B. Bhushan, Contact mechanics of rough surfaces in tribology: multiple asperity contact, Tribol. Lett. 4 (1998) 1-35. | |
H. J. Sauer Jr., C. R. Remington, W. E. Stewart Jr., J. T. Lin, Thermal Contact Conductance with Several Interstitial Materials, in: Proc. 11th Int. Conf. Therm. Conduct., Albuquerque, 1971: pp. 22-23. | |
G. P. Peterson, L. S. Fletcher, Measurement of Thermal Contact Conductance in the Presence of Thin Metal Foils, in: American Institute of Aeronautics and Atronautics, 1988: p. AIAA Paper 88-0466. | |
R. A. Sayer, T. P. Koehler, S. M. Dalton, T. W. Grasser, R. L. Akau, Thermal Contact Conductance of Radiation-Aged Thermal Interface Materials for Space Applications, in: ASME 2013 Summer Heat Transf. Conf., 2013: pp. HT2013-17408. | |
R. S. Prasher, J. C. Matayabas, Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material, IEEE Trans. Components Packag. Technol. 27 (2004) 702-709. doi:10.1109/TCAPT.2004.838883. | |
B. A. Cola, X. Xu, T. S. Fisher, Increased real contact in thermal interfaces: A carbon nanotube/foil material, Appl. Phys. Lett. 90 (2007) 093513. doi:10.1063/1.2644018. CrossRef | |
S. L. Hodson, J. R. Serrano, R. A. Sayer, S. M. Dalton, T. P. Koehler, T. S. Fisher, Effect of Gamma-Ray Irradiation on the Thermal Contact Conductance of Carbon Nanotube Thermal Interface Materials, in: ASME 2013 Int. Mech. Eng. Congr. Expo., 2013: pp. IMECE2013-62773. | |
A. Rajabpour, S. M. Vaez Allaei, F. Kowsary, Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study, Appl. Phys. Lett. 99 (2011) 051917. doi:10.1063/1.3622480. CrossRef | |
K. M. F. Shahil, A. A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials., Nano Lett. 12 (2012) 861-867. doi:10.1021/nl203906r. CrossRef | |
S. V Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, et al., Thermal Challenges in Next-Generation Electronic Systems, IEEE Trans. Components Packag. Technol. 31 (2008) 801-815. doi:10.1109/TCAPT.2008.2001197. | |
C. D. Johnson, P. S. Wilke, Protecting Satellites from the Dynamics of the Launch Environment, AIAA J. (2003) 1-10. | |
A. S. Bicosa, C. Johnson, L. P. Davis, D. Aerospace, B. Aye, H. Beach, Need for and benefits of launch vibration isolation, 3045 (n.d.) 14-19. | |
M. Celina, Selection and Optimization of Piezoelectric Polyvinylidene Fluoride Polymers for Adaptive Optics in Space Environments, High Perform. Polym. 17 (2005) 575-592. doi:10.1177/0954008305052206. CrossRef | |
G. Markovic, M. Marinovic-Cincovic, V. Jovanovic, S. Samardzija-Jovanovic, J. Budinski-Simendic, The effect of gamma radiation on the ageing of sulfur cured NR/CSM and NBR/CSM rubber blends reinforced by carbon black, Chem. Ind. Chem. Eng. Q. 15 (2009) 291-298. doi:10.2298/CICEQ0904291M. CrossRef | |
D. Hui, M. D. Chipara, Radiation-Induced Modifications in Polymeric Materials, MRS Proc. 851 (2004) NN3.9.1. doi:10.1557/PROC-851-NN3.9. | |
M. R. Maschmann, P. B. Amama, A. Goyal, Z. Iqbal, R. Gat, T. S. Fisher, Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes, Carbon N. Y. 44 (2006) 10-18. doi:10.1016/j.carbon.2005.07.027. CrossRef | |
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials 1, Annu. B. ASTM Stand. 06 (2011) D5470-06. doi:10.1520/D5470-06R11. | |
R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proc. IEEE. 94 (2006) 1571-1586. doi:10.1109/JPROC.2006.879796. CrossRef | |
M. Tirovic, G. P. Voller, Interface pressure distributions and thermal contact resistance of a bolted joint, Proc. R. Soc. A Math. Phys. Eng. Sci. 461 (2005) 2339-2354. doi:10.1098/rspa.2005.1452. CrossRef | |
C. L. Yeh, C. Y. Wen, Y. F. Chen, S. H. Yeh, C. H. Wu, An experimental investigation of thermal contact conductance across bolted joints, Exp. Therm. Fluid Sci. 25 (2001) 349-357. CrossRef | |
R. Akau, D. Pattison, K. Austin, S. Dalton, C. Ho, Nexus Test Report for Thermal and Mechanical Study of Silver-Teflon Tape for Space Applications, 2012. | |
B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Stat. 7 (1979) 1-26. CrossRef | |
B. Efron, R. Tibshirani, Statistical data analysis in the computer age, Science (80-.). 253 (1991) 390-395. CrossRef | |
M. M. Yovanovich, Effect of foils on joint resistance: evidence of optimum thickness, in: AIAA Pap., 1972: pp. 227-245. | |
C. V Madhusudana, Thermal Contact Conductance, Springer-Verlag, New York, 1996. | |
A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond - like carbon, and nanodiamond, (2004). doi:10.1098/rsta.2004.1452. | |
W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, et al., Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett. 70 (1997) 2684. doi:10.1063/1.118993. CrossRef | |
S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, et al., Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Phys. Rev. B. 63 (2001) 155414. doi:10.1103/PhysRevB.63.155414. CrossRef | |
H. M. Heise, R. Kuckuk, A. K. Ojha, A. Srivastava, V. Srivastava, B. P. Asthana, Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite, J. Raman Spectrosc. 40 (2009) 344-353. doi:10.1002/jrs.2120. | |
Z. Xu, L. Chen, L. Liu, X. Wu, L. Chen, Structural changes in multi-walled carbon nanotubes caused by γ-ray irradiation, Carbon N. Y. 49 (2011) 350-351. doi:10.1016/j.carbon.2010.09.023. CrossRef | |
J. Guo, Y. Li, S. Wu, W. Li, The effects of gamma-irradiation dose on chemical modification of multi-walled carbon nanotubes., Nanotechnology. 16 (2005) 2385-2388. doi:10.1088/0957-4484/16/10/065. CrossRef |
Characterization of Gamma-irradiated Carbon Nanotube and Metallic Foil Thermal Interface Materials for Space Systems
Robert SayerRelated information
, Timothy KoehlerRelated information
1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
, Stephen HodsonRelated information1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
, Robert CordovaRelated information1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
, Timothy MarinoneRelated information1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
, Justin SerranoRelated information1 Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
, Timothy FisherRelated information2 School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA