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Abstract Forests have long life cycles of up to several hundred years and longer. They also have very 

different growth rates at different stages of their life cycles. Therefore the carbon cycle in forest 

ecosystems has long time scales, making it necessary to consider forest age in estimating the 

spatio-temporal dynamics of carbon sinks in forests. The focus of this article is to review methods for 

combining recent remote sensing data with historical climate data for estimating the forest carbon 

source and sink distribution. Satellite remote sensing provides useful data for the land surface in 

recent decades. The information derived from remote sensing data can be used for short-term forest 

growth estimation and for mapping forest stand age for long-term simulations. For short-term forest 

growth estimation, remote sensing can provide forest structural parameters as inputs to 

process-based models, including big-leaf, two-leaf, and multi-layered models. These models use 

different strategies to upscale from leaf to canopy, and their reliability and suitability for remote sensing 

applications will be examined here. For long-term forest carbon cycle estimation, the spatial 

distribution of the forest growth rate (net primary productivity, NPP) modeled using remote sensing 

data in recent years is a critical input. This input can be combined with a forest age map to simulate 

the historical variation of NPP under the influence of climate and atmospheric changes. Another 

important component of the forest carbon cycle is heterotrophic respiration in the soil, which depends 

on the sizes of soil carbon pools as well as climate conditions.  Methods for estimating the soil 

carbon spatial distribution and its separation into pools are described. The emphasis is placed on how 

to derive the soil carbon pools from NPP estimation in current years with consideration of forest 

carbon dynamics associated with stand age variation and climate and atmospheric changes. The role 

of disturbance in the forest carbon cycle and the effects of forest regrowth after disturbance are also 

considered in this review. An example of national forest carbon budget estimation in Canada is given 

at the end. It illustrates the importance of forest stand age structure in estimating the national forest 

carbon budgets and the effects of climate and atmospheric changes on the forest carbon cycle.  
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1. Introduction 

With rapid increases in greenhouse gas (GHG) emissions to the atmosphere from fossil fuel consumption, 

land use change and other human activities in recent decades, the rate of GHG buildup in the atmosphere has 

accelerated in the past decades. Terrestrial ecosystems play an important part in the global cycle and have been 

absorbing about 2-3 PgC y-1 from the atmosphere in the last three decades (Houghton, 2007, Sarmiento et al., 

2009). This sink has been highly variable in the last 50 years (Canadell et al., 2007) and appears to have been 

increasing in the last few decades (Le Quéré et al., 2009), although the uncertainties of these sink estimates as 

the residual of the global carbon budget are still very large. The durability of this sink would dictate the rate of 

CO2 increase in the atmosphere in the near future under a given greenhouse gas emission scenario and would 

cause considerable uncertainties in projecting the future CO2 atmospheric concentration and climate change 

(Cox et al., 1998; Friedlingstein et al., 2006). From the scientific viewpoint, it is therefore critically important 

to understand the carbon cycle in terrestrial ecosystems and to improve our ability to project its future trend 

(Tans et al., 1990; Pataki et al. 2003).  

The heterogeneous nature of terrestrial ecosystems presents a major challenge in our effort to improve 

regional and global carbon cycle estimation. Using atmospheric CO2 measurements at coastal and continental 

sites, monthly and annual terrestrial carbon sinks and sources for large areas of the globe have been inferred 

through atmospheric inverse modeling (Gurney et al., 2002; Rodenbeck et al., 2003; Deng et al. 2007; Stephens 

et al., 2007). These “top-down” results still have considerable uncertainties and don’t yet show enough spatial 

details suitable for ground validation and policy formulation, although the spatial resolution will soon be 

improved using the forthcoming CO2 column data to be retrieved from satellite measurements (Crisp and 

Johnson, 2005; Inoue et al., 2006). Reliable carbon fluxes can be measured with the eddy covariance technique, 

as used in the many national and regional flux networks (Baldocchi et al., 2001). However, these flux 

measurements only cover a very small fraction of the total land surface area. Spatial information of the land 

surface retrievable from space-borne instruments can be used effectively for spatially explicit carbon cycle 

modeling (Running et al., 1989; Potter et al., 1993; Chen et al., 2003b; Goetz et al., 2005; Ju et al., 2006) for 

the purpose of both improving the accuracy of regional carbon budget estimation and showing spatial details 

for ecosystem management purposes.  

This review article serves the following purposes: (1) to briefly review basic concepts of the forest carbon 

cycle, (2) to describe methods for retrieving surface parameters using satellite data that are useful for carbon 

cycle modeling, (3) to examine methodologies for process-based modeling of the forest growth rate using 
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remote sensing inputs, (4) to introduce a method for modeling long-term carbon cycle dynamics (including soil) 

by combining short-term remote sensing data with long-term climate data and to suggest ways to use flux 

measurements recent years for validating historical carbon flux calculations, and (5) to consider the role of 

disturbance in forest carbon cycling. Examples of forest carbon sink and source distributions in Canada and 

China will be shown to demonstrate some of the modeling principles.    

 

2. Basic Concepts of the Forest Carbon Cycle 

The terrestrial carbon cycle involves carbon uptake from the atmosphere through photosynthesis and 

carbon release from the soil and vegetation through respiration and disturbance. Photosynthesis is a process that 

converts atmospheric CO2 in the gaseous form into carbohydrates in the solid form. Respiration is a process 

that returns the CO2 gas to the atmosphere through consuming some of the carbohydrates in plants and through 

decomposing dead organic matter in the soil. Disturbance to an ecosystem can occur due to fires, insects and 

timber harvest, causing additional release of carbon to the atmosphere. The gross primary productivity (GPP) 

quantifies the total photosynthesis rate per unit land surface area per unit time, usually expressed in units of gC 

m-2y-1 or tC ha-1y-1, and it may be considered as the start of the terrestrial carbon cycle. The net primary 

productivity (NPP) is a measure of net carbon absorption by vegetation per unit time and space, in the form of 

biomass accumulation. It is responsible for both the increment of total biomass (both aboveground and 

belowground) with time plus accumulation of soil organic matter through the turnover of fine roots and leaves 

to soil. In process models, NPP is taken as the difference between GPP and autotrophic respiration (Ra), i.e., 

aRGPPNPP            (1) 

Autotrophic respiration is required to maintain plant life. It has two components: maintenance respiration and 

growth respiration. Maintenance respiration is the energy cost in maintaining living biomass, and the growth 

respiration is the energy cost in constructing new plant tissues. These energy costs reduce the rate of biomass 

production from GPP by about half (Ryan et al., 1996), but the reduction rate depends on growth conditions 

(Ryan et al., 1997). 

     The net ecosystem productivity (NEP) determines the net exchange of carbon between the land surface 

(vegetated or non-vegetated) and the atmosphere, excluding the direct carbon release due to disturbance. It is 

calculated as the difference between NPP and heterotrophic respiration (Rh), i.e., 

hRNPPNEP     (2) 
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Rh results from the decomposition of dead organic matter in soils and the litter layer above mineral soils. By 

this definition, when NEP>0, the land surface is a sink, i.e., it absorbs more carbon than it releases to the 

atmosphere. In micrometeorological measurements of carbon fluxes, the term net ecosystem exchange (NEE) is 

often used (Black et al., 1996). NEE and NEP have the same absolute values but opposite signs. 

     The net biome productivity (NBP) is used to account for carbon losses due to disturbance 

at the biome level (Walker and Steffen, 1997). It is estimated as: 

DNEPNBP               (3) 

where D is the direct carbon release at the time of disturbance. It usually has three components:  

logsec DDDD tinfire      (4) 

where Dfire, Dinsect and Dlog are the amounts of carbon release due to forest fire, insect-induced 

mortality, and accelerated turnover and decomposition of dead organic matter after timber 

removal, respectively.  

NPP is an important component of the terrestrial carbon cycle. For forests, it can be related to  biomass 

increment through tree ring analysis (Thomas et al., 2007). When CO2 fluxes are measured simultaneously 

above and below the canopy, half-hourly NPP values can also be derived for model validation (Chen et al., 

1999). CO2 flux measurements directly provide NEP data. The flux data can also be used to derive GPP through 

adding the total ecosystem respiration (Re) to the NEP measured in daytime (Goulden et al., 1996). The total 

ecosystem respiration is the sum of autotrophic and heterotrophic respiration.   

 

3. Remotely Sensed Surface Parameters Useful for Forest Carbon Cycle Modeling 

As the land surface is generally heterogeneous, airborne and space-borne remote sensing measurements 

can provide highly desirable information for modeling some of the carbon cycle components discussed above. 

