Access provided by Rice University


Agarwal R. K., Yun K. Y. & Balakrishnan R., Beyond Navier-Stokes equations for flows in the continuum-transition regime. Phys. Fluids 10, 3061-3085, (2001).
Agrawal A., and Agrawal A., Three-dimensional simulation of gas flow in microduct. ASME 3rd International Conference on Microchannels and Minichannels (ICMM2005) June 13-15, Toronto, Ontario, Canada, Paper no. ICMM2005-75023, 369-376, (2005).
Agrawal A. and Agrawal A., Three-dimensional simulation of gaseous slip flow in different aspect ratio microducts, Physics of Fluids, Vol. 18 (103604), 1-11, (2006).
CrossRef
Agrawal A., Djenidi L. and Agrawal A., Simulation of gas flow in microchannels with a single 900 bend, Computers & Fluids, 38, 1629-1637, (2009).
CrossRef
Agrawal A., Djenidi L. and Antonia R. A., Simulation of gas flow in microchannels with a sudden expansion or contraction, Journal of Fluid Mechanics, 530, 135-144, (2005).
CrossRef
Agrawal A. and Dongari N., Application of Navier-Stokes equations to high Knudsen number flow in a fine capillary, International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, to appear, (2011).
Agrawal A, and Prabhu S. V., Deduction of slip coefficient in slip and transition regime from existing cylindrical Couette flow data. Experimental Thermal and Fluid Sciences 32, 991-996, (2008a).
CrossRef
Agrawal A, and Prabhu S. V., Survey on measurement of tangential momentum accommodation coefficient. Journal of Vacuum Science Technology A 26 (4), 634-645, (2008b).
CrossRef
Ahmed N. K. and Hecht M., A boundary condition with adjustable slip length for lattice Boltzmann simulations, Journal of Statistical Mechanics, P09017, (2009).
Alexander F. J., Garcia A. L. and Alder B. J., A consistent Boltzmann algorithm, Phys. Rev. Lett., 74, 5212, (1995).
CrossRef
Ansumali S. and Karlin I. V., Kinetic boundary conditions in the lattice Boltzmann method, J. Stat. Phys., 107, 291, (2002).
CrossRef
Ansumali S., Karlin I. V., Frouzakis C. E., Boulouchos K. B., Entropic lattice Boltzmann method for microflows. Physica A 359, 289-305, (2006).
CrossRef
Aoki K., Takata S. and Nakanishi T., Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Physical Review E, 65, 026315, (2002).
CrossRef
Araki T., Kim M. S., Iwai, H. and Suzuki K., An experimental investigation of gaseous flow characteristics in microtubes. Microscale Thermophysical Engineering, 6(2), 117-130, (2002).
CrossRef
Arkilic E. B., Schimidt M. A. and Breuer K. S., Gaseous slip flow in long micro-channels, J. Microelectromech. Syst. 6, 167-178, (1997).
CrossRef
Arkilic E. B., Breuer K. S. and Schimidt M. A., Mass flow and tangential momentum accommodation in silicon micromachined channels, J. Fluid Mech. 437, 29-43, (2001).
Arlemark E. J., Dadzie S. K. and Reese J. M., An extension to the Navier-Stokes equations to incorporate gas molecular collisions with boundaries. Journal of Heat Transfer, 132 (4), (041006) 1-8, (2010).
Asako Y., Nakayama K. and Shinozuka T., Effect of compressibility on gaseous flows in a micro-tube. International Journal of Heat and Mass Transfer, 48, 4985-4994, (2005).
CrossRef
Bao F. and Lin J., Burnett simulations of gas flow and heat transfer in microchannels. Front. Mech. Eng. China, 4(3), 252-263, (2009).
Bao F. and Lin J., Burnett simulations of gas flow in microchannels. Fluid Dynamics Research 40, 679-694, (2008).
CrossRef
Bentz, J. A., Tompson, R. V., and Loyalka, S. K. Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients using a modified spinning rotor gauge. Journal of Vacuum Science and Technology A, 19, 317-324 (2001).
Bentz, J. A., Tompson, R. V., and Loyalka, S. K. The spinning rotor gauge: Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients for N2 and CH4, Vacuum, 48, 817-824 (1997).
CrossRef
Benzi R., Succi S. and Vergassola M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222 (3), 145-197, (1992).
CrossRef
Beskok A. and Karniadakis G. E., A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering 3, 43-77, (1999).
CrossRef
Beskok A., Karniadakis G. E. and Trimmer W., Rarefaction and Compressibility Effects in Gas Microflows, J. Fluids Eng., 118, 448-456, (1996).
CrossRef
Beskok A., Validation of a new velocity-slip model for separated gas microflows, Numerical Heat Transfer B, 40, 451-471, (2001).
CrossRef
Bhatnagar P. L., Gross E. P. and Krook M., A Model for Collision Processes in gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev., 94, 511-525, (1954).
CrossRef
Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, (1994).
Blanchard D. and Ligrani P, Slip and accommodation coefficient from rarefaction and roughness in rotation microscale disk flows, Physics Fluids, 19, 063602, (2007).
CrossRef
Blankenstein E, Coefficients of slip and momentum transfer in hydrogen, helium, air and oxygen, Physical Review, 22, 582-589, (1923).
CrossRef
Brenner H, Navier-Stokes revisited. Physica A, 349, 60-132 (2005).
CrossRef
Breyiannis G., Varoutis S., Valougeorgis D., Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter. European Journal of Mechanics B/Fluids, 27, 609-602, (2007).
CrossRef
Brown G. P., Dinardo A., Cheng G. K. and Sherwood T. K., The flow of gases in pipes at low pressures. Journal of Applied Physics, 17, 802-813, (1946).
CrossRef
Cai C., Boyd I. D., Fan J. and Candler G. V., Direct Simulation Methods for Low-Speed Microchannel Flows, Journal of Thermodynamics and Heat Transfer, 14 (3), 368-378, (2000).
Cao B. Y., Chen M. and Guo Z. Y., Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation, International Journal of Engineering Science, 44, 927-937, (2006).
CrossRef
Cao B. Y., Chen M. and Guo Z. Y., Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation, Chinese Phys. Lett., 21 (9), 1777-1779, (2004).
CrossRef
Cao B. Y., Non-Maxwell slippage induced by surface roughness for microscale gas flow: a molecular dynamics simulation, Molecular Physics, 105, 10, 1403-1410, (2007).
CrossRef
Cao, B. Y., Chen, M., and Guo, Z. Y. Temperature dependence of the tangential momentum accommodation coefficient for gases, Applied Physics Letters, 86, 091905, (2005).
CrossRef
Celata G. P., Cumo M., McPhail S. J., Tesfagabir L., Zummo G., Experimental study on compressible flow in microtubes. International Journal of Heat and Fluid Flow, 28, 28-36, (2007).
CrossRef
Cercignani C. and Daneri A., Flow of a rarefied gas between two parallel plates, J. Appl. Phys. 34, 3509-3513, (1963).
CrossRef
Cercignani C., Lampis M. and Lorenzani S., Variational approach to gas flows in microchannels, Phys. Fluids, 16, 3426-3437, (2004)
CrossRef
Cercignani C., Lampis M., Kinetic models for gas-surface interaction, Transport Theory Statistical Physics, 1, 101, (1971).
CrossRef
Cercignani Carlo and Lorenzani S., Variational derivation of second-order slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules. Physics of Fluids 22, 062004 (2010).
CrossRef
Chai Z., Guo Z., Zheng L., and Shi B., Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel, Journal of Applied Physics, 104, (014902) 1-8, (2008).
Chakraborty S. and Durst F., Derivations of extended Navier-Stokes equations from upscaled molecular transport considerations for compressible ideal gas flow: towards extended constitutive forms, Phys Fluids, 19 (088104), 1-4, (2007).
CrossRef
Chapman, S., Cowling, T. G., The Mathematical Theory of Nonuniform Gases. Cambridge University Press, New York, (1970).
Chen Sheng, Tian Zhiwei, Simulation of microchannel flow using the lattice Boltzmann method. Physica A 388, 4803-4810, (2009).
CrossRef
Chew, A. D., Chambers, A., and Troup, A. P. The gas species dependence of the performance of a rotating disc absolute pressure gauge in high vacuum. Vacuum, 44, 583-585 (1993).
CrossRef
Choi S. B., Barron R. F., and Warrington R. O., Fluid Flow and Heat Transfer in Micro-tubes, Proceedings of Winter Annual Meeting of the ASME Dynamic Systems and Control Division, Atlanta, GA, 32, 123-134, (1991).
Chun J. and Koch D. L., A direct simulation Monte Carlo method for rarefied gas flows in the limit of small Mach number, Physics of Fluids, 17, 107107, (2005).
CrossRef
Colin S., Lalonde P., and Caen R., Validation of a Second-Order Slip Flow Model in Rectangular Microchannels, Heat Transfer Engineering, 25, 23-30 (2004).
Comsa G., Fremerey J. K., Lindenau B., Messer, G. and Rohl P., Calibration of a spinning rotor gas friction gauge against a fundamental vacuum pressure standard, Journal of Vacuum Science and Technology, 17, 642-644 (1980).
CrossRef
Cooper S. M., Cruden B. A., Meyyappan, M., Raju, R., and Roy, S. Gas transport characteristics through a carbon nanotubule. Nano Letters, 4, 377-381 (2004).
CrossRef
Croce G. and Rovenskaya O., Three dimensional effects in compressible, rarefied gas flow in bent microchannels, 2nd European Conference on Microfluidics-2010, Toulouse, France, (December 2010).
Croce G., D'Agaro P. and Filippo A., Compressibility and Rarefaction Effects on Pressure Drop in Rough Microchannels, Heat Transfer Engineering, 28 (8-9), 688-695, (2007).
CrossRef
Czerwinska J. and Jebauer S., Secondary slip structures in heated micro-geometries. International Journal of Heat and Mass Transfer 54, 1578-1586, (2011).
CrossRef
Demsis, A., Verma, B., Prabhu, S. V., and Agrawal, A. Experimental determination of heat transfer coefficient in the slip regime and its anomalously low value, Physical Review E 80, 016311 (2009).
CrossRef
Demsis, A., Verma, B., Prabhu, S. V., and Agrawal, A. Heat Transfer coefficient of gas flowing in a circular tube under rarefied condition, International Journal of Thermal Sciences 49, 1994-1999 (2010a).
CrossRef
Demsis A., Prabhu S. V. and Agrawal A., Influence of wall conditions on friction factor for flow of gases under slip condition, Experimental Thermal and Fluid Science, 34, 1448-1455, (2010b).
CrossRef
Djordjević V., Modeling of the slip boundary condition in micro-channel/pipe flow via fractional derivative, Monograph of Academy of Nonlinear Sciences, Advances in Nonlinear Sciences II - Sciences and Applications, Belgrade, 2, 136-158, (2008).
Dongari N., Agrawal A. and Agrawal A., Analytical solution of gaseous slip flow in long microchannels, Int. J. Heat Mass Transfer, 50, 3411-3421, (2007).
CrossRef
Dongari N., Dadzie S. K., Zhang Y. and Reese J. M., Isothermal micro-channel gas flow using a hydrodynamic model with dissipative mass flux, Proc. ASME ICNMM2010 (Montreal, Canada), p 30743, (2010a).
Dongari N., Durst F. and Chakraborty S., Predicting microscale gas flows and rarefaction effects through extended Navier-Stokes-Fourier equations from phoretic transport considerations, Microfluidics and Nanofluidics, 9, 831-846, (2010b).
