Access provided by CLOCKSS


B. Bhushan, Contact mechanics of rough surfaces in tribology: multiple asperity contact, Tribol. Lett. 4 (1998) 1-35.
H. J. Sauer Jr., C. R. Remington, W. E. Stewart Jr., J. T. Lin, Thermal Contact Conductance with Several Interstitial Materials, in: Proc. 11th Int. Conf. Therm. Conduct., Albuquerque, 1971: pp. 22-23.
G. P. Peterson, L. S. Fletcher, Measurement of Thermal Contact Conductance in the Presence of Thin Metal Foils, in: American Institute of Aeronautics and Atronautics, 1988: p. AIAA Paper 88-0466.
R. A. Sayer, T. P. Koehler, S. M. Dalton, T. W. Grasser, R. L. Akau, Thermal Contact Conductance of Radiation-Aged Thermal Interface Materials for Space Applications, in: ASME 2013 Summer Heat Transf. Conf., 2013: pp. HT2013-17408.
R. S. Prasher, J. C. Matayabas, Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material, IEEE Trans. Components Packag. Technol. 27 (2004) 702-709. doi:10.1109/TCAPT.2004.838883.
B. A. Cola, X. Xu, T. S. Fisher, Increased real contact in thermal interfaces: A carbon nanotube/foil material, Appl. Phys. Lett. 90 (2007) 093513. doi:10.1063/1.2644018.
CrossRef
S. L. Hodson, J. R. Serrano, R. A. Sayer, S. M. Dalton, T. P. Koehler, T. S. Fisher, Effect of Gamma-Ray Irradiation on the Thermal Contact Conductance of Carbon Nanotube Thermal Interface Materials, in: ASME 2013 Int. Mech. Eng. Congr. Expo., 2013: pp. IMECE2013-62773.
A. Rajabpour, S. M. Vaez Allaei, F. Kowsary, Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study, Appl. Phys. Lett. 99 (2011) 051917. doi:10.1063/1.3622480.
CrossRef
K. M. F. Shahil, A. A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials., Nano Lett. 12 (2012) 861-867. doi:10.1021/nl203906r.
CrossRef
S. V Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, et al., Thermal Challenges in Next-Generation Electronic Systems, IEEE Trans. Components Packag. Technol. 31 (2008) 801-815. doi:10.1109/TCAPT.2008.2001197.
C. D. Johnson, P. S. Wilke, Protecting Satellites from the Dynamics of the Launch Environment, AIAA J. (2003) 1-10.
A. S. Bicosa, C. Johnson, L. P. Davis, D. Aerospace, B. Aye, H. Beach, Need for and benefits of launch vibration isolation, 3045 (n.d.) 14-19.
M. Celina, Selection and Optimization of Piezoelectric Polyvinylidene Fluoride Polymers for Adaptive Optics in Space Environments, High Perform. Polym. 17 (2005) 575-592. doi:10.1177/0954008305052206.
CrossRef
G. Markovic, M. Marinovic-Cincovic, V. Jovanovic, S. Samardzija-Jovanovic, J. Budinski-Simendic, The effect of gamma radiation on the ageing of sulfur cured NR/CSM and NBR/CSM rubber blends reinforced by carbon black, Chem. Ind. Chem. Eng. Q. 15 (2009) 291-298. doi:10.2298/CICEQ0904291M.
CrossRef
D. Hui, M. D. Chipara, Radiation-Induced Modifications in Polymeric Materials, MRS Proc. 851 (2004) NN3.9.1. doi:10.1557/PROC-851-NN3.9.
M. R. Maschmann, P. B. Amama, A. Goyal, Z. Iqbal, R. Gat, T. S. Fisher, Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes, Carbon N. Y. 44 (2006) 10-18. doi:10.1016/j.carbon.2005.07.027.
CrossRef
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials 1, Annu. B. ASTM Stand. 06 (2011) D5470-06. doi:10.1520/D5470-06R11.
R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proc. IEEE. 94 (2006) 1571-1586. doi:10.1109/JPROC.2006.879796.
CrossRef
M. Tirovic, G. P. Voller, Interface pressure distributions and thermal contact resistance of a bolted joint, Proc. R. Soc. A Math. Phys. Eng. Sci. 461 (2005) 2339-2354. doi:10.1098/rspa.2005.1452.
CrossRef
C. L. Yeh, C. Y. Wen, Y. F. Chen, S. H. Yeh, C. H. Wu, An experimental investigation of thermal contact conductance across bolted joints, Exp. Therm. Fluid Sci. 25 (2001) 349-357.
CrossRef
R. Akau, D. Pattison, K. Austin, S. Dalton, C. Ho, Nexus Test Report for Thermal and Mechanical Study of Silver-Teflon Tape for Space Applications, 2012.
B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Stat. 7 (1979) 1-26.
CrossRef
B. Efron, R. Tibshirani, Statistical data analysis in the computer age, Science (80-.). 253 (1991) 390-395.
CrossRef
M. M. Yovanovich, Effect of foils on joint resistance: evidence of optimum thickness, in: AIAA Pap., 1972: pp. 227-245.
C. V Madhusudana, Thermal Contact Conductance, Springer-Verlag, New York, 1996.
A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond - like carbon, and nanodiamond, (2004). doi:10.1098/rsta.2004.1452.
W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, et al., Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett. 70 (1997) 2684. doi:10.1063/1.118993.
CrossRef
S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, et al., Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Phys. Rev. B. 63 (2001) 155414. doi:10.1103/PhysRevB.63.155414.
CrossRef
H. M. Heise, R. Kuckuk, A. K. Ojha, A. Srivastava, V. Srivastava, B. P. Asthana, Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite, J. Raman Spectrosc. 40 (2009) 344-353. doi:10.1002/jrs.2120.
Z. Xu, L. Chen, L. Liu, X. Wu, L. Chen, Structural changes in multi-walled carbon nanotubes caused by γ-ray irradiation, Carbon N. Y. 49 (2011) 350-351. doi:10.1016/j.carbon.2010.09.023.
CrossRef
J. Guo, Y. Li, S. Wu, W. Li, The effects of gamma-irradiation dose on chemical modification of multi-walled carbon nanotubes., Nanotechnology. 16 (2005) 2385-2388. doi:10.1088/0957-4484/16/10/065.
CrossRef