There are a long list of land surface parameters that are useful for forest carbon cycle modeling (Chen, 2005), 

including leaf area index, clumping index, disturbance, land cover, biomass, wetland, leaf chlorophyll, leaf 

nitrogen, etc. Methods for retrieving the first three parameters are briefly reviewed here, and some examples 

are also given. 

3.1. Leaf Area Index 

Leaf area index (LAI) is defined as one half the total leaf area (all sided) per unit ground surface area 

(Chen and Black, 1992). This definition is suitable for both broadleaf and needleleaf forms and is now broadly 

accepted (Jonckneere et al., 2004). Several algorithms have been developed for global mapping of LAI using 



42                                                                                                                                            SCIENCE FOUNDATION IN CHINA 

data from various sensors including MODIS (Myneni et al., 2002), POLDER (Lacaze et al., 2003), MERIS 

(Baret et al., 2006), and VEGETATION and AATSR (Deng et al., 2006). Large discrepancies are found among 

these global LAI products (Garrigues et al., 2008). In addition to the differences in sensor characteristics, these 

LAI retrieval algorithms also differ considerably in techniques used to relate reflected radiative signals to LAI 

and in assumptions made in establishing these relationships. There are also inconsistencies in LAI definition 

and in techniques for ground-based LAI measurements used in the algorithm development. In producing and 

validating Canada-wide LAI products, Chen et al. (2002) proposed a set of LAI measurement protocols as well 

as validation procedures. Through previous studies (Chen, 1996, Chen et al., 1997; Chen et al., 1999; Chen et 

al., 2002; Fernandes et al., 2003; Abuelgasim et al., 2005), consistent ground-based measurements of LAI were 

made in many forest and crop canopies over large geographical areas, providing a solid foundation for LAI map 

validation over Canada. For conifer forests, it is shown that the reduced simple ratio (RSR) (Brown et al., 2000) 

is most significantly correlated with LAI, where RSR is defined as 
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where n, r, and s are the reflectance in NIR, red, and shortwave infrared (SWIR) bands, respectively, and 

min and min are the minimum and maximum reflectance in the SWIR band, determined from 1% cutoff points 

in the histogram of a given image. Figures 1a and 1b show the relationships between LAI and SR and between 

LAI and RSR for major cover types, respectively. Compared with SR, i.e., n/r, RSR has a large sensitivity to 

LAI changes through suppression of the effects of the background greenness and variability. RSR differs less 

for the various cover types at the same LAI than does SR, giving a clear advantage for applications to mixed 

pixels, which are the norm in coarse pixels. RSR are also found to be better correlated to LAI of boreal forests 

than other vegetation indices (Stenberg et al., 2004). In the LAI algorithm of Deng et al. (2006), RSR is only 

used for forest cover types, but SR is used for other cover types to avoid the error due to the large influence of 

irrigation on SWIR reflectance.  

The algorithm of Deng et al. (2006) is developed for global LAI mapping based on a geometric-optical 

model (Chen and Leblanc, 1997 and 2001) calibrated against LAI measurements made in Canada and 

elsewhere. In this algorithm, the dependence of the reflectance on the solar and satellite view angles, i.e. 

bi-directional reflectance distribution function (BRDF), is considered using a look-up table technique. The LAI 

retrieval is made in two steps: (1) to invert the remotely sensed canopy gap fraction into the effective LAI (Le) 

(Chen, 1996), assuming the spatial distribution of leaves is random, and (2) to convert the effective Le into LAI 
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(L) using the following equation: 

 /eLL           (6) 

where Ω is the clumping index characterizing the deviation of the leaf spatial distribution from the random case 

(see Section 3.2 below). Either cover-type specific Ω values or a global Ω map can be used for this conversion. 

An example of a global LAI map in the mid-summer produced using this algorithm is shown in Figure 2. 

Partial validation of this map has been made using data from Canada (Pisek et al., 2007) and North America 

(Pisek and Chen, 2007). 

3.2. Clumping Index 

When the size of leaves is smaller than the canopy height, Ross (1981) demonstrated that the attenuation 

of radiation in a plant canopy can be well described by the Beer’s law when the leaf spatial distribution is 

random. Nilson (1971) modified the Beer’s law with a leaf dispersion parameter to consider the case when this 

distribution is not random. The leaf distribution can either be more regular than random, or more clumped than 

random. Natural ecosystems generally have clumped distributions of leaves, such as groupings of leaves in 

shrubs and tree crowns, and this dispersion parameter is therefore often called the clumping index (Chen, 1996). 

Chen and Cihlar (1995) developed an optical instrument named TRAC (Tracing Radiation and Architecture of 

Canopies) to measure this clumping index based on a gap size distribution theory (Miller and Norman, 1971). 

Measuring this clumping index has therefore become an integral part of LAI measurements, and a large dataset 

of clumping index for various ecosystems have been accumulated. However, as the three-dimensional canopy 

structure varies greatly in space, the clumping index also varies greatly, and it is highly desirable to map this 

index. It was not possible to do this globally until recently the multi-angle POLDER data become available. 

Chen et al. (2001) first demonstrated that the magnitude of reflectance variation from the hotspot, where the 

illumination and observation directions coincide, to the darkspot, where the reflectance is minimum in the 

principle solar plane, is mostly determined by the degree of foliage organization (clumping). Through 

geometrical optical simulations using the 4-Scale model (Chen and Leblanc, 1997), they demonstrate that 

clumped canopies cast strong shadows in the forward viewing directions, reducing the darkspot reflectance. 

The reduction was found from data and simulations to be the largest for conifer, smallest for grassland. They 

developed an angular index based on the hotspot and darkspot reflectance. These model simulations were later 

validated using airborne POLDER data (Lacaze et al., 2002) and space-borne POLDER data (Chen et al., 

2003a). Through large number of model simulations (Chen et al., 2005; Leblanc et al., 2005), it is shown that 

the normalized difference between hotspot and darkspot (NDHD) is most linearly related to the clumping index. 
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NDHD is defined as: 

dh

dhNDHD
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


                 (7) 

where h and d are the hotspot and darkspot reflectance, respectively. These modeled relationships are applied 

to multiple angle POLDER data for regional and global clumping index mapping (Chen et al., 2005; and 

Leblanc et al., 2005). For this purpose, POLDER data for the same pixel observed at different angles (up to 14 

angles during one single overpass) are fitted with a simple exponential function (Chen and Cihlar, 1997) to find 

the most reliable hotspot and darkspot values for a given set of observations. Using these methodologies, Chen 

et al. (2005) for the first time produced a global clumping index map using POLDER I data at 6 km resolution, 

and this map is updated here using POLDER III data (Figure 3). This map is a multiple angle view of the global 

land surface, where forests are most clumped (clumping index much smaller than unity) and grassland is least 

clumped (clumping index close to unity). This multiple angle view can also tell shrubland from grassland, not 

possible in a single view image. In forested areas, there are large variations in the index due to forest structural 

differences and topographical effects. In mountainous areas, topographical variations also contribute to the 

BRDF variation, causing additional unwanted variation in the retrieved clumping index. The first order of this 

effect has been removed based on the standard deviation of digital elevation model at 1 km resolution within 

each 6 km × 6 km POLDER pixel (Pisek et al., 2010). This clumping index map has been used to convert 

effective LAI maps derived using the algorithm of Deng et al. (2006) to true LAI maps (Chen et al., 2010). 

3.3. Disturbance Detection 

Disturbance to forests occurs mostly due to wildfires, insects and timber harvest. It has profound 

consequences in forest carbon cycling through its impacts on biomass, soil organic matter, stand dynamics, 

forest renewals and succession, etc. (Kurz and Apps, 1999). The changes caused by disturbance can be reliably 

detected using remote sensing techniques. After a forest is burned, for example, green leaf area and the standing 

liquid water in foliage and stem biomass are drastically reduced, causing the reflectance in near-infrared (NIR) 

to decrease and the reflectance in mid-infrared (MIR) to increase. The ratio of MIR to NIR reflectance therefore 

increases dramatically shortly after fire disturbance. Figure 4, shows the variation of this ratio obtained from 

SPOT VEGETATION images in the summer 1998 with time since fire for all burned fire scars across Canada 

since 1959 (Amiro et al., 2002). The correlation is improved when separate regressions are made for individual 

ecoregions in Canada, with r2=0.57-80 for 16 of the 18 ecoregions (Amiro and Chen, 2002). As the variation in 

this ratio becomes small in about 25 years after fire, fire scar dating was restricted to 25 years before the 
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imaging date in 1998, with an error of 7 years. When images acquired in multiple years are used, the accuracy 

in fire scar mapping and dating can be further improved (Zhang et al., 2004).  

