
that derive from noisy data.

Index of dispersion robustly distinguishes 
consistently genotyped exons from 
inconsistently genotyped exons
To determine if given exons can be classified into cat-
egories that reflect their overally reproducibility of 
genotypeability across a cohort of patients, we began 
with a set of 179,114 autosomal exons sequenced 
using the same sequencing chemistry (HiSeq 2000) 
and capture kit (TruSeq) in 11 UDP individuals. 
Exonic regions from chromosomes annotated as ‘hap’ 
and ‘random’ were excluded from this set. We also 
excluded short exons (,50 bases in length) from fur-
ther analysis. The final data set consisted of 167,717 
distinct exons. The index of dispersion (D) for each of 

Table 3. Distribution and relationship between genotypeability of exons and their corresponding index of dispersion. 

Average genotypeability 
categories

Index of dispersion (D) categories
Constant/ 
underdispersed  
exons 
(0 $ D . 1)

Random/low- 
overdispersed  
exons  
(1 $ D $ 10)

High  
overdispersed  
exons 
(D . 10)

Total (%)

No genotypeability exons (0%) 3,690 – –    3,690 (2.2%)
Low genotypeability exons  
(0 to #30%)

68 482 1,253    1,803 (1.1%)

Medium genotypeability exons  
(.30 to #70%)

244 758 1,440    2,442 (1.5%)

High genotypeability exons  
(.71 to #100%)

15,788 3,207 462   19,457 (11.6%)

Complete genotypeability  
exons (100%)

140,325 – – 140,325 (83.7%)

Total  160,115 (95.5%) 4,447 (2.7%) 3,155 (1.9%) 167,717

Note: The values of D were calculated from a cohort of 11 individuals sequenced with the TruSeq exome sequencing kit.
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them from the rest of the exons with inconsistent 
patterns (D . 1). In order to test this hypoth-
esis, 5 exons were randomly and independently 
selected from each of the 15 classes of exons 
described in Table  3. Of the 15 possible classes 
of grouped exons, only 11  sub-groups had data 
(see Table 3). This yielded a total of 55 randomly 
selected exons (Fig. 2A). For statistical robustness 

of the two-sample Wilcox test (in a 3 × 3 format), 
no genotypeability and complete genotypeability 
exons were not included to fit the test format. We 
tested the 45 exons (9 data points × 5 exons ) to 
evaluate if the index of dispersion could differ-
entiate between constant/underdispersed exons 
and overdispersed exons. We found a significant 
difference between constant/underdispersed and 

Figure 2. Classification of exons into three distinct groups based on their index of dispersion of genotypeability values. (A) The three main categories 
based on the index of dispersion of genotypeability are:Constant/Underdispersed Exons (CUE; light green), Random/Low overdispersed Exons (RLE; light 
blue) and High overdispersed Exons (HDE; yellow). In total, 55 exons were randomly selected (5 from each genotypeability bin) that were sequenced in 
11 individuals. Each cell in the genotypeability matrix is color coded in a range of shades from red (no genotypeability) to blue (complete genotype). The 
index of dispersion of genotypeability vector is shown below the matrix, and is shaded from black (low dispersion) to white (high dispersion). (B) Ex-Gen: 
An internal web-tool for dynamically analyzing gene-specific genotypeability of whole-exome sequence data in UDP patients. This tools allows users to 
evaluate and interpret whole-exome sequencing results in an individual, gene, and exon-specific manner.
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Figure 3. Prediction and validation of homozygous deletions in patient whole-exome sequence data. (A) Schematic diagram showing the procedure to 
rapidly detect homozygously deleted exon events by deriving dispersion index vectors from massively-parallel exome sequence data of founders and 
probands. (B) PCR validation of deletion event in three genes—UGT2B17, KRT77 and MEGF10 in two affected individuals—UDP2179 and UDP2473. 
UGT2B17 (lanes 2–4), KRT77 (lanes 5–7) and MEGF10 (lanes 8–10) were tested with unaffected (Ctrl), affected (UDP2179 and UDP2473) and negative 
control (NTC).

overdispersed exons (two-sample Wilcoxon test; 
P = 3 × 10−5). Based on these results, we labeled 
a total of 156,425 exons as being consistently and 
repeatably genotyped in multiple samples (3,690 
exons had no genotypeability across the entire 
length of the exon). Addtionally, we cataloged a 
total 6,845 poorly performing exons that either 
had no genotypeability (3,690) or exons that had a 
very high index of dispersion (3,155) See Table 3. 
Finally, for the purpose of internal querying of per-
formance of exome sequence data, we developed a 
web-portal tool called ExGen for dynamic display 
and interrogation. Screen-shots of web-portal are 
shown in Figure 2B.

Application of index of dispersion  
to detect exon-scale homozygous  
deletion events in affected patients
Since the index of dispersion efficiently distinguished 
consistently genotyped exons from noisy regions in 

the exome data, we hypothesized that differences in 
the dispersion signatures of founder data and proband 
data would rapidly enable us to detect homozygous 
deleted regions in probands. To test this, we built 
two datasets of 15 founder individuals (controls) and 
19 proband individuals (affected cases). A total of 
167,717 CCB exons were processsed and the aver-
age genotypeability and indices of dispersion were 
derived for each dataset. The indices of dispersion 
of founders and probands were compared (Fig. 3A). 
Control exons from the founder dataset consisted of 
exons from constant/underdispersed category (0 # 
D # 1) that had greater than 70% average genotype-
ability. The control dataset consisted of 153,654 dis-
tinct exons. The case exons from the proband dataset 
consisted of 7,263 random/low-overdispersed exons 
(1 # D # 10). Exons in proband dataset with poten-
tial exon size homozygous deletion events (D $ 4) 
were tested if in founders (controls) these exons 
were grouped as constant/underdispersed exons 
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(D # 0.6). This rapidly found 702 candidate proband 
exons for potential homozygous deletion events. 
These 702 candidate exons with high dispersion 
index values were further investigated for complete 
lack of sequence genotypeability for each individual 
sequenced, as high index of dispersion for a given 
region in a given test group indicates an outlier in 
genotypeability due to one or a small subset of indi-
viduals. For each of these 702 candidate exons, we 
checked for complete lack of genotypeability across 
the entire length of the exon. This step narrowed the 
total number of candidates from 702 to 119 indepen-
dent exonic regions from in a set of 14 proband indi-
viduals. This result exactly mapped exonic regions 
with lack of genotype data to their respective indi-
vidual with potential homozygous deletion event. 
We finally tested these 119 candidate homozygous 
deletion exons for complete lack of sequence data 
(sequence coverage = 0X) in 14 individuals to elimi-
nate 108 exons with low-sequence coverage in these 
probands, but not enough for confident genotypes to 
be called over the full length of these exons. After 
this final step, there were 11 exons in 3 proband indi-
viduals (UDP2179, UDP2473, and UDP865), in 6 
distinct genes – UGT2B17, PRB1, KRT77, MEGF10, 
CHRFAM7A, and UGT2B28 (Table 4) with complete 
lack of sequence data (0X) suggesting a potential 
true homozygous deletion events. We were able to 
successfully test and validate three (of 11) exons 
in three genes (UGT2B17, KRT77 and MEGF10) 
by quantitative polymerase chain-reaction (qPCR) 
(Supplementary Fig. S4) based on based on the fol-
lowing criteria: (i) the sequence similarity of test 

region was less than 95% compared to the rest of 
the human genome; (ii) the overall GC-content of 
the PCR product was ,60% and did not contain 
runs of poly-G or poly-C. The homozygous deletion 
events were confirmed and validated for all three 
predicted homozygous deletion events (Fig. 3B and 
Supplementary Table S9).

Discussion
In this study we evaluated a systematic and thor-
ough computational approach to define and charac-
terize the genotypeability of protein-coding genes 
sequenced using massively-parallel sequencing tech-
nology. First, we demonstrated the value of a system-
atic approach to evaluate protein-coding bases that is 
agnostic to any one particular gene annotation data-
base, the advantage of not having to report database-
specific results,6 and the performance of the latest 
exome-capture technologies compared to previous 
versions. Using this consensus based approach, we 
systematically demonstrated that over 88% of protein-
coding exons in the human genome are confidently 
genotyped to completion in all individuals sequenced 
using latest exome capture sequencing technol-
ogy. As the research community progresses towards 
implementation of genome and exome sequencing 
in clinical diagnostic and translational settings,23,24 
our findings highlight and pin-point protein coding 
regions in the human genome that are highly com-
plete and reproducible, and amenable to statistically 
reliable interpretation.

Second, we thoroughly evaluated and examined 
the regions that were susceptible to deficiencies of 

Table 4. List of exons in genes in UDP individuals predicted to be homozygously deleted based on exome sequencing data

UDP proband Predicted homozygous  
deleted region

Gene Length Design success 
for confirmation

UDP2179 chr4:69085938-69086217 UGT2B17 280 –
UDP2179 chr4:69113885-69114033 UGT2B17 149 –
UDP2179 chr4:69116074-69116797 UGT2B17 724 Yes
UDP2473 chr12:11397851-11398203 PRB1 353 –
UDP2473 chr12:51372806-51372931 KRT77 126 Yes
UDP2473 chr5:126760123-126760369 MEGF10 247 Yes
UDP865 chr15:28446913-28447022 CHRFAM7A 110 –
UDP865 chr15:28452473-28452640 CHRFAM7A 168 –
UDP865 chr4:70182821-70182969 UGT2B28 149 –
UDP865 chr4:70187059-70187190 UGT2B28 132 –
UDP865 chr4:70194837-70195116 UGT2B28 280 –

http://www.la-press.com


Systematic definition of well-characterized protein-coding exons

Journal of Genomes and Exomes 2013:2	 11

massively-parallel sequence data, and systematically 
evaluated base composition to captured sequenc-
ing correlation. As the exomic regions significantly 
enriched for sequence features such GC content, 
low-sequence mappability were positively correlated 
with poor genotypeability, it is now possible to confi-
dently identify these regions for further evaluation for 
improvement of exome capture kits. This data also 
provides a priori knowledge for using caution dur-
ing interpretation of exome sequencing results which 
requires, for example, measuring frequency of a given 
‘potential disease’ variant in general population. 
Further, this approach allowed us to develop a 
novel statistical method to classify regions that are 
consistently and reproducibly sequenced in our entire 
patient cohort. Our results confirm that dispersion 
index of average genotypeability is an robust met-
ric to confidently classify regions of human genome 
based on sequencing performance.

Finally, we showed application of our statistical 
metric to rapidly achieve a dramatic reduction in 
search-space to confidently detect homozygous dele-
tion events. The search computational complexity 
for finding homozygous deletions by a brute-force 
method would be on the order of O(NxM), where ‘N’ 
is defined as the number of individuals sequenced, 
and ‘M’ is the total number of exons in the human 
genome (∼180,000 exons). Our computational algo-
rithm has a significant impact on the total search 
space considered for evaluation, which is on the 
order of O(Nxm), where ‘m’ is the subset of exons 
with high index of dispersion in test individuals, low 
index of dispersion in controls, no genotypeable and 
no sequence data (∼11 exons in our study). Our find-
ings confirm that true homozygous deletion events 
can be rapidly discovered (∼10,000-fold to 15,000-
fold faster) in panels of cases with appropriate con-
trol whole-exome sequence data using this algorithm. 
We successfully validated and confirmed candiate 
large-scale exon size deletions by PCR and qPCR 
on three genes (UGT2B17, KRT77 and MEGF10) 
identified as homozygously deleted by our compu-
tational approach. The implications of the final step 
not only involves a rapid computational methodol-
ogy to detect and annotate homozygous deletions, 
but also has the potential intrinsic value of providing 
information on potential disease pathogenesis using 
the patient data.