CrossRef
Dongari N., Sambasivam R. and Durst F., Extended Navier-Stokes Equations and Treatments of Micro-Channel Gas Flows, Journal of Fluid Science and Technology, 4 (2), 454-467, (2009a).
CrossRef
Dongari N., Sharma A. and Durst F., Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes, Microfluidics and Nanofluidics, 6, 679-692, (2009b).
CrossRef
Dongari N., Zhang Y. and Reese J. M., Modeling of Knudsen Layer Effects in Micro/Nanoscale Gas Flows. Journal of Fluids Engineering, 133, 071101, (2011).
CrossRef
Du D., Li Z. and Guo Z., Friction resistance for gas flow in smooth microtubes. Science in China Series E: Technological Sciences, 43, 171-177, (2000).
CrossRef
Duan Z. and Muzychka Y. S., Models for gaseous slip flow in non-circular microchannels. Proceedings of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference. July 8-12, Vancouver, British Columbia, Canada, (2007).
Duan Z. and Muzychka Y. S., Slip flow in elliptic microchannels, International Journal of Thermal Sciences 46, 1104-1111, (2007).
CrossRef
Durst F., Gomes, J. and Sambasivam, R., Thermofluiddynamics: Do we solve the right kind of equations? Proceeding of The International Symposium on Turbulence, Heat and Mass Transfer - Dubrovnik, Croatia, pp. 3-18, September 25-29, (2006).
Ewart T., Perrier P., Graur I. and Meolans J. G., Mass flow rate measurements in gas micro flows. Experiments in Fluids, 41, 487-498, (2006).
CrossRef
Ewart T., Perrier P., Graur I. and Meolans J. G., Tangential momentum accommodation in mirotube. Microfluidics and Nanofluidics, 3, 689-695, (2007a).
CrossRef
Ewart T., Perrier P., Graur I. and Meolans J. G., Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech., 584, 337-356, (2007b).
CrossRef
Fan J. and Shen V, Statistical Simulation of Low-Speed Rarefied Gas Flows, Journal of Computational Physics, 167, 393-412, (2001).
CrossRef
Fang Y. and Liou William W., Computations of the Flow and Heat Transfer in Microdevices Using DSMC With Implicit Boundary Conditions, J. Heat Transfer, 124, 338-345, (2002).
CrossRef
Fissell W. H., Conlisk A. T., Datta S., Magistrelli J. M., Glass J. T., Fleischman A. J. and Roy S., High Knudsen number fluid flow at near-standard temperature and pressure conditions using precision nanochannels, Microfluid Nanofluid, 10, 425-433, (2011).
CrossRef
Gabis D. S., Loyalka S. K., and Strovick T. S. Measurements of the tangential momentum accommodation coefficient in the transition flow regime with a spinning rotor gauge, Journal of Vacuum Science and Technology A, 14, 2592-2598 (1996).
CrossRef
Gad-el-Hak M., The fluid mechanics of microdevices-The Freeman scholar lecture, J. Fluids Eng. 121, 5-33, (1999).
CrossRef
Ghajar A. J., Tam L. M., Tam H. K. and Wen Q., The Effect of Inner Surface Roughness on Friction Factor in Horizontal Microtubes, 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010), (2010).
Graur I. and Sharipov F., Gas flow through an elliptical tube over the whole range of the gas rarefaction. European Journal of Mechanics B 27, 335-345, (2008).
CrossRef
Gronych T., Ulman R., Peksa L., and Repa P. Measurements of the relative tangential momentum accommodation coefficient for different gases with a viscosity vacuum gauge, Vacuum, 73, 275-279 (2004).
CrossRef
Guo Z. L, Shi B.C and Zheng C. G., An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall. Europhys Lett. 80, 24001, (2007a).
CrossRef
Guo Z., Zhao T. S. and Shi Y., Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows, Journal of Applied Physics, 99, 074903, (2006).
CrossRef
Guo Z. L. and Zheng C. G., Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn, 22, 465-473, (2008).
CrossRef
Guo Z. L., Shi B. C., Zhao T. S. and Zheng C. G., Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys. Rev. E, 76, 056704 (2007b).
CrossRef
Guo Z. L., Zheng C. G. and Shi B. C., Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys. Rev. E, 77, 036707, (2008).
CrossRef
Guo Z. Y. and Li Z. X., Size effect on microscale single-phase flow and heat transfer, International Journal of Heat and Mass Transfer, 46, 149-159, (2003).
CrossRef
Hadjiconstantinou N. G., Comment on Cercignani's second-order slip coefficient. Physics of Fluids, 15, 2352, (2003).
CrossRef
Harley J. C., Huang Y., Bau H. H. and Zemel J. N., Gas flow in micro-channels, J. Fluid Mech., 284, 257, (1995).
CrossRef
Harting J., Kunert C. and Hyvaluoma J., Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels, Microfluidics and Nanofluidics, 8, 1-10, (2010).
Hetsroni G., Mosyak A., Pogrebnyak E., Yarin L. P., Fluid flow in micro-channels. International Journal of Heat and Mass Transfer, 48, 1982-1998, (2005).
CrossRef
Hettiarachchi H. D. M., Golubovic M., Worek W. M. and Minkowycz W. J., Three-dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. International Journal of Heat and Mass Transfer, 51, 5088-5096, (2008).
CrossRef
Ho C. M. and Tai Y. C., Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30, 579-612, (1998).
CrossRef
Hong C., Asako Y. and Turner S. E., Mohammad Faghri Friction Factor Correlations for Gas Flow in Slip Flow Regime, J. Fluids Eng., 129 (10), 1268-1276, (2007).