The ratio of MIR and NIR reflectance is used as a general disturbance index (DI) in our recent work (He et 

al., 2010a) because it also responds to other disturbance types including insect and harvest. For the purpose of 

refining a forest stand age map over conterminous USA compiled using Forest Inventory and Analysis (FIA) 

data at the county level, spatial information of forest disturbance and its occurrence date would be useful. For 

this purpose, over 400 pairs of Landsat TM/ETM scenes acquired circa 1990 and 2000 were used to detect 

forest disturbance in the period between 1990 and 2000 (He et al., 2010a). The data were preprocessed by the 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) project (Masek et al., 2008), and the 

spatial resolution of the original images was reduced from 30 m to 500 m for computation efficiency. The 

detected disturbances based on the change in DI between 1990 and 2000 were separated into two five-year age 

groups according the DI value. FIA data of forested areas in various forest stand age groups at the county level 

were used to set the thresholds for disturbance detection and for separating the detected disturbance in two 

groups, i.e. disturbance between 1990 and 1995 and between 1996 and 2000. The results are shown in Figure 5, 

where the date of detected disturbance is converted to the stand age assuming the regrowth of a forest starts in 

the second year of the disturbance. The disturbance is mostly caused by fire in western states, by insect in 

northeastern states, and by harvest in southeastern states.   

 

4. Photosynthesis Modeling Methodology 

The total photosynthesis in a vegetation stand, e.g. at the canopy level, is the sum of the contributions 

from individual leaves. The biochemical processes that take place inside individual leaves during 

photosynthesis are therefore of fundamental importance in our ability to simulate photosynthesis at the canopy 

level. When a photosynthesis model for individual leaves is available, various upscaling strategies can be used 

to estimate the canopy-level photosynthesis. Remotely sensed vegetation structural parameters, i.e. LAI and 

clumping index, described above are essential for this upscaling.  

4.1. Leaf-level photosynthesis model 

Among models of photosynthetic CO2 assimilation by plant leaves, the mechanistic model proposed by 

Farquhar et al. (1980) has been widely used. The model describes the leaf gross photosynthesis rate at an 

instant of time for C3 plants as the minimum of:   
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where Wc and Wj are Rubisco-limited and light-limited gross photosynthesis rates in mol m-2 s-1, respectively.  

Vm is the maximum carboxylation rate in mol m-2 s-1; J is the electron transport rate in mol m-2 s-1; Ci is the 

intercellular CO2 concentration;  is the CO2 compensation point without dark respiration; K is a function of 

enzyme kinetics. The dimension for Ci, , K can be either in Pa or in ppm (parts per million). Pa is used here. 

Both  and K are temperature-dependent parameters. , derived from Collatz et al. (1991) and Sellers et al. 

(1992), can be expressed as: 

 = 1.92*10‐4 O2(1.75)
(T‐25)/10        (9) 

where O2 is the oxygen concentration in the atmosphere, being 21,000 Pa, assuming that the atmospheric 

pressure is 100,000 Pa and O2 occupies 21% of the air by volume. T is the air temperature in oC. K is given by:  

K=Kc(1+O2/Ko)              (10) 

where Kc and Ko are Michaelis-Menten constants for CO2 and O2 in Pa, respectively. Kc = 30*2.1(T-25)/10, and Ko 

= 30,000*1.2(T-25)/10 (Collatz et al., 1991). Vm can be expressed as a function of temperature (Collatz et al., 1991) 

or a function of both temperature and leaf nitrogen content (Bonan, 1995): 

Vm =Vm25 2.4
(T‐25)/10f(T)f(N)       (11) 

where Vm25 is Vm at 25 oC, and is a variable depending on vegetation type, f(T) and f(N) are temperature and 

nitrogen limitation terms defined as: 

f(T)=(1+exp((‐220,000+710(T+273))/(Rgas(T+273))))
‐1      (12a) 

f(N)=N/Nm,                                  (12b) 

where N is the leaf nitrogen content, and Nm is the maximum nitrogen content. J is dependent on photosynthetic 

photon flux density (PPFD) absorbed by the leaf (Farquhar and Caemmerer, 1982) and is given by: 

J=JmaxPPFD /(PPFD+2.1*Jmax)          (13) 

where Jmax is the light-saturated rate of electron transport in the photosynthetic carbon reduction cycle in leaf 

cells. According to Wullschleger (1993), it is related to the Rubisco activity by: 

Jmax=29.1+1.64*Vm..            (14) 

To get net CO2 assimilation rate (A), daytime leaf dark respiration (Rd) is subtracted from Eq. 8: 
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A=min(Wc, Wj)-Rd.      (15) 

According to Collatz et al. (1991), 

Rd=0.015Vm.        (16) 

The above instantaneous photosynthesis model at leaf level defines the photosynthetic processes of individual 

leaves with known light illuminance at an instant of time. In using the above equations to calculate the 

photosynthesis rate of a leaf, the value of Ci is unknown, and another physically based equation is needed as 

described below.   

The net photosynthesis rate can also be described in the form (Leuning, 1990; Sellers et al., 1996): 

A = (Ca ‐ Ci)g              (17) 

where Ca is CO2 concentration in the atmosphere; g is the conductance to CO2 through the pathway from the 

atmosphere outside of leaf boundary layer in mol m-2 s1 Pa-1 to the intercellular space, given by: 

g 106* gs /(Rgas *(T+273))        (18) 

where gs is stomatal conductance; Rgas is the molar gas constant, being 8.3143 m3 Pa mol-1 K-1. After (i) 

substituting Ci in Eqs. 8a & 8b with Eq. 14, (ii) combining the results with Eq. 15, and (iii) choosing the 

solution of the quadratic equations with the smaller roots (Leuning, 1990), we obtain: 

)))()((4))(()((
2

1 2 gRKCCVRVgKCRVgKCA daamdmadmac                          (19a) 

)))3.2()(2.0(4)2.0)3.2((2.0)3.2((
2

1 2 gRCCJRJgCRJgCA daadadaj      (19b) 

where Ac and Aj correspond to Wc and Wj, respectively, after a small reduction for dark respiration.  

 

4.2. Canopy-level photosynthesis models 

In principle, Eqs. 19a and 19b could be applied to every leaf in a canopy in order to simulate the 

canopy-level photosynthesis rate. However, in practice there are several ways to use the individual leaf model 

for the whole canopy. The principles of these ways of modeling are described here. 

4.2.1 Big-leaf model 

It is assumed in using a big-leaf model that biochemical processes that are described at the leaf-level are 

unchanged at the canopy level, i.e. Eqs. 8-19 can all be applied to the canopy treated as one single “big leaf”. 

Under the same meteorological and soil conditions, the big leaf can function differently according to one single 

parameter: leaf area index (L). It is used to define the canopy conductance (gc): 
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gLgc                  (20) 

This canopy conductance is used to replace the stomatal conductance g in Eq. 17 to change the single leaf 

model to a big-leaf model. To recognize the fact that not all leaves in the canopy contribute equally to the total 

canopy-level photosynthesis, some big-leaf models (Seller et al., 1992 and 1996) made adjustments to Eq. 20 

by weighting the contributions of leaves at different depths into the canopy according to the mean radiation 

gradient. This adjustment addresses the issue of diminishing contributions of leaves at the lower levels because 

of the exponential decrease of light with depth into the canopy. 

Because of its simplicity and apparent inclusion of biochemical processes, the big-leaf formulation was 

widely used in early ecological models, such as Biome-BGC (Hunt and Running, 1992, Kimball et al., 1997; 

Liu et al., 1997) and SiB2 (Sellers et al., 1996). However, big-leaf models have two serious deficiencies (Chen 

et al., 1999). First, the influence of radiation on photosynthesis is almost non-existent in big-leaf models during 

the growing season. Even under overcast conditions, sky radiation is still nearly sufficient for the big leaf 

exposing fully to the incoming radiation, while in reality, shaded leaves or leaves at the lower levels would 

have insufficient light for photosynthesis. Mathematically, Eq. 8b for the light-limited case produces values 

consistently larger than those produced by Eq. 8a for the nutrient-limited case, practically diminishing the 

radiation control over the photosynthesis. In reality, the radiation control operates against shaded leaves in the 

canopy most of the time. Second, big-leaf models assume that photosynthesis takes place in one leaf (or 

conceptually one layer of leaves), while in reality several layers of leaves operate simultaneously. This 

assumption dramatically distorts the carbon flow path, represented as a network of resistances (Figure 6). In the 

big-leaf formulation, only one leaf internal resistance operates against the flow of CO2 from the stomatal cavity 

(represented by Ci) to the photosynthetic apparatus (represented by the compensation point Γ). The use of 

canopy resistance rather than the stomatal resistance modifies part of the pathway to consider the fact that the 

carbon flow would meet less resistance through multiple stomatal openings. This description of the flow 

pathway is quite different from the case of multiple layers of leaves that are operating simultaneously, where 

several internal leaf resistances operates in parallel, as they occur in reality. The big-leaf formulation therefore 

artificially amplifies the control of leaf internal resistance on photosynthesis, making it less variable under 

various environmental conditions as demonstrated by Chen et al. (1999) using daily NPP data derived from two 

level CO2 flux measurements. It has been proposed that big-leaf formulation should be abandoned completely 

(Chen et al., 2003a). 
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4.2.2. Two-leaf model 

To avoid the deficiencies of the big-leaf model formulation as described above, the total canopy 

photosynthesis (Acanopy) can be modeled based on two representative leaves, one sunlit and one shaded (Leuning 

et al.,1995; De Pury and Farquhar, 1997; Wang and Leuning, 1998). The photosynthesis rates of these two 

leaves can be calculated using the individual leaf model (Eqs. 8-19) and then multiplied by their respective leaf 

area indices as proposed by Norman (1982):  

Acanopy = Asun Lsun –Ashade Lshade      (21) 

where the subscripts “sun” and “shade” denote the sunlit and shaded components of photosynthesis and LAI. It 

is important to note that this two-leaf formulation is conceptually very different from two big-leaf models, in 

which the total photosynthesis rates for sunlit and shaded leaf strata are calculated using separate sunlit and 

shaded canopy conductances. Two big-leaf models is an improvement over big-leaf models, but still suffer the 

same deficiencies as big-leaf models as outlined in Section 3.2.1, although to a lesser extent. We therefore need 

to differentiate the concepts of “two-leaf model” and “two big-leaf model”. 

The method of Norman (1982) for calculating LAIsun and LAIshade has been modified to consider the effect 

of foliage clumping index () on the canopy radiation regime (Chen et al., 1999): 

Lsun = 2 cos(1‐exp(‐0.5L/ cos))        (22a) 

Lshade = L ‐Lsun                              (22b) 

where L is the leaf area index, and  is the solar zenith angle.  is 0.5-0.7 for conifer forests, 

0.7-0.9 for broadleaf forests, and 0.9-1.0 for grass and crops (Chen, 1996a; Chen et al., 1997). 

The larger  departs from unity, the more non-random is the foliage spatial distribution. It is 

critically important to consider this factor in productivity models because foliage clumping alters 

the way plants interact with incident radiation. Increasing foliage clumping (decreasing  value) 

allows more radiation to penetrate through the canopy without being intercepted by the foliage 

and therefore decreases sunlit LAI and increases shaded LAI. The clumped architecture of forest 

canopies makes the stratification between sunlit and shaded leaves essential because the fraction 

of the shaded leaves is much larger in clumped canopies than in random canopies and shaded 

leaves play an important role in forest productivity (Guolden et al., 1997). In a global GPP 

modeling study using a two-leaf model, Chen et al. (2010) found that shaded leaves contribute 

61%, 48%, 44%, 29%, 39%, and 42% to the total GPP for broadleaf evergreen forest, broadleaf 
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deciduous forest, conifer forest, shrub, C4 vegetation, and other vegetation, respectively. This 

result indicates the importance of modeling shaded leaf photosynthesis. 

In the calculation of Asun and Ashade in Eq. 21, the solar irradiances on the representative 

sunlit and shaded leaves must be estimated. For remote sensing applications, Chen et al. (1999) 

developed a set of simple equations for estimating these irradiances from the global radiation 

according to LAI, clumping index, solar zenith angle and mean leaf inclination angle. These 

equations also include radiation multiple scattering inside the canopy. 

4.2.3. Multi-layer model 

The total canopy photosynthesis rate can also be estimated using multi-layer models, in 

which the average photosynthesis rate of a leaf layer can be estimated using the leaf level model 

(Eqs. 8-19) in the following mathematical formulation (Bonan, 1995; Foley et al., 1996): 




L

i iicanopy gAA
1

)(     (23) 

where Ai(gi) is the photosynthesis rate for ith layer of leaves as a function of the average stomatal 

conductance gi for that layer. This formulation also avoids the deficiencies of big-leaf models 

(section 3.2.1), and it has the advantage of specifying different leaf biophysical parameters for 

different layers, such as the specific leaf area (Raulier et al., 1999) and the leaf nitrogen content 

(Leuning et al., 1995). In the implementation of this model, it is critical to calculate the average 

solar irradiance on each layer of leaves in order to obtain the representative value gi. However, in 

each layer at a given time, there are sunlit and shaded leaves operating at very different rates, and 

which of the two limitations (light or Rubisco) takes control depends mostly on whether a leaf is 

sunlit or shaded. This multilayer formulation is therefore generally not as effective as the simpler 

two-leaf model. However, it can be further improved by separating the sunlit and shaded leaf 

groups in each layer (Leuning et al., 1995; Raulier et al., 1999). 

4.3 Stomatal conductance 

Plants respond to their environment through stomatal movement that can be quantified in terms of 

stomatal conductance. In all leaf-level and canopy-level photosynthesis models, leaf stomatal conductance to 

CO2 is a critical parameter. Two approaches are commonly used in estimating the stomatal conductance and are 

outlined here. 
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4.3.1 Jarvis’ Semi-empirical Approach 

The Jarvis’ approach is to reduce a species-dependent maximum stomatal conductance by the degrees of 

environmental conditions departing from the optimum (Jarvis and Morison, 1981; Running and Coughlan, 1988; 

Chen et al., 2005). The environmental factors usually include photosynthetic photon flux density (PPFD), 

temperature (T), vapor pressure deficit (VPD), and soil water content (θ), i.e. 

gs=max(gmax*f(PPFD)*f(T)*f(VPD)*f(θsw), gmin)    (24) 

where the environmental functions are scalars between 0 and 1, which are formed in the same way as in 

BIOME-BGC. These functions are expressed as:  

)*1/(*)( coefcoef PPFDPPFDPPFDPPFDPPFDf          (25a) 
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The meaning of the symbols in these equations and their values and units are found in Table 1.  

4.3.2. Ball-Berry’s Approach 

The recognition of the influence of leaf photosynthesis on leaf stomatal opening has lead to an alternative 

approach for calculating stomatal conductance. Wong et al. (1979) first reported this influence and argued that 

plants would regulate stomatal opening to keep the intercellular CO2
 
concentration nearly constant (at about 

70% of the free air value for C3
 
plants). Ball (1988), Leuning (1990), and Collatz et al. (1991) conducted further 
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laboratory experiments and developed a model that mechanistically links stomatal conductance to leaf net 

photosynthesis (An) in the following manner:  

,n s
s

s

A h
g m p b

C
              (26) 

where gs is expressed in mol m-2 s-1, m is a plant species dependent coefficient, hs is the relative humidity at the 

leaf surface, p is the atmospheric pressure, Cs is the CO2 concentration at the leaf surface, and b is a small value 

due to leaf dark respiration. This formulation is often called the “Ball-Berry” model to recognize the first two 

contributors to this theory. Collatz et al. (1991) tested the model and showed good agreement between predicted 

and measured gs values over a wide range of leaf temperatures. 

The Ball-Berry model revolutionized our understanding of plant physiology: plants keep stomates open for 

the need of getting CO2 for photosynthesis while water loss through stomates is a passive consequence. This 

understanding has a profound implication in modeling the land surface energy budget: for the estimation of 

evapotranspiration using the Penman-Monteith equation, the stomatal conductance to water would depend on 

leaf photosynthesis. Advanced land surface schemes have therefore incorporated photosynthesis routines for the 

purpose of estimating stomatal conductance for water (Sellers et al., 1996; Dickinson et al., 1998; Cox et al., 

1998; Dai et al., 2003). However, it is not straightforward to use the Ball-Barry model for stomatal conductance 

estimation because An cannot be estimated without knowing gs, and an iteration procedure has to be used to 

determine An and gs simultaneously. This iteration is computationally expensive, and therefore the Ball-Barry 

model has not been used in many ecological models, especially those developed for remote sensing 

applications, such as Biome-BGC (Kimbal et al., 1997) and BEPS (Liu et al., 2002). Baldocchi et al. (1994) 

proposed an analytical solution to gs estimation without computing An explicitly. This would help improve the 

computation speed for instantaneous leaf photosynthesis, but the methodology needs to be further developed 

for daily or longer time step calculations.      