One limitation of our method is that care must be 
taken to ensure that the data under consideration are 
generated under similar conditions, namely, using the 
same sequence capture kit and sequencing platform. 
Dependence of final data on platform has been 
described before,6 but we reiterate this condition. 
Future studies can be designed to evaluate similari-
ties and correlations between different sequencing 
platforms and capture kits, which would enable 
researchers to analyze data for large-scale structural 
changes in a platform-independent manner.

In conclusion, we have described a systematic 
methodology to evaluate exome sequencing data 
for consistent genotypeability across protein coding 
exons in our patient population. In addition, we have 
developed a novel methodology that utilizes the 
advantages of the above principle to rapidly detect 
large homozygous deletions. Finally, we demon-
strate that our methodology allows researchers and 
clinicians to interpret confidently the deletion events 
detected by exome sequencing based on the consis-
tency of sequencing.
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Figure S2. Comparision of three different exome capture kits (Agilent 38 Mb, Agilent 50 Mb, and Illumina TruSeq) and their relationship to four protein 
coding gene annotations (UCSC known genes, RefSeq, Ensembl, and NCBI CCDS). 
Notes: Top panel shows the raw number of sequence bases targeted by each of the three kits and the bottom panel displays the percent of the annotations 
targeted by each of the three kits. The union of protein coding bases from the above three different annotation databases was generated to define and 
evaluate the “entire” coding space. We refer to this union bases as “all coding bases (ACB)” in the main manuscript.
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Figure S1. Area-proportional venn diagram showing overlap of coding bases as annotated by three major gene annotation databases—RefSeq (blue) 
Ensembl (purple) and UCSC (yellow).
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Table S1. Bait design details for each of the three commercial platforms—Agilent SureSelect 38 Mb, Agilent SureSelect  
50 Mb, and Illumina TruSeq.

Target kit intersections Bases covered Percent of union
SureSelect 38 only      16805 0.02
SureSelect 50 only   8,325,804 10.40
TruSeq only 28,563,968 35.67
SureSelect 38 and SureSelect 50 98,77,412 12.33
SureSelect 38 and TruSeq     1,377 0.00
SureSelect 50 and TruSeq 5,551,621 6.93
SureSelect 38 and SureSelect 50  
and TruSeq

27,744,802 34.65

SureSelect 38 or  
SureSelect 50 or TruSeq

80,081,789 100.00

Table S2. Number and percentage of common coding base regions with no genotyping coverage in each chromosome in 
samples sequenced using TruSeq exome capture kit to show robustness of our methodolgy and its independence on num-
ber of individuals sequenced (N = 11, N = 34, N = 184).

Chromosome Number of regions detected using different sample sizes Average 
percentageN = 11 N = 34 N = 184

chr1 578 611 588 7.7
chr10 325 325 312 4.2
chr11 190 211 207 2.6
chr12 153 164 155 2.0
chr13 54 60 61 0.8
chr14 80 85 86 1.1
chr15 212 219 215 2.8
chr16 276 294 289 3.7
chr17 399 333 319 4.6
chr18 37 41 43 0.5
chr19 253 275 266 3.4
chr2 395 386 380 5.0
chr20 98 114 112 1.4
chr21 49 56 54 0.7
chr22 122 126 127 1.6
chr3 195 199 191 2.5
chr4 130 142 142 1.8
chr5 220 222 221 2.9
chr6 2,767 2,772 2,762 36.0
chr7 236 251 245 3.2
chr8 205 200 195 2.6
chr9 217 239 221 2.9
chrX 322 298 251 3.8
chrY 165 160 160 2.1
Total 7,678 7,783 7,602 100

Table S3. GC-content of short exons (,50 nucleotides) and their average genotypeability values in UDP samples (N = 11).