CrossRef
Hsieh S. S., Tsai H. H., Lin C. Y., Huang C. F. and Chien C. M., Gas flow in a long microchannel, Int. J. of Heat and Mass Transfer 47, 3877-3887, (2004).
CrossRef
Hsieh, T.-Y., Lee, T.-H., Hong, Z.-C., Yang, J.-Y., Kang, J.-H. Rarefaction effect on flow characteristics of microchannel flows. Journal of Aeronautics, Astronautics and Aviation, Series A 42 (3), 149-158, (2010).
Hu G. and Li D., Multiscale phenomena in microfluidics and nanofluidics, Chemical Engineering Science 62, 3443-3454, (2007).
CrossRef
Huang C., Gregory J. W., Sullivan J. P., Microchannel pressure measurements using molecular sensors. J. of Microelectromechanical Systems, 16 (4), 777-785 (2007a).
CrossRef
Huang H., Lee T. S. and Shu C., Lattice Boltzmann method simulation gas slip flow in long microtubes, International Journal of Numerical Methods for Heat & Fluid Flow, 17 (6), 587-607, (2007b).
CrossRef
Jang J. and Wereley S. T., Effective heights and tangential momentum accommodation coefficients of gaseous slip flows in deep reactive ion etching rectangular microchannels, Journal of Micromechanics and Microengineering, 16, 493-504 (2006).
CrossRef
Jang J. and Wereley S. T., Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels, Microfluidics and Nanofluidics 1, 41 (2004).
CrossRef
Ji Y, Yuan K, Chung J. N., Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel, International Journal of Heat and Mass Transfer, 49, 1329-1339, (2006).
CrossRef
Kamali R., Binesh A. R., Investigation of gas flow in micro-filters and modification of scaling law. International Communications in Heat and Mass Transfer, 36 (7), 763-767, (2009).
CrossRef
Karniadakis G. E., Beskok A. and Aluru N., Microflows: Fundamentals and Simulation, Springer, New York (2005).
Kennard E. H., Kinetic Theory of Gases with an Introduction to Statistical Mechanics, Allied Pacific, Bombay, (1962).
Khadem M. H., Shams M. and Hossainpour S., Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime, International Communications in Heat and Mass Transfer, 36, 69-77, (2009).
CrossRef
Knechtel, E. D. and Pitts, W. C., Normal and tangential momentum accommodation for earth satellite conditions, Astronautica Acta, 18, 171-184 (1973).
CrossRef
Knudsen M., Kinetic Theory of Gases. John Wiley, New York, (1950).
Kohl M.J, Abdel-Khalik S. I., Jeter S. M., Sadowski D. L., An experimental investigation of microchannel flow with internal pressure measurements, Int. J. Heat and Mass Transfer, 48, 1518-1533, (2005).
CrossRef
Kuhlthau A. R., Air friction on rapidly moving surfaces, Journal of Applied Physics, 20, 217-223 (1949).
CrossRef
Kuscar I, Phenomenology of gas-surface accommodation. Rarefied Gas Dynamics, Proceedings of the Ninth International Symposium, edited by M. Becker and M. Fiebig DFVLR, Porz-Wahn, Germany, Paper No. E. 1-1, (1974).
Lee S. Y. K., Wong M. and Zohar Y., Gas flow in microchannels with bend, J. Micromech. Microeng., 11, 635-644, (2001).
CrossRef
Lee T. and Lin C. L., Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel, Physical Review E, 71, 046706, (2005).
CrossRef
Lee W. Y., Wong M. and Zohar Y., Microchannels in series connected via a contraction/expansion section, J. Fluid Mech., 459, 187-206, (2002).
Lewandowski T., Jebauer S., Czerwinska J., Doerffer P., Entrance Effects in Microchannel Gas Flow. Journal of Thermal Science, 18 (4), 345-352, (2009).
CrossRef
Li B. and Kwok D. Y., Discrete Boltzmann Equation for Microfluidics, Physical Review Letters, 90, 124502, (2003).
CrossRef
Li C, Li J. and Zhang T., The Entrance Effect on Gases Flow Characteristics in Micro-tube. Journal of Thermal Science, 18 (4), 353-357, (2009).
CrossRef
Li Q., He Y. L., Tang G. H. and Tao W. Q., Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluid, 10, 607-618, (2011).
CrossRef
Lim C. Y., Shu C., Niu X. D. and Chew Y. T., Application of lattice Boltzmann method to simulate microchannel flows, Physics of Fluids, 14 (7), 2299-2308, (2002).
Liu C. F. and Ni Y. S., The fractal roughness effect of micro Poiseuille flows using the lattice Boltzmann method, International Journal of Engineering Science, 47 (5-6), 660-668, (2009).
CrossRef
Liu J, Tai Y C and Ho C M, MEMS for pressure distribution studies of gases flows in microchannels, IEEE MEMS, 209, (1995).
Liu X. and Guo Z., A lattice Boltzmann study of gas flows in a long micro-channel, Computers and Mathematics with Applications, 2011, to appear
Lockerby D. A. and Reese J. M., On the modeling of isothermal gas flows at the microscale. Journal of Fluid Mechanics, 604, 235-261, (2008).
Lockerby D. A., Reese J. M., Emerson D. R. and Barber R. W. Velocity boundary condition at solid walls in rarefied gas calculations. Physical Review E, 70, 017303, (2004).
CrossRef
Lord R. G., Tangential Momentum Accommodation Coefficients of rare Gases on Polycrystalline Metal Surfaces. 10th International Symposium, Aspen, Colorado, 18-23 July 1976, 531-538 (1977).
Lorenzini M., Morini G. L. and Salvigni S., Laminar, transitional and turbulent friction factors for gas flows in smooth and rough microtubes, International Journal of Thermal Sciences, 49, 248-255, (2010).
CrossRef
Khan M. G. and Fartaj A., Areview on microchannel heat exchangers and potential applications, Int. J. Energy Res., 35, 553-582, (2011).
CrossRef
Maharudrayya S., Jayanti S. and Deshpande A. P., Pressure losses in laminar flow through serpentine channels in fuel cell stacks, Journal of Power Sources, 138, 1-13, (2004).
CrossRef
Mahulikar S. P., Herwig H., and Hausner O., Study of Gas Microconvection for Synthesis of Rarefaction and No rarefaction Effects, Journal of Microelectromechanical systems, 16 (6), 1543-1556, (2007).
CrossRef
Marino L., Experiments on rarefied gas flows through tubes. Microfluidics and Nanofluidics, 6, 109-119, (2009).
CrossRef
Maurer J., Tabeling P., Joseph P. and Willaime H., Second-order slip laws in micro-channels for helium and nitrogen, Physics of Fluids, 15 (9), 2613-2621, (2003).
CrossRef
Mavriplis C., Ahn J. C. and Goulard R., Heat Transfer and Flowfields in Short Microchannels Using Direct Simulation Monte Carlo, Journal of Thermophysics and Heat Transfer, 11 (4), 489-496, (1997).
CrossRef
Michalis V. K., Kalarakis A. N., Skouras E. D. and Burganos V. N., Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluidics and Nanofluidics 9(4-5), 847-853, (2010).
CrossRef
Millikan R. A., Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids, Physical Review, 21, 217-238 (1923).
CrossRef
Mo G. and Rosenberger F., Molecular-dynamics simulation of flow in a two-dimensional channel with atomically rough walls, Physical Review A, 42 (8), 4688-4692, (1990)
CrossRef
Morini G. L., Lorenzini M. and Salvigni S., Friction characteristics of compressible gas flows in microtubes. Experimental Thermal and Fluid Science, 30, 733-744, (2006).
CrossRef
Morini G. L., Lorenzini M., Colin S. and Geoffroy S., Experimental analysis of pressure drop and laminar to turbulent transition for gas flows in smooth microtubes. Heat Transfer Engineering, 28, 670-679, (2007).
CrossRef
Morini G. L., Single-phase convective heat transfer in microchannels: a review of experimental results, International Journal of Thermal Sciences 43, 631-651, (2004).
CrossRef
Morini G. L., Spiga M. and Tartarini P., Rarefaction effects on friction factor of gas flow in microchannels. Super lattices and Microstructures, 35, 587-599, (2004).
Morini G. L., Yang Y., Chalabi H. and Lorenzini M., A critical review of the measurement techniques for the analysis of gas microflows through microchannels. Experimental Thermal and Fluid Science, 35, 849-865, (2011).
CrossRef
Mott D. R., Oran E. S. and Kaplan C. R., Microfilter simulations and scaling law AIAA J. Thermophys. Heat Transfer, 15, 473-477, (2001).
CrossRef
Naris S. and Dimitris V., Rarefied gas flow in a triangular duct based on a boundary fitted lattice. European Journal of Mechanics B, 27, 810-222, (2007).
CrossRef
Nedea S. V., Frijns A. J. H., van Steenhoven A. A., Markvoort A. J. and Hilbers P. A. J., Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels, Physical Review E, 72, 016705, (2005).
CrossRef
Nie X, Doolen G. D. and Chen S., Lattice Boltzmann Simulation of Fluid Flow in MEMS, Journal of Statistical Physics, 107, 279-289, (2002).
CrossRef
Niu X. D., Shu C. and Chew Y. T., Alattice Boltzmann BGK model for simulation of micro flows, Europhys. Lett., 67 (4), 600-606, (2004).
CrossRef
Niu X. D., Shu C. and Chew Y. T., Numerical simulation of isothermal micro flows by lattice boltzmann method and theoretical analysis of the diffuse scattering boundary condition, Int. J. of Modern Physics C, 16 (12), 1927-1941, (2005).
CrossRef
Oh C. K., Oran E. S. and Sinkovits R. S., Computations of high-speed, high Knudsen number microchannel flows, Journal of Thermophysics and Heat Transfer, 11 (4), 497-505, (1997).
CrossRef
Palle S. and Aliabadi S., Slip flow and heat transfer in rectangular and circular microchannels using hybrid FE/FV method. Int. J. Numer. Meth. Engng (2011), to appear.
Pan L. S., Liu G. R. and Lam K. Y., Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo, Journal of Micromechanics and Microengineering, 9, 89 (1999).
CrossRef
Pfahler J., Harley J. C., Bau H. and Zemel J. N., Gas and liquid flow in small channels ASME, DSC-32 49-60, (1991).
Piekos E. S. and Breuer K. S., Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method, J. Fluids Eng., 118 (3), 464-469, (1996).
CrossRef
Pitakarnnop J., Varoutis S., Valougeorgis D., Geoffroy, S. Baldas L. and Colin S., A novel experimental setup for gas microflows. Microfluidics and Nanofluidics, 8, pp. 57-72, (2010).
CrossRef
Pong K., Ho C. M., Liu J. and Tai Y. C., Non-linear pressure distribution in uniform microchannels, Proc. of Appl. Microfabrication to Fluid Mech., ASME Winter Annual Meeting, Chicago, pp. 51-56, (1994).
Porodnov B. T., Suetin P. E., Borisov S. F. and Akinshin V. D., Experimental investigation of rarefied gas flow in different channels, Journal of Fluid Mechanics, 64, 417-438 (1974).
CrossRef
Raghavan V. and Premachandran B., Microscale flow through channels with a right angled bend: effect of fillet radius, J. Fluids Engineering, 130, 101207, (2008).
CrossRef
Raju C., Kurian J., Experimental investigation of rarefied gas flow through rectangular slits and nozzles, Experiment in Fluids 17, 220-224, (1994).
Raisee M. and Vahedi N., Prediction of Gas Flow Through Short and Long 2-D Micro- and Nanochannels Using a Generalized Slip Model, Heat Transfer Engineering, 31 (8), 675-681, (2010).
CrossRef
Raju R. and Roy S., Hydrodynamic model for microscale flows in a channel with two 90° bends, Proceedings of FEDSM'03, 4th ASME/JSME Joint Fluids Engineering Conference, Paper no. FEDSM2003-45535, (2003).
Rashidi M. M., Ganji D. D. and Shahmohamadi H., Variational iteration method for two-dimensional steady slip flow in micro-channels, Archive of Applied Mechanics, DOI: 10.1007/s00419-010-0504-x, 2011, to appear
Rathakrishnan E. and Sreekanth A. K., Rarefied flow through sudden enlargements, Fluid Dynamics Research, 16, 131-145, (1995).
CrossRef
Reese J. M., Gallis M. A. and Lockerby D. A., New directions in fluid dynamics: non-equilibrium aerodynamic and microsystem flows. Phil. Trans. R. Soc. Lond. A, 361, 2967-2988, (2003).
CrossRef
Renksizbulut M., Niazmand H. and Tercan G., Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. International Journal of Thermal Sciences 45, 870-881, (2006).
CrossRef
Richardson S., On the no-slip boundary condition, J. Fluid Mech, 59 (4), 707-719, (1973).
CrossRef
Ritos K., Lihnaropoulos Y., Naris S. and Valougeorgis D., Pressure- and Temperature-Driven Flow Through Triangular and Trapezoidal Microchannels. Heat Transfer Engineering, 32 (13-14), 1101-1107, (2011).
CrossRef
Rostami A. A., Mujumdar A. S. and Saniei N., Flow and heat transfer for gas flowing in microchannels: a review, Heat and Mass Transfer 38, 359-367, (2002).
CrossRef
Roy S. and Chakraborty S., Near-wall effects in micro scale Couette flow and heat transfer in the Maxwell-slip regimes. Microfluid Nanofluid, 3, 437-449, (2007).
CrossRef
Roy S., Raju R., Chuang H. F., Cruden B. A. and Meyyappan M., Modeling gas flow through microchannels and nonporous, Journal of Applied Physics, 93 (8), 4870-4879, (2003).
CrossRef
Saha M. N. and Srivastava B. N., A Treatise on Heat. Indian Press, Allahabad, (1958).
Saxena I., Agrawal A. and Joshi S. S., Fabrication of microfilters using excimer laser micromachining and testing of pressure drop. J. Micromech. Microeng. 19, 025025, (2009).
CrossRef
Schaaf S. A. and Chambre P. L., Flow of Rarefied Gases. Princeton University Press (1961).
Shah R. K. and London A. L., Laminar Flow Forced Convection in Ducts, Advances in Heat Transfer Series, New York: Academic (1978).
Shams M., Shojaeian M., Aghanajafi C. and Dibaji S. A. R., Numerical simulation of slip flow through rhombus microchannels. International Communications in Heat and Mass Transfer 36, 1075-1081, (2009).
CrossRef
Sharipov F. and Seleznev V., Data on internal rarefied gas flows, J. Phys. Chem. Ref. Data, 27, 657-706, (1998).
CrossRef
Shen C, Fan J. and Xie C., Statistical simulation of rarefied gas flows in micro-channels, Journal of Computational Physics, 189, 512-526, (2003).
CrossRef
Shen C, Tian D. B., Xie C. and Fan J., Examination of the LBM in simulation of microchannel flow in transitional regime, Microscale Thermophysical Engineering, 8, 423-432, (2004).
CrossRef
Shen C, Use of the degenerated Reynolds equation in solving the microchannel flow problem, Physics of Fluids, 17, 046101, (2005).
CrossRef
Shields F. D., Energy and momentum accommodation coefficients on platinum and silver, Journal of Chemical Physics, 78, 3329-3333 (1983).
CrossRef
Shields F. D., More on the acoustical method of measuring energy and tangential momentum accommodation coefficients, Journal of Chemical Physics, 72, 3767-3772 (1980).
CrossRef
Shih J. C., Ho C. M., Liu J. and Tai Y. C., Monatomic and polyatomic gas flow through uniform microchannels, ASME, DSC-59 197, (1996).
Shinagawa H., Setyawan H., Asai T., Sugiyama Y. and Okuyama K., An experimental and theoretical investigation of rarefied gas flow through circular tube of finite length. Chemical Engineering Science, 57, 4027-4036, (2002).
CrossRef
Shirani E. and Jafari S., Application of LBM in Simulation of Flow in Simple Micro-Geometries and Micro Porous Media, African Physical Review, 1, 34-42, (2007).
Shojaeian M. and Dibaji S. A. R., Three-dimensional numerical simulation of the slip flow through triangular microchannels. International Communications in Heat and Mass Transfer 37, 324-329, (2010).
CrossRef
Shokouhmand H., Bigham S. and Isfahani R. N., Effects of Knudsen number and geometry on gaseous flow and heat transfer in a constricted microchannel. Heat Mass Transfer, 47, 119-130, (2011).
CrossRef
Shu C., Niu X. D., and Chew Y. T., A Lattice Boltzmann Kinetic Model for Microflow and Heat Transfer, Journal of Statistical Physics, 121, 239-255 (2005).
CrossRef
Sidik N. A. C., Horng N. C., Mussa M. A. and Abdullah S., Simulation of Rarefied Gas Flow in Slip and Transitional Regimes by the Lattice Boltzmann Method, CFD Letters, 2(2), 66-74, (2010).
Sobhan C. B. and Garimella S. V., A comparative analysis of studies on heat transfer and fluid flow in microchannels, Microscale Thermophysical Engineering 5, 293-311, (2001).
CrossRef
Sofonea V. and Sekerka R. F., Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow, Journal of Computational Physics, 207, 639-659, (2005).
CrossRef
Sreekanth A. K., Slip flow through long circular pipes, L. Trilling, H. Y. Wachman, Editors, Proceedings of the Sixth International Symposium on Rarefied Gas Dynamics, Academic Press, 667-680, (1969).
Stacy L. J., A determination by the constant deflection method of the value of the coefficient of slip for rough and for smooth surfaces in air, Physical Review 21, 239-249 (1923).
CrossRef
Stevanovic N D, A new analytical solution of microchannel gas flow. J. Micromech. Microeng. 17, 1695-1702, (2007).
CrossRef
Stops D. W., The mean free path of gas molecules in the transition regime, J. Phys. D, 3, 685, (1970).
CrossRef
Succi S., The Lattice Boltzmann Equation: For Fluid Dynamic and Beyond Series Numerical Mathematics and Scientific Computation, Oxford University Press, (2001).
Succi S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogenous catalysis, Phys. Rev. Lett. 89, 064502, (2002).
CrossRef
Suetin P. E., Porodnov B. T., Chernjak V. G. and Borisov S. F., Poiseuille flow at arbitrary Knudsen numbers and tangential momentum accommodation, Journal of Fluid Mechanics, 60, 581-592 (1973).
CrossRef
Sugiyama W., Sawadaa T. and Kenji N., Rarefied gas flow between two flat plates with two dimensional surface roughness, Vacuum, 47, 791-794 (1996).
CrossRef
Sun H. and Faghri M., Effects of rarefaction and compressibility of gaseous flow in microchannel using DSMC, Numerical Heat Transfer A, 38, 153-168, (2000).
CrossRef
Sun H. W. and Faghri M., Effect of surface roughness on nitrogen flow in a microchannel using the direct simulation Monte Carlo method, Num. Heat Transfer Part A, 43, 1, (2003).
CrossRef
Sun Q. and Boyd I. D., A Direct Simulation Method for Subsonic Microscale Gas Flows, Journal of Computational Physics, 179, 400-425, (2002).
CrossRef
Szalmas L. and Valougeorgis D., Rarefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross sections. Microfluidics and Nanofluidics, 9, 471-487, (2010).
CrossRef
Taheri P. and Struchtrup H., An extended macroscopic transport model for rarefied gas flows in long capillaries with circular cross section. Physics of Fluid 22, 112004, (2010).
Tang G. H., Li Z., He Y. L. and Tao W. Q., Experimental study of compressibility, roughness and rarefaction influences on microchannel flow, International Journal of Heat and Mass Transfer, 50, 2282-2295, (2007).
CrossRef
Tang G. H., Tao W. Q. and He Y. L., Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions, Phys. Fluids, 17, 058101, (2005).
CrossRef
Tekasakul P., Bentz J. A., Tompson R. V. and Loyalka S. K., The spinning rotor gauge: Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients, Journal of Vacuum Science and Technology A, 14, 2946-2952 (1996).
CrossRef
Tian Z. W., Zou C., Liu H. J., Guo Z. L., Liu Z. H. and Zheng C. G., Lattice Boltzmann scheme for simulating thermal micro-flow, Physica A, 385, 59-68, (2007).
CrossRef
Timiriazeff, A. ber die innere Reibung verdnnter Gase und ber den Zusammenhang der Gleitung und des Temperatursprunges an der Grenze zwischen Metall und Gas, Annalen der Physik, 345, 971-991 (1913) (in German).
CrossRef
Tison S. A., Experimental Data and Theoretical Modeling of Gas Flows through Metal Capillary Leaks, Vacuum 44, 1171-1175, (1993).
CrossRef
Toschi F. and Succi S., Lattice Boltzmann method at finite Knudsen numbers. Europhysics Letters 69 (4), 549-555, (2005).
CrossRef
Tuckerman D. B. and Pease R. F. W., High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2 (5), 126-129, (1981).
CrossRef
Turner S. E., Lam L. C., Faghri M. and Gregory O. J., Experimental Investigation of Gas Flow in Microchannels, Journal of Heat Transfer, 126, 753-763, (2004).
CrossRef
Valougeorgis, D. The friction factor of a rarefied gas flow in a circular tube. Physics of Fluids, 19, 091702, 2007.
CrossRef
van Dyke K. S., The coefficients of viscosity and of slip of air and of carbon dioxide by the rotating cylinder method, Physical Review 21, 250-265 (1923).
CrossRef
Varade V., Pradeep A, Prabhu S. and Agrawal A., Experimental study of rarefied gas flow through a 90° bend tube, 2nd European Conference on Microfluidics-2010, Toulouse, France, December 2010.
Varoutis S., Valougeorgis D. and Sharipov F., Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios, J. Vac. Sci. Technol. A, 27, 1377-1391, (2009a).
CrossRef
Varoutis S., Naris S., Hauer V., Day C. and Valougeorgis D., Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number. J. Vac. Sci. Technol. A 27(1), 89-100, (2009b).
CrossRef
Verhaeghe F., Luo L. S. and Blanpain B., Lattice Boltzmann modeling of microchannel flow in slip flow regime, Journal of Computational Physics, 228, 147-157, (2009).
CrossRef
Verma B., Demsis A., Agrawal A. and Prabhu S. V., Semi-empirical correlation for friction factor with gas flow through smooth microtube. Journal of Vacuum Science and Technology A, 27, 584-590, (2009).
CrossRef
Vijayalakshmi K., Anoop K. B., Patel H. E., Harikrishna P. V., Sundararajan T. and Das S. K., Effects of compressibility and transition to turbulence on flow through microchannels, International Journal of Heat and Mass Transfer, 52, 2196-2204, (2009).
CrossRef
Vimmr J., Klášterka H., Hajžman M., Luxa M. and Dvořák R., Mathematical Modelling and Experimental Investigation of Gas Flow in Minichannels and Microchannels. Journal of Thermal Science, 19 (4), 289-294, (2010).
CrossRef
Volkov I. V., Gas-dynamic boundary conditions of slip on an uneven surface, U. S. S. R. Comput. Maths. Math. Phys., 28 (l), 52-58, (1988).
CrossRef
Wang M. and Li Z., Micro- and nanoscale non-ideal gas Poiseuille flows in a consistent Boltzmann algorithm model, J. Micromech. Microeng., 14, 1057-1063, (2004).
CrossRef
Wang M. and Li Z., Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method, Physical Review E, 68, 046704, (2003).
CrossRef
Wang M. and Li Z., Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method, Int. J. Heat and Fluid Flow, 25, 975-985, (2004a).
CrossRef
Wang M. R. and Li Z. X., Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures, Microfluidics and Nanofluidics, 1, 62-70, (2004b).
CrossRef
Wu J. S., Lee F and Wong S. C., Pressure boundary treatment in micromechanical devices using the direct simulation Monte Carlo method, JSME International Journal B, 44 (3), 439-450, (2001).
CrossRef
Wu P. Y. and Little W. A., Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators, Cryogenics, 23, 273-277, (1983).
CrossRef
Wuest W., Boundary layers in rarefied gas flow, Progress in Aerospace Science, 8, 295-352 (1967).
CrossRef
Xu K. and Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions, J. Fluid Mech., 513, 87-110, (2004).
CrossRef
Xu K., Super-Burnett solutions for Poiseuille flow. Phys. Fluids 15 (7), 2077-2080, (2003).
Xue H., Fan Q. and Shu C., Prediction of micro-channel flows using direct simulation Monte Carlo, Probabilistic Engineering Mechanics, 15, 213-219, (2000).
CrossRef
Xue H., Ji H. M. and Shu C., Analysis of micro-Couette flow using the Burnett equations. Int. J. Heat and Mass Transfer, 44, 4139-4146, (2001).
CrossRef
Yamaguchi H., Hanawa T., Yamamoto O., Matsuda Y., Egami Y., Niimi T., Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid, 11, 57-64, (2011).
CrossRef
Yamamoto K., Slip flow over a smooth platinum surface, JSME International Journal B, 45, 788-795 (2002).
CrossRef
Yan F. and Farouk B., Computations of Low Pressure Fluid Flow and Heat Transfer in Ducts Using the Direct Simulation Monte Carlo Method, J. Heat Transfer, 124 (4), 609-616, (2002).
CrossRef
Yan X., Wang Q. and Suo X., Investigation of Flow Resistance in Microchannels with a Sudden Contraction or Expansion Using DSMC, ASME, First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B, MNHT, 52172, 715-721, (2008).
Yang J M, Yang X, Ho C M and Tai Y C, Micromachined particle filter with low power dissipation, J. Fluids Eng., 123, 899-908, (2001).
CrossRef
Yang J., Ye J. J., Zheng J. Y., Wong I., Lam C. K., P. Xu P., Chen R. X. and Zhu Z. H., Using Direct Simulation Monte Carlo With Improved Boundary Conditions for Heat and Mass Transfer in Microchannels. Journal of Heat Transfer, 132, 041008, 2010.
CrossRef
Yang X., Yang J. M., Tai Y. C. and Ho C. M., Micromachined membrane particle filters, Sensors Actuators, 73, 184-91, 1999.
CrossRef
Yoon S., Ross J., Mench M. and Sharp K., Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. Journal of Power Sources, 160, 1017-1025, (2006).
CrossRef
Zahid W. A., Yin Y. and Zhu K. Q., Couette-Poiseuille flow of a gas in long microchannels, Microfluid Nanofluid, 3, 55-64, (2007).
CrossRef
Zahmatkesh I., Alishahi M. M. and Emdad H., New velocity-slip and temperature-jump boundary conditions for Navier-Stokes computation of gas mixture flows in microgeometries, Mechanics Research Communications 38, 417-424, (2011).
CrossRef
Zhang T., Jia Li and Wang Z., Validation of Navier-Stokes equations for slip flow analysis within transition region, International Journal of Heat and Mass Transfer, 51, 6323-6327, (2008).
CrossRef
Zhang T. T., Jia L., Wang Z. C. and Li C. W., Slip flow characteristics of compressible gaseous in microchannels, Energy Conversion and Management, 50, 1676-1681, (2009).
CrossRef
Zhang T. T. and Jia Li, Numerical Simulation of Roughness Effect on Gaseous Flow and Heat Transfer in Microchannels, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 16 - 19, 2007, Bangkok, Thailand, (2007).
Zhang Y. H., Qin R. S., Sun Y. H., Barber R. W. and Emerson D. R., Gas Flow in Microchannels-A Lattice Boltzmann Method Approach, Journal of Statistical Physics, 121, 257-267, (2005a).
CrossRef
Zhang Y., Qin R., and Emerson D. R., Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71, 047702, (2005b).
CrossRef
Zhao H., The numerical solution of gaseous slip flows in microtubes. Int. Comm. Heat Mass Transfer, 28 (4), 585-594, (2001).
CrossRef
Zhou Y., Zhang R., Staroselsky I., Chen H., Kim W. T. and Jhon M. S., Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Physica A: Statistical Mechanics and its Applications, 362 (1), 68-77, (2006).
CrossRef
Ziarani A. S. and Mohamad A. A., Effect of wall roughness on the slip of fluid in a microchannel, Nanoscale and Microscale Thermophysical Engineering, 12, 154-169, (2008).
CrossRef
Zohar Y., Lee S. Y. K., Lee W. Y., Jiang L. and Tong P., Subsonic gas flow in a straight and uniform microchannel, J. Fluid Mech. 472, 125-151, (2002).