It should be noted that the Ball-Barry model contains empirical coefficients m and b, and they can vary 

greatly among different plant species or functional types (Medlyn et al., 1999a and 1999b. The model also does 

not take into account the effect of soil water stress on stomatal conductance and needs to be further 

parameterized. This effect may be considered by decreasing either the stomatal conductance directly using a 

soil moisture scalar (Foley, 1994; Wang and Leuning, 1998; Knorr, 2000) or the photosynthetic rate (Cox et al., 

1998 ) in response to soil water stress.  
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5. Respiration Modeling Methodology 

5.1 Autotrophic respiration 

Autotrophic respiration releases CO2 back to the atmosphere by consuming carbohydrates formed through 

photosynthesis. Conventionally, autotrophic respiration (Ra) is separated into maintenance respiration (Rm) and 

growth respiration (Rg) (Amthor, 1989; Running and Coughlan, 1988; Ryan, 1991): 

Ra= Rm + Rg =
i

(Rm, i    + Rg, i)           (27) 

where i is an index for different plant components, (1 for leaf,  2 for stem, and 3 for root).  

Maintenance respiration is temperature-dependent: 

Rm,i=Mi rm,i Q10
(T‐ T

b
)/10              (28) 

where Mi is biomass (sapwood for stems) of plant component i; rm,i is maintenance respiration coefficient for 

component i  to estimate the respiration rate at the base temperature at 10ºC; Q10 is the temperature sensitivity 

factor, and Tb is the base temperature. The stem biomass is difficult to obtain for large areas, but the sapwood 

biomass can be related to LAI retrievable from optical remote sensing. Autotrophic respiration is more closely 

related to sapwood biomass than the total stem biomass (Lavigne and Ryan, 1997). Growth respiration is 

generally considered to be not directly dependent of temperature and is proportional to GPP: 

Rg,i = rg,ira,i (GPP‐Rm)               (29) 

where rg,i is a growth respiration coefficient for plant component i; and ra,i is the carbon allocation fraction for 

plant component i. The recommended values of these respiration coefficients are given in Table 1. 

5.2 Heterotrophic Respiration 

Heterotrophic respiration results from microbes decomposing dead organic matter in the soil, causing 

release of CO2 to the atmosphere. It involves complex physical, biological and chemical processes 

belowground, and mostly depends on the quantity of soil organic matter as well as temperature and soil 

moisture. While its theoretical temperature dependency ( Lloyds and Taylor, 1994) and empirical moisture 

response curves (Parton et al., 1993) are available, the most difficult task in its regional estimation is to know 

the spatial distribution of soil organic matter. The decomposability of soil organic matter from different biomass 

sources (leaves, roots and stems at different times) is quite different under the same environmental conditions, 

and it is often necessary to separate the total soil carbon into several pools, such as the litter, fine detritus, 

coarse detritus, fast, slow, and passive pools. The separation and interaction of these pools add to the 

complexity of heterotrophic respiration estimation. 
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Measurements for the spatial distribution of the total soil carbon and its separation into the various pools 

are not possible for a region. This distribution has to be estimated under certain assumptions. Since soil carbon 

originates from biomass turnover to the soil, the total amount of soil carbon at a given location is proportional 

to the long-term average NPP at the same location. Naturally, when the total soil carbon becomes stable with 

time, the long-term averaged heterotrophic respiration would equal NPP, i.e. the carbon gain through the net 

photosynthesis is balanced by the carbon loss through heterotrophic respiration, making the surface carbon 

neutral. This is often called the dynamic equilibrium of the carbon cycle.      

Under this equilibrium assumption, the heterotrophic respiration is simply made to equal the long-term 

mean NPP. This is an approach widely used in many models (VEMAP, 1995). If the total respiration coefficient, 

i.e. the rate of respiration per unit soil carbon, is known, the total carbon pool size can be estimated. Similarly, 

if the respiration coefficients of the various pools are known, the sizes of the various pools can also be derived 

under the equilibrium assumption. As there are transfers of carbon among the various pools, a set of differential 

equations need to be solved for this purpose (Chen et al., 2003b). The equations contain temperature and 

moisture dependent respiration coefficients for the different pools, corresponding to the general truth that for 

the same NPP, the substrates in colder regions will contain more carbon than warmer regions. Mathematically, 

the respiration coefficient for the ith pool (Ki) is calculated as 

)]().()[()(max_ scSsLPsTii TfLf
ET

WP
fTfKK


   (30) 

where max_iK   is the maximum respiration rate coefficient for the ith  pool; Ts , P, W and ET are the annual 

mean soil temperature, precipitation, stored soil water and evapotranspiration, respectively; Ls is the structural 

lignin content of surface litter and in soils; and Tsc represents the silt and clay fractions of mineral soil. fT , fP, fL 

and fS are functions of the designated variable in the brackets. In modeling Canada’s forest carbon sink and 

source distribution (Chen et al., 2003b), Ls is estimated from biomass components using methods and 

coefficients suggested in the literature (Peng et al., 1998; Gholz et al., 2000; Trofymow et al., 1998), and Tsc is 

obtained from the GIS database of Soil Landscapes of Canada (Shields et al., 1991; Schut et al., 1994, see also 

http://sis.agr.gc.ca/cansis/references/1994ss_a.html). The function )(
ET

WP
f


 is an adjustment of 

heterotrophic respiration for changes in soil water regime (Parton et al., 1993) to evaluate the influence of soil 

moisture, lignin content and soil texture on organic carbon decomposition rates of the various pools. This 

adjustment is important for low-lying areas where P is consistently much larger than ET. Under the assumption 

that decomposition reaches a maximum at 35ºC, the temperature response function is  
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This equation is reliable for the mean annual temperature Ts < 35ºC, and for tropical regions, it may be 

modified.  

 

6. Stand Age as an Important Driver of the Forest Carbon Cycle 

The forest carbon cycle is closely associated with the forest life cycle, which can last for several hundred 

years. A forest life cycle starts with an initial slow growth after regeneration following disturbance or plantation 

and reaches the maximum growth rate at mid ages. This is generally followed by a gentle decline in growth at 

old ages. The age, at which a forest stand reaches the maximum growth rate, depends on climate and site 

conditions. In warmer climates and at better site conditions, the maximum rate is reached earlier. While the 

growth, i.e. NPP, has large temporal variations associated with stand age at a given location, the soil carbon 

stock accumulated over long periods of time changes relatively little with age, and the heterotrophic respiration 

would also change much less than NPP. As a result, measured NEP at different forest stand ages shows 

variation patterns similar to those of NPP (Law et al., 2003; Coursolle et al., 2006).   

In simulating the carbon cycle associated with the forest life cycle, the key is to know how NPP varies 

with age. Soil carbon pools obtained from spin-up procedures under the equilibrium assumption (Section 4.2) 

would also vary with NPP as over 50% of NPP is turned to dead organic matter in soil each year. There have 

been many empirical studies of the variation of aboveground biomass with age for forestry purposes, but 

empirical relationships between NPP (both aboveground and belowground) and age are very few. Forest 

inventory data generally include aboveground biomass and mortality at various stand ages. For the purpose of 

forest carbon cycle modeling concerning not only the accumulation of carbon in biomass but also in soils, these 

inventory data need to be converted into the net primary productivity (NPP). There are four terms in NPP: (1) 

life biomass accumulation, (2) mortality of both aboveground and belowground biomass; (3) foliage turnover to 

soil, and (4) fine root turnover in soil. The last two terms made up for more than 50% of the total NPP. While 

forest inventories often provide reliable estimates of terms (1) and (2), terms (3) and (4) are most error prone 

when limited empirical relationships between aboveground biomass and foliage or fine root are used to 

estimate them. These estimates are most seriously confounded by unknown variations of the turnover rates with 

stand age as such field information is rare.  

In Canada’s forest carbon cycle modeling (Chen et al., 2003b), NPP-age relationships (Figure 7) were 

established from analysis of stand yield data for black spruce in Ontario (Chen et al., 2002). Foliage and fine 
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root turnover rates were estimated using empirical relationships between total biomass and foliage or fine root 

biomass. The largest uncertainty in the NPP-age relationships derived this way exists at old ages. The derived 

NPP-age relationships for boreal forests vary with site conditions quantified using a site index in terms of the 

tree height that can be reached after 50 years of growth. These relationships show a general temporal pattern of 

rapid increase in NPP in early ages, peak growth in mid-ages, and slow decline in old ages. For application of 

these relationships to large areas, a general semi-empirical mathematical function was developed: 

)
)exp(
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d 
     (32) 

where coefficient A, b, c and d are dependent on the site index. The site index was replaced by the mean annual 

air temperature for Canada-wide NBP modeling (Chen et al., 2003b)  

In our recent study (He et al., 2010b), the Forest Inventory and Analysis (FIA) data as compiled by Smith 

et al. (2002) are used to derive NPP-age relationships for forests in USA. In order to address the issue of the 

uncertain foliage and fine root turnover rates at different stand ages, we use a leaf area index map in 2000 over 

USA at 1 km resolution in combination with a forest age map to derive LAI-age relationships. These 

relationships are then used to establish the corresponding foliage turnover-age relationships using 

species-specific values for leaf longevity and leaf mass-to-area ratio. These relationships are also used for 

estimating the fine root turnover rates based on a large sample of measured ratios of fine root to leaf turnover 

rates. In this way, NPP-age relationships are established for 18 major forest species groups in 10 ecoregions in 

conterminous USA (Figure 8). The temporal variation patterns shown in Figure 8 are similar to those of boreal 

forests (Figure 7). However, the patterns are more variable and less clearly defined. In particular, the decline 

rate at old ages is quite different among the 18 species groups. Some of the curves might have been 

considerably influenced by forest management practices.   

