Access provided by Rice University


Toner, M. and Irimia, D., Blood-On-A-Chip, Annual Review of Biomedical Engineering, 2005, 7, 77-103.
CrossRef
Ji, H. S. and Lee, S. J., In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube, Clinical Hemorheology and Microcirculation, 2008, 40, 19-30.
Sugii, Y., Okuda, R., Okamoto, K. and Madarame, H., Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique, Measurement Science and Technology, 2005, 16, 1126.
CrossRef
Kikuchi K. and Mochizuki O., Micro-PIV measurements in Micro-Tubes and Proboscis of Mosquito, Journal of Fluid Science and Technology, 2008, 3, 975-986.
CrossRef
Lima, R., Wada, S., Takeda, M., Tsubota, K. and Yamaguchi, T., In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles. Journal of Biomechanics, 2007, 40, 2752-2757.
CrossRef
Lima, R., Wada, S., Tanaka, S., Takeda, M., Takuji, I., Tsubota, K., Imai, Y. and Yamaguchi, T., In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system, Biomedical Microdevices, 2008, 10, 153-167.
CrossRef
Patrick, M. J., Chen, C. Y., Frakes, D. H., Dur, O. and Pekkan, K., Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal uPIV. Experiments in Fluids, 2011, 50, 887-904.
CrossRef
Tsukada K., Sekizuka E., Oshio C. and Minamitani H., Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system. Microvasc Res, 2001, 61, 231-239.
CrossRef
Shelby J. P., White, J., Ganesan, K., Rathod, P. K. and Chiu D. T., A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. PNAS, 2001, 100, 14618-22.
CrossRef
Yap, B. and Kamm, R. D., Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol, 2005, 98, 1930-9.
Abkarian, M., Faivre, M. and Stone H. A., High-speed microfluidic differential manometer for cellular-scale hydrodynamics. PNAS, 2006, 103, 538-42.
CrossRef
Higgins, J. M., Eddington, D. T., Bhatia, S. N. and Mahadevan, L., Sickle cell vasoocclusion and rescue in a microfluidic device. PNAS, 2007, 104, 20496-9.
CrossRef
Fenton, B. M. and Zweifach, B. W., Microcirculatory models relating geometrical variations to changes in pressure and flow rate. Annals of Biomedical Engineering, 1981, 9, 303-321.
CrossRef
Popel, A. S. and Johnson, P. C., Microcirculation and Hemorheology. Annual Review of Fluid Mechanics, 2005, 37, 43-67.
CrossRef
Lipowsky, H. H. and Zweifach, B. W., Methods for the simultaneous measurement of pressure differentials and flow in single unbranched vessels of the microcirculation for rheological studies, Microvascular Research, 1977, 14, 345-361.
CrossRef
Jain, R. K., Determinants of tumor blood flow: a review, Cancer Research, 1988, 48, 2641-2658.
Thurston, G. B., Viscoelasticity of Human Blood, Biophysical Journal, 1972, 12, 1205-1217.
CrossRef
Reinke W., Johnson P. C. and Gaehtgens P., Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter, Circulation Research, 1986, 59, 124-132.
CrossRef
Wilding, P., Pfahler, J., Bau, H. H, Zemel, J. N. and Kricka, L. J., Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clinical Chemistry, 1994, 40(1), 43-47.
Mazumdar, J. N., BiofluidMechanics, World Scientific, Singapore, 1998.
Trebotich, D., Chang, W. and Liepmann, D., Modeling of blood flow in simple microchannels, Modeling and Simulation of Microsystems, 2001. ISBN 0-9708275-0-4
Kundu P. K. and Cohen, I. M., Fluid Mechanics, Academic Press, Oxford, 2004, ISBN: 9780123737359.
Chakraborty S., Dynamics of capillary flow of blood into a microfluidic channel. Lab on a chip, 2005, 5, 421-430.
CrossRef
Shibeshi, S. and Collins, W. E., The rheology of blood flow in a branched arterial system, Applied Rheology, 2005, 15, 398-405.
Gulati, S., Muller, S. J. and Liepmann, D., Direct measurements of viscoelastic flows of DNA in a 2:1 abrupt planar microcontraction. Journal of Non-Newtonian Fluid Mechanics, 2008, 155, 51-66.
CrossRef
Wang, C, Wang, X. and Ye, P., The transport and deformation of blood cells in micro-channel, Proceedings of the 3rd International IEEE Conference on Nano/Micro Engineered and Molecular Systems, China, 2008.
Kung, C. F., Chiu, C. F., Chen, C. F., Chang, C. C. and Chu, C.C, Blood flow driven by surface tension in a microchannel. Microfluidics andNanofluidics, 2009, 6, 693-697.
Peterson, L. H., The dynamics of pulsatile blood flow. Circulation Research, 1954, 2, 127-139.
CrossRef
Ku, D. N., Blood flow in arteries. Annual Review of Fluid Mechanics, 1997, 29, 399-434.
CrossRef
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. and Quake, S. R., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288, 113-116.
CrossRef
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. M., Chaotic Mixer for Microchannels. Science, 2002, 295, 647-651.
CrossRef
Glasgow, I. and Aubry, N., Enhancement of microfluidic mixing using time pulsing. Lab on a Chip, 2003 3, 114-120.
CrossRef
Glasgow, I., Batton, J. and Aubry, N., Electroosmotic mixing in microchannels. Lab on a Chip, 2004, 4, 558-562.
CrossRef
Gu, W., Zhu X., Futal, N., Cho, B. S. and Takayama, S., Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS, 2004, 101, 15861-15866.
CrossRef
Tang, G. H., Li, Z., Wang, J. K., He, Y. L. and Tao, W. Q., Electroosmotic flow and mixing in microchannels with lattice Boltzmann method. Journal of Applied Physics, 2006, 100, 1-10.
Massoudi, M. and Phuoc, T. X., Pulsatile flow of blood using a second-grade fluid model, Computers and Mathematics with Applications, 2008, 56, 199-211.
CrossRef
Tikekar, M., Singh, S. G. and Agrawal, A., Measurement and modeling of pulsatile flow in microchannel. Microfluidics and Nanofluidics, 2010, 9, 1225-1240.
CrossRef
Haddad, K., Ertunc, O., Mishra, M. and Delgado, A., Pulsating laminar fully developed channel and pipe flows. Physical Review E, 2010, 81, 013603.
Prabhakar, A. and Mukherji, S., Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection. Lab on a Chip, 2010, 10, 748-754.
CrossRef
Prabhakar, A. and Mukherji, S., A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection, Lab on a Chip, 2010, 10, 3422-3425.
CrossRef
Kesmarky, G., Kenyeres, P., Rabai, M. and Toth, K., Plasma viscosity: a forgotten variable. Clinical Hemorheology and Microcirculation, 2008, 39(1-4), 243-6.
Tefferi, A., A contemporary approach to the diagnosis and management of polycythemia vera. Curr. Hematol. Rep., 2003, 2(3), 237-41.
Lenz, C, Rebel, A., Waschke, K. F., Koehler, R.C, and Frietsch, T., Blood viscosity modulates tissue perfusion: sometimes and somewhere. Transfus Altern Transfus Med., 2008, 9 (4): 265-272.
CrossRef
Kwon, O., Krishnamoorthy, M., Cho, Y. I., Sankovic, J. M. and Banerjee, R. K., Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty. J. Biomech. Engg., 2008, 130(1), 011003.
Anastasiou, A. D., Spyrogianni, A. S. and Paras, S. V., Experimental study of pulsatile blood flow in micro channels, 19th International Congress of Chemical and Process Engineering, Prague, Czech Republic, 2010.
Singh, S. G., Bhide, R., Duttagupta, S. P., Puranik, B. P. and Agrawal, A., Two-phase flow pressure drop characteristics in trapezoidal silicon microchannels. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 887-900.
CrossRef
Singh, S. G., Kulkarni, A., Duttagupta, S. P., Puranik, B. P. and Agrawal, A., Impact of aspect ratio on flow boiling of water in rectangular microchannels. Experimental Thermal and Fluid Science, 2008, 33, 153-160.
Kumar, N., Study of blood flow in microchannels, MTech. Thesis, Indian Institute of Technology Bombay, 2010.
Bhide, R. R., Singh, S. G., Sridharan, A. and Agrawal, A., An active control strategy for reduction of pressure instabilities during flow boiling in microchannel, Journal of Micromechanics and Microengineering, 2011, 21, 035021.
CrossRef
Yilmaz, F. and Gundogdu, M. Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions Korea-Australia Rheology Journal, 2008, 20(4), 197-211.
Giovanna, T., Simeone, M., Martinelli, V., Rotoli, B. and Guido, S., Red blood cell deformation in microconfined flow, Soft Matter, 2009, 5, 3736-3740.
CrossRef
Tripathi, S., Prabhakar, A., Kumar, N., Singh, S. G., and Agrawal, A., Blood plasma separation in elevated dimension T-shaped microchannel, Biomedical Microdevices, 2013, 15 (3), 415-425."
CrossRef
< >

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers