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Abstract: We construct dyon solutions in SU(N) with topological electric and magnetic charge. Assuming a |Φ|4—like potential for the 
Higgs field, we show that the mass of the dyons is relatively insensitive to the coupling parameter λ characterizing the potential. We 
then apply the methodology of constructing dyon solutions in SU(N) to G2. In order to define the electromagnetic field consistently in 
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subgroup SU(3). In this case we find two different types of dyons, one of which has properties identical to dyons in SU(3). The other 
dyon has some properties which are seemingly atypical, eg, the magnetic charge gm = 4π 3/e, which differs from the ’t Hooft/Polyakov 
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Introduction
The subject of magnetic monopoles has intrigued and 
fascinated the physics community dating back to the 
early twentieth century. Dirac, first piqued interest in 
this subject by providing a theoretical argument dem-
onstrating that the existence of magnetic monopoles 
requires not only that electric charge be quantized 
but also that the electric and magnetic couplings be 
inversely proportional to each other, ie, weak/strong 
duality. Subsequently, ’t Hooft3 and Polyakov showed 
that within the context of the spontaneously broken 
Yang-Mills gauge theory SO(3) magnetic monopole 
solutions of finite mass must necessarily exist and fur-
thermore possess an internal structure. Consequently, 
Montonen and Olive speculated that there was an exact 
weak/strong, electromagnetic duality for the spontane-
ously broken SO(3) gauge theory.4 More recently, this 
conjecture has become credible in the broader context 
of N = 2 or N = 4 Super Yang-Mills theories.2

Our purpose here is to investigate magnetic mono-
pole–like solutions, or more specifically dyon solutions 
which possess both topological electric and magnetic 
charges. We introduce a methodology of constructing 
such solutions within the context of an arbitrary gauge 
group, emphasizing, in particular, the groups SU(N) 
and G2. In Section 2 we introduce a necessary condition 
which we consider a prerequisite for categorizing dyon 
solutions. Based on the condition, we will construct 
dyon solutions for the gauge group SU(N). Finally, we 
apply the construction, specifically, to SU(3) and G2 
emphasizing differences and commonalities between 
these two types of solutions and those of SU(2).

Concerning conventions we adopt those of Harvey2 
with the exception that the Levi-Civitá symbol 
ε0123 = ε123 = 1. We summarize the other relevant con-
ventions: the Minkowski signature is (+---); Greek 
letters denote space time indices, ie, 0, 1, 2, 3, while 
Roman letters denote either the spatial indices 1, 2, 3 
or the indices of the generators of the gauge group. 
Also the gauge coupling is denoted e. We employ 
Lorentz-Heaviside units of electromagnetism so that 
c = ħ = ∈0 = µ0 = 1. One implication is that the Dirac 
quantization condition is e gm = (4π)n/2, gm being the 
magnetic charge and n being an integer.

The Electromagnetic Field
In this section, we adopt the definition of the elec-
tromagnetic field first introduced by ’t Hooft3 in the 

context of the gauge group SO(3). Furthermore, we 
show that this definition of the electromagnetic field 
can be consistently applied to an arbitrary gauge field 
for a particular gauge group when a specific condi-
tion, which we derive, is satisfied.

Consider the Yang–Mills–Higgs Lagrangian:

	
 = - + -1

4
1
2

F F D D Vv
v

µ
µ

µ
µ. . .Φ Φ Φ Φ( ),	(2.1)

where

	 F A A ieA Av v vµ µ µ µ µ= ∂ - ∂ - ∧ . 	 (2.2)

The Higgs field Φ is a scalar transforming accord-
ing to the adjoint representation of the gauge group so 
that its covariant deriviative is

	 D ieAµ µ µΦ Φ Φ= ∂ - ∧ ⋅ 	 (2.3)

The generators of the algebra, Ta have been cho-
sen so that Tr(TaTb) = (1/2)δab. For two fields, A and 
B, transforming as the adjoint representation of the 
gauge group A ⋅ B is defined as

	 A B AB⋅ ≡ =2Tr( ) .A Ba a 	 (2.4)

One possible definition for the electromagnetic field 
tensor F is the gauge invariant quantity Fµv = Fµv ⋅ Φ. 
This does not suffice because in general, Fµv neither 
satisfies the Maxwell equations nor the Bianchi iden-
tity dF = 0. When considering the gauge group SO(3) 
’t Hooft proposed the following modification,

	
F

ie
D Dv v vµ µ µ= ⋅ - ∧ ⋅F Φ Φ Φ Φ1 ,	 (2.5)

where Φ ⋅ Φ = C2. Here C is a constant which ’t Hooft 
sets equal to one. We now show in order that dFµv = 0 
the following condition is sufficient,

	 D Dµ µΦ Φ Φ Φ= ∧ ∧( ). 	 (2.6)

First, note that this condition is satisfied for SO(3) 
or SU(2) as can be seen, straightforwardly, from the 
following heuristic arguement. The algebra of SO(3) 
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and SU(2) is essentially the same as the vector cross 
product in three dimensional space. Thus, if we con-
sider Φ to be the element of the SU(2) algebra, Tz, 
then we can assume that DµΦ, which is “perpendicu-
lar” to Tz, is DµΦ = −ieATx. Consequently, the right-
hand side of Eq. 2.6 is replaced by Tz ∧ (Tz ∧ (−ie)
ATx) = −ieATx = DµΦ. Here we have used the fact that 
the SU(2) algebra satisfies Ti ∧