GC content (%)  
of the exon

Average genotypeability of exons (N = 10,388) in 11 samples
None 
(0) 

Low-medium 
(.0–50)

High-medium 
(.50–,100)

Full 
(100)

,33 28 3 37 560
33–66 518 193 668 7433
.66 150 80 187 531
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Table S4. GC-content of medium exons (50–300 nucleotides) and their average genotypeability values in UDP samples 
(N = 11).

GC content (%)  
of the exon

Average genotypeability of exons (N = 154,879) in 11 samples
None 
(0) 

Low-medium 
(.0–50)

High-medium 
(.50–,100)

Full 
(100)

,33 67 12 246 2955
33–66 2493 944 12220 125838
.66 865 1117 4470 3652

Table S5. GC-content of long exons (.300 nucleotides) and their average genotypeability values in UDP samples  
(N = 11).

GC content (%)  
of the exon

Average genotypeability of exons (N = 12,322) in 11 samples
None 
(0) 

Low-medium 
(.0–50)

High-medium 
(.50–,100)

Full 
(100)

,33 0 0 8 16
33–66 130 107 2387 7165
.66 120 685 1438 266

Table S7. Repeat masker annotations and average exon genotypeability values in UDP samples (N = 11).

Repeat masked region  
overlap of the exon

Average genotypeability of exons (N = 178,105) in 11 samples
None 
(0) 

Low-medium 
(.0–50)

High-medium 
(.50–,100)

Full 
(100)

10% 1292 610 644 651
,10% (or none) 3094 2539 21077 148198

Table S6. Mappability (Broad alignability track) and average exon genotypeability values in UDP samples (N = 11).

Mappability Average coverage of exons (N = 178,105) in 11 samples
None 
(0)

Low-medium 
(.0–50)

High-medium 
(.50–,100)

Full 
(100)

,0.33 1617 496 1690 4210
0.33–0.66 31 17 123 625
.0.66 2738 2636 19908 144014
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Table S8. Sanger sequencing confirmation of 40 randomly selected exons with either high GC content or low mappability.

Region Sequence success Comments
GC1 +  
GC2 +  
GC3 +  
GC4 +  
GC5 +  
GC6 +  
GC7 +  
GC8 +  
GC9 +  
GC10 +  
GC11 +  
GC12 +  
GC13 +  
GC14 +  
GC15 +  
GC16 +  
GC17 +  
GC18 +  
GC19 +  
GC20 +  
GC21 +  
GC22 + Missing 3′ end
GC23 +  
GC24 - No coverage
GC25 + Missing 3′ end
LM1 +  
LM2 +  
LM3 +  
LM4 +  
LM5 +  
LM6 +  
LM7 +  
LM8 +  
LM9 +  
LM10 +  
LM11 +  
LM12 +  
LM13 +  
LM14 +  
LM15 - No coverage

Abbreviations: GC, GC content; LM, Low mappability.
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Table S9. Optimization conditions experimented with to rescue complete and valid Sanger sequence data in 4 regions of 
sequencing failure.

Region Sequence status Primer set Conditions PCR product
GC22 Missing 3′ end #1 (5′ end) H2O/dmso/qbuffer no/yes/no
    #2 (3′ end) H2O/betaine/dmso/qbuffer no/no/no/no
    #3 (3′ end) H2O/dmso/qbuffer/betaine 22a—no/yes/no/no
        22b—no/no/no/no
GC24 No coverage #2 H2O/betainedmso/qbuffer yes/no/no/no
    #3 H2O/dmso/qbuffer/betaine no/yes/no/no
GC25 Missing 3′ end #1 (5′ end) H2O/dmso/qbuffer no/yes/no
    #3 (3′ end) H2O/dmso/qbuffer/betaine 25a—no/yes/no/no
        25b—no/no/no/no
        25c—no/yes/no/no
LM15 No coverage #1 H2O/dmso/qbuffer/betaine yes/no/no/yes
    #3 H2O/dmso/qbuffer/betaine yes/no/yes/yes
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