In Figure 7, the absolute NPP values are determined by the site index, while in Figure 8, they represent the 

mean NPP for the species groups distributed over large geographical areas. For spatially explicit carbon cycle 

modeling, the absolute NPP value in a given year can be estimated pixel by pixel using remote sensing and 

other inputs (Section 4), and the historical NPP variation in each pixel (x,y) can be obtained using the following 

equation: 
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tyxNPPtyxNPP        (33) 
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where t is the time (year) either before or after the reference time (tref), and FNNP(x,y,age(t)) is the normalized 

NPP-age curve for the pixel (x,y), with values vary between 0 and 1. It is defined as: 

MaxNPP NPPtageyxNPPtageyxF /))(,,())(,,(          (34) 

where NPPMax is the maximum value in a NPP curve as shown in Figures 7 and 8. The age of the forest in a 

pixel at a given time t is determined by the forest age in the reference year, age(tref) and the difference between t 

and tref, assuming that the increment of forest stand age is one year for each year. The reference year is the year 

at which an NPP map is available for spatially explicit modeling, and the map can be obtained through 

process-based modeling at hourly or daily time steps using remote sensing inputs (Section 4). In this way, the 

absolute NPP values most accurately determined in a reference year is combined with a normalized NPP-age 

curve to construct the historical variation of the absolute NPP value due to changes in forest stand age. The 

normalized curve shape not only depends on forest species types but also varies with site conditions.  

 

7. Time Scale of the Carbon Cycle and Its Implications on Carbon Modeling 

Different ecosystems have different carbon residence times, with northern ecosystems having much longer 

carbon residence times than those of tropical and temperate ecosystems (Thompson et al., 1996). The residence 

time (τ) is taking as the ratio of the total carbon (C) in the ecosystem, including soil and biomass, to the new 

carbon flux into the system, i.e. 

NPP

C
                 (35) 

For a typical boreal forest with 30 tC/ha in biomass (Chen et al., 2003b), 120 tC/ha in soil (Tarnocai, 1996), and 

3 tC/(ha y) of NPP (Liu et al., 2002), the residence time would be 50 years. While for a typical tropical forest 

with 100 tC/ha in biomass (Neeff et al., 2005), 50 tC/ha in soil (Batjes and Dijkshoon, 1999), and 10 tC/(ha y) 

of NPP (Krinner et al., 2005), the residence time would be 15 years. As latitude increases, temperature 

decreases and the carbon residence time in ecosystems increases. 

These long carbon residence times, as compared with short water residence times (several weeks), have 

profound implications on carbon cycle modeling: (i) any model that simulates the net ecosystem productivity 

for periods shorter than one residence time is incomplete at the best, and in this case the total soil carbon or its 

decomposition coefficient is often arbitrarily assigned; (ii) any model that does not separate the total carbon 

into several pools of different residence times would also be in error as the fractions of the different pools 

would change with time, especially after disturbance; and (iii) as old soil carbon (in the slow and passive pools) 
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that is accumulated over a long period of time (thousands of years) is still slowly decomposing, a spin-up 

procedure is needed to estimate the amount of old carbon. This spin-up procedure is often dubbed “model 

warm-up”, and is done either through running the model for a given pixel for 5-20 thousand years (which is 

time consuming in computation) (Liu et al., 2005) or by solving a set of differential equations under a dynamic 

equilibrium assumption for the pre-industrial period (Chen et al., 2003b). 

           

8. Strategies to Reduce Uncertainties in Carbon Cycle Estimation 

As the carbon balance (NEP) of a forest stand is the small difference between NPP and Rh (Eq. 2) and the 

errors in both NPP and Rh  are considerable, the NEP estimate can be erroneous without using error 

constraining strategies. For example, for spatially explicit modeling (Liu et al., 2002), the error in NPP is 

estimated to be about 25%. The error in Rh can be even larger due to the difficulty in determining soil carbon 

pools and their respiration coefficients under various conditions. The global terrestrial carbon sink in recent 

decades is about 2 GtC/y (Houghton, 2007), while the global NPP is about 60 GtC/y (VERMAP, 1995), and 

therefore the sink is only about 3% of NPP when averaged over the global land surface. To model such a small 

difference based on NPP and Rh with much larger errors, some strategies for reducing the uncertainty in NEP 

estimation should be followed. They are briefly described as fellows. 

       

1. To estimate the soil carbon pools based on the assumption of a dynamic equilibrium between NPP and Rh 

in the pre-industrial period (before 1900) (VEMAP, 1995; Chen et al., 2000). Under this assumption, Rh is 

forced to equal NPP in the preindustrial period so that the effect of any systematic error in NPP on NEP is 

greatly reduced (Chen et al., 2000), and the error in Rh is forced to cancel that in NPP for the NEP estimation. 

After the preindustrial period, NEP is allowed to vary according to climate and atmospheric conditions. In this 

way, the carbon balance estimated for recent years results from the accumulated effects of all changes since the 

pre-industrial period, and any small effects of climate and atmospheric changes on NEP can be simulated with 

reasonable accuracy. In spatially explicit modeling, such an equilibrium assumption is made for each pixel, and 

an error often occurs because of the variable disturbance history at different locations. However, this error 

would reduce by a factor of et/λ, where t is time since the equilibrium assumption and λ is the carbon residence 

time. If the equilibrium assumption is made twice the residence time prior to the present date, i.e. t/λ=2, the 

error in disequilibrium at the preindustrial period would reduce by a factor of e2=7.4. Such an error estimate 

shows the importance of performing long-term historical simulations of the forest carbon cycle.  



Vol.18, No.1, 2010                                                                                                                                                                              59 

An important step in implementing this strategy is to estimate NPP at the preindustrial period, as we often 

have only estimates of current NPP. Recognizing the issue that NPP may have changed following the historical 

climate and atmospheric changes, the past variation in NPP since the preindustrial period has to be simulated. 

An iteration procedure is often used until the historical simulation of NPP agrees with currently available NPP 

estimates (see more explanation in Section 10). As the historical change in NPP is one of the main reasons for 

current terrestrial sinks, this implementation of the error reduction strategy is still sensitive to model 

parameterizations for the effects of climate and atmospheric composition on plant growth.      

2. For forest ecosystems, the historical NPP variation is not only caused by climate and atmospheric 

variations, but also by stand age. An additional strategy is needed to avoid the age effect on the preindustrial 

equilibrium assumption. This strategy involves the use of the concept of equilibrium stand age, which is the age 

at which a forest stand becomes carbon neutral as it gets older. During one forest life cycle, there are two times 

at which the forest carbon cycle is balanced (neutral), one at the early stage when the NPP increases to an 

extent that offsets the heterotrophic respiration, and the other is at the late stage when the NPP declines to a 

level that equals heterotrophic respiration. The older age is taken as the equilibrium age because the NPP at this 

age better represents the long-term mean value for a stand. For managed stands which don’t have significant 

NPP decrease at older ages, the age at which the NPP equals the mean NPP over the mean harvest-regrowth 

rotation may be taken as the equilibrium age. As the rate of forest growth depends on climate and site 

conditions, the equilibrium age would vary spatially. In Canada’s forest carbon cycle modeling, the equilibrium 

age is determined on the pixel bases through simulating historical NPP and Rh and find the second age when 

these two are equal (or within 1% to each other). It is found that this age is between 80 and 150 years for 

Canada’s forests, increasing from south to north. 

The equilibrium age concept serves the purpose of a baseline estimate for an “ageless forest” at a given 

location (pixel). This baseline is used to separate disturbance and non-disturbance effects. With the important 

preindustrial equilibrium assumption, this ageless baseline provides the best objective estimates of the soil 

carbon as we generally don’t have data for forest age in the preindustrial period. 

 

9. The Influence of Disturbance on the Carbon Cycle 

Given the large variation of forest NPP with stand age (Section 6), forest disturbance (fire, harvest, insect) 

plays particularly important roles in forest carbon cycling because it not only causes direct emission of carbon 

to the atmosphere but also resets “the forest biological clock” by changing its age structure. The amount of 
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direct carbon release to the atmosphere during disturbance depends on the type and the severity of disturbance. 

Fire disturbance typically releases a large amount of carbon in a short duration during disturbance and also a 

small amount of carbon in subsequent years due to decomposition of dead trees (Stocks, 1991; Amiro et al., 

2001), while insect disturbance causes loss of foliage or death of whole trees which gradually decompose over 

a long period of time. Harvest often leaves debris on site which also gradually decomposes. An accurate forest 

carbon cycle model should consider (i) the indirect effect of disturbance on the forest carbon cycle through the 

change in forest age structure; (ii) the direct carbon release during disturbance; and (iii) the indirect carbon 

release after disturbance due to the decomposition of the affected biomass. In Canada’s forest carbon cycle 

modeling (Chen et al., 2003b), a forest age map at 1 km resolution was used to determine the time of 

disturbance. Since there is no sufficient information to differentiate disturbance types (fire, insect and harvest) 

at the pixel level, all disturbances were treated as fire disturbance. The C emissions were estimated as: 

Dfire = Bf + 0.25Bw + Ldetf      (36) 

where Bf and Bw are biomass densities of foliage and woody components, respectively; and Ldetf is the detritus 

from foliage. As these biomass components are modeled pixel by pixel, it is possible to estimate the carbon 

release due to disturbance for each disturbed pixel. However, the effect of severity of disturbance (Kasischke et 

al., 2000) has not been considered. This coefficient of 0.25 for the consumption of woody material is found 

through adjustment so that the mean emission per unit ground area agrees with estimates of Amiro et al. (2001) 

and Stocks (1991).  

 

10. Integration of Short-term Remote Sensing Data with Historical Climate Data for Long-term Forest 

Carbon Cycle Modeling 

Satellite remote sensing data allow us to estimate the spatial distribution of NPP in recent 

years through the use of retrieved surface parameters including land cover, LAI and clumping 

index. Satellite data are also useful for detecting disturbance that affects forest stand age. These 

short-term spatially explicit data can be combined with historical climate data for the needed 

long-term carbon cycle modeling.  

A forest age map allows us to determine not only the time of last disturbance for direct 

carbon release estimation but also forest regrowth after disturbance based on a pre-established 

NPP-age relationship (Section 6). Figure 9 demonstrates how the forest age information is used 

for estimating both disturbance and non-disturbance effects on NPP and NEP for a conifer forest 



Vol.18, No.1, 2010                                                                                                                                                                              61 

site at mid-latitude in North America. The real climate data and site-level measurements are used 

in this example. Since this is for the purpose of demonstrating a concept, the actual site 

information is not provided here. Figure 9a shows the normalized NPP-age curve for this species 

(based a curve shown in Figure 8). In 2006, this forest was 56 years old, and therefore this site 

was disturbed in 1950 at which NPP dropped to zero (Figure 9b). Prior to 1950, the forest was 

assumed to be at a constant equilibrium age because the age at which the forest was last disturbed 

is unknown. The “climate+CO2+N” case in Figure 9b represents the variation of the NPP with 

climate and atmospheric conditions when the forest is assumed to be ageless, where CO2 and N 

denotes for the effects of atmospheric CO2 and nitrogen deposition on NPP. This variation caused 

by climate and atmosphere is superimposed on the NPP at the equilibrium age, representing the 

long-term mean NPP of the site. Starting from 1950, forest regrowth begins from zero and 

increases with time according to the normalized NPP age curve (Figure 9a) and an actual NPP in 

the reference year 2006, using Eqs. 33 and 34. Because of the historical variation in NPP, the net 

ecosystem productivity also has a similar historical variation pattern (Figure 9c). Before 1950, the 

NEP value varies about the neutralilty, but is slightly positive because of the overall positive 

climate and atmospheric effects. The forest is a large source of carbon shortly after the 

disturbance in 1950, and as the forest grows after disturbance, it becomes carbon neutral in about 

20 years and a carbon sink following the neutrality. The “age only” case represents the effect of 

forest age variation with time. Before 1950, it is at the equilibrium age and therefore shown as a 

zero flat line. Climate and other effects are superimposed on this baseline. The measured annual 

NEP values from 1999 to 1994 using the eddy covariance method are shown as a comparison to 

the modeled historical NEP values. This comparison suggests that the measured large sinks (large 

positive NEP) are mostly due to the fact that the forest is at its peak productive age. It would be 

very erroneous to interpret these large sinks as climate and atmospheric effects by ignoring the 

forest growth cycle.  

This example of NPP and NEP calculations shown in Figure 9 also demonstrates how the 

NPP value modeled using remote sensing inputs for a recent reference year or a short-term can be 

used to constrain the long-term forest carbon cycle modeling. In this example, the NPP in the 

reference year (2006) is used to calculate the historical NPP variation retrospectively according to 

climate, atmospheric CO2 and nitrogen deposition as well as forest age at the reference year and a 
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NPP-age relationship. An iteration procedure is followed to ensure the forward NPP calculation 

at the reference year agrees with the predetermined NPP at the same year. The NPP value at the 

beginning of the modeling period (1900 in this case) determined through this iteration is then 

used to estimate the soil carbon pools based on the dynamic equilibrium assumption. If the stand 

age is larger than the modeling period (106 years in this case), the equilibrium age is not found 

within the modeling period, so that the modeling period is moved forward assuming the climate 

remains the same before 1900. This combination of the short-term remote sensing-based NPP 

modeling (reference year) and the long-term climate-based modeling can effectively integrate the 

long-term effects of climate and atmospheric changes as well as disturbance and regrowth. 

However, the underlying assumption of such long-term modeling is that forest cover types have 

not changed over the modeling period. More advanced methods need to be developed to consider 

the impact of forest successional processes and land use changes.         

 

11. Examples from Canada  

Extensive research was previously done to estimate Canada’s forest carbon budgets based on forest area 

and age structure data in forest inventories (Kurz and Apps, 1999). In this previous study, biomass-age 

relationships were derived from the inventories compiled over about 100 years regardless of possible changes 

in growth conditions over the long period, and these relationships were applied to 48 spatial units over 

Canada’s landmass. The use of remote sensing not only greatly improves the spatial resolution (~1 km) but also 

allows estimation of changes in forest growth conditions when the past climate and current vegetation data are 

used in process-based modeling (Chen et al., 2003b). Figure 10 shows the major remote sensing parameters 

used in Canada-wide forest carbon cycle modeling as well as the major steps. One unique aspect of this 

modeling approach based on remote sensing is that not only non-disturbance factors (nitrogen and CO2 

fertilization effects, climate variables) are considered, as many process models do, but also disturbance factors 

(fire, insect, harvest) are explicitly considered, although insect and harvest disturbances are treated as fire 

disturbance due to lack of spatial data. Of particular importance in modeling the disturbance effects is the forest 

age map in 1998 (Figure 11) created through combining forest inventory, large fire polygons, and remote 

sensing data for dating fire scars. 

The Integrated Terrestrial Ecosystem Carbon (InTEC) model was used to simulate disturbance and 

non-disturbance effects on the forest carbon cycle using these datasets (Chen et al., 2000). InTEC is a 
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combination of (i) Farqhuar’s leaf-level photosynthesis model (Farqhuar et al., 1980) applied to remote sensing 

pixels through a spatial and temporal scaling scheme (Chen et al., 1999), (ii) CENTURY soil biogeochemical 

model (Parton et al., 1993) modified for forest applications (Chen et al., 2000); and (iii) an empirical forest 

regrowth model depending on air temperature (Chen et al., 2003b). Using InTEC with inputs from remote 

sensing and other spatial datasets, the carbon budget of Canada’s forests was calculated at 1 km resolution in 

annual time steps. Figure 12 shows the carbon source and sink distribution in Canada’s forests averaged over 

the last 15 years of the simulation (1984-1998). Compared with the forest age map (Figure 12), it is obvious 

that NBP is closely related to forest age. In BC, where most forests are older than 100 years, forests are near 

carbon neutral conditions because the small positive effects of warming (improved nutrient cycles) and CO2 

fertilization might have just offset the small decline in growth in aging forests. In prairie provinces, the overall 

forests are carbon sources due to frequent disturbances, and the increase in regrowth could not compensate for 

the dramatic increase in disturbance in 1980’s and 1990’s. Eastern and maritime provinces are generally carbon 

sinks because of large areas of productive forests gaining benefits from increased nitrogen deposition and 

improved nutrient conditions under warming conditions as well as a small effect of CO2 fertilization. There is 

also a general gradient of decreasing sink strength from south to north because of the differential effects of 

warming on vegetation and soils. The decomposition of soil organic matter at higher latitudes is more sensitive 

to warming, while forest growth benefits less from warming at higher latitudes where vegetation is sparse. 

Critical to modeling these spatial patterns are remotely sensed forest fire patches and forest density (LAI). 

Partial validations of the results of soil and vegetation carbon stocks and carbon budgets were initially made 

against soil carbon data in Soil Landscape of Canada, aboveground biomass data in forest inventory, and four 

flux tower sites (Chen et al., 2003b) and were made further by Ju and Chen (1995) and Ju et al. (2006). 

InTEC has also been used for estimating the carbon source and sink distribution in China’s forests (Wang 

et al., 2007). The distribution is closely related to forest age distribution pattern. The results can be further 

improved with more detailed forest age information and more reliable NPP-age relationships for China’s 

ecosystems. The current forest age structure in China has profound influence in the forest carbon budget in the 

next 100 years (Ju et al., 2007). 

     

12. Summary 

Satellite remote sensing provides an indispensible source of information to improve our estimates of the 

highly variable terrestrial carbon cycle in space and time. With our current computation capacity using common 
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personal computers, we can now easily afford spatially explicit, process-based carbon cycle modeling for large 

areas. For this purpose, the following main points are made through reviewing existing research results: 

1. The spatial distribution of the gross primary productivity (GPP) can be reliably mapped using satellite data 

in recent years (in combination with meteorological and soil data). For accurate mapping of GPP, sunlit and 

shaded leaves must be separated and modeled individually. Big-leaf models (or its simpler form: light use 

efficiency models) are inaccurate and should be abandoned because these models don’t adequately include the 

contributions of shaded leaves which can amount up to 50% of the total canopy photosynthesis.   

2. The full forest carbon cycle involving biomass accumulation in the tree life cycle and soil carbon 

accumulation and decomposition has a long carbon residence time (15-50 years), and accurate modeling for all 

carbon cycle components requires a modeling length at least twice the carbon residence time. The spatial 

distribution of GPP obtained in recent years can be effectively combined with historical climate and 

atmospheric data for long-term carbon cycle modeling. GPP in a recent reference year can provide a reliable 

anchor point for such historical carbon cycle simulation.  

3. Forest growth rates differ greatly in different stand development stages. Forest stand age is therefore a 

critical parameter for forest carbon cycle modeling. It not only provides information for the timing of the direct 

carbon emission during the last disturbance but also resets the clock for a new forest life cycle (regrowth, peak 

growth, and slow decline in growth). As demonstrated in the case study of Canada’s forests, the regional carbon 

source and sink distribution is closely associated with the spatial distribution of forest stand age.  
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Table 1. Commonly used parameter values for photosynthesis and respiration in boreal conifer forests. 

Symbol  Unit  Meaning  Value  References 

Photosynthesis 

gmax  mm s‐1  Maximum 

CO2conductance 

1.6  Dang et al. (1997) 

Running and Coughlan (1988) 

gmin  mm s‐1  Minimum 

CO2conductance 

0.0  Chen et al. (1999） 

Nleaf  %  Leaf nitrogen  1.2  Kimball et al. (1997) 

Nm  %  Maximum  leaf 

nitrogen 

1.5  Bonan (1995) 

Vm, 25  mol m‐2 s‐1  Maximum 

carboxylation  rate 

at 25 oC   

33  Bonan (1995) 

Dang et al. (1999) 

PPFDcoef  mol m‐2 s‐1  Coefficient  in  Eq. 

28a 

0.01  Kimball et al. (1997) 

Topt 
oC  Optimum temp.  25  Kimball et al. (1997) 

Trange 
oC  Maximum  temp. 

range 

40  Kimball et al. (1997) 

VPDopen  kPa  Water  vapour 

deficit  for 

maximum stomatal 

opening   

0.2  Dang et al. (1997) 

VPDclose  kPa  Water  vapour 

deficit  at  stomatal 

closure 

2  Dang et al. (1997) 

Respiration 

Q10  ‐  Temperature 

sensitivity 

2.3  Kimball et al. (1997) 

rm,leaf  d‐1  Leaf  respiration 

coefficient 

0.002   

at 20 oC 

Kimball et al. (1997) 

rm,stem  g g‐1d‐1  Stem  respiration 

coefficient 

0.001  at 

20 oC 

Kimball et al. (1997) 

rm,rootc  g g‐1d‐1  Coarse  root 

respiration 

coefficient 

0.001  at 

20 oC 

Kimball et al. (1997) 
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rm,rootf  g g‐1d  Fine  root 

respiration 

coefficient 

0.002  at 

20 oC 

Kimball et al. (1997) 

rg  g g‐1d‐1  Growth  respiration 

coefficient 

0.25  Ryan (1991) 

rg,root  g g‐1d  Root  growth 

respiration 

coefficient 

0.25  Ryan (1991) 

ra,root  ‐  Root  carbon 

allocation 

coefficient 

0.40  Running and Coughlan (1988) 

 

 

 

 

 

(a)             (b) 

 

 

Figure 1. Relationships between the leaf area index (LAI) and the simple ratio (SR) and between LAI and the 

reduced simple ratio (RSR) for all cover types in various locations in Canada, with deciduous forests and crops 

in Ottawa, deciduous forests in Ontario (several locations), and conifer forests in other locations (Chen et al., 

2002).  
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Figure 2. An example of a global leaf area index map in July 1-10 in 2003 derived from VEGETATION 

data at 1 km resolution using the algorithm of Deng et al. (2006). 

 
 

 

 

Figure 3. Global clumping index map derived from POLDER III at 6 km resolution using the normalized 

difference between hotspot and darkspot (NDHD), updated based on Chen et al. (2005) 
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Figure 4. The variation of the ratio between shortwave infrared (SWIR) and near infrared (NIR) reflectance 

with the time after burn. Note that the large initial decrease in the ratio and the asymptote at about 25 years 

after burn. Better correlations were found by separating them into 18 ecoregions in Canada (Amiro and Chen, 

2002).  

 

 

Figure 5. Disturbed areas in the periods of 1990-1994 (green) and 1995-2000 (red) detected using Landsat 

images acquired circa 1990 and 2000 (He et al., 2010a). The images were preprocessed to 500 m resolution 

(Masek et al., 2008).
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Figure 6. Schematic of CO2 and H2O flow paths in a plant canopy. Panel (a) is for the CO2 flow, and Panel (b) 

is for the H2O flow. In both panels, the right hand side shows a big-leaf model and the left hand side represents 

the reality. Here, we only use two layers of leaves to represent the canopy. Rsc and Rs represent stomatal 

resistances to CO2 and H2O, respectively. Ri and Ra denote the leaf internal resistance and leaf boundary layer 

resistance, respectively. From the ways these resistances are combined, we can infer that the big-leaf model 

does not represent reality of the CO2 flow (from A to B), but it can approximate well the reality of the H2O flow 

(from A to B). Note that: (1) the influence of Ra is normally very small, and (2) Ri is very large and only exists 

for CO2. 
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Figure 7. The variation of net primary productivity (NPP) with forest stand age under different site indices 

(tree height in m in 50 years). The data used to derive these relationships are from black spruce stands in 

Ontario, Canada (Chen et al., 2002).  
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Figure 8, NPP-age relationships for 18 forest species groups in USA, derived from Forest Inventory and 

Analysis data, a remotely sensed LAI image and a forest age map.  
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Figure 9, An example of modeling the historical NPP and NEP for a conifer forest site in North America with 

consideration of the influences of climate (temperature, precipitation) and atmospheric (CO2 concentration and 

nitrogen deposition) changes as well as disturbance and regrowth. (a) a normalized NPP-age curve for the 

forest species, (b) separating the effect of forest stand age on NPP from other factors, and (c) modeled 

historical variation in NEP in comparison with eddy-covariance measurements made at this site in recent 

years. 
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Figure 10. Several major steps in using remote sensing data for terrestrial carbon cycle simulations. Land 

cover, leaf area index and fire scar derived from remote sensing are important input parameters. These 

parameters contribute differently to the estimation of net primary productivity (NPP), net ecosystem 

productivity (NEP) and net biome productivity (NBP). NBP represents the carbon source or sink. 
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Figure 11. Forest stand age distribution in Canada. This map integrates forest inventory data in the last 90 

years (forest age is separated into 6 classes), large fire polygons since 1959, fire scar in the last 25 years 

detected using satellite remote sensing data. Forest regrowth is assumed to start in the second year after 

disturbance. 

 

 
Figure 12. Carbon source and sink (NBP) distribution in Canada’s forest in 1984-1998. NBP includes the net 

primary productivity (NPP) minus heterotrophic respiration and the direct carbon emission due to disturbance. 

Due to data limitation, all disturbance (including fire, insect and harvest) is treated as fire disturbance in this 

example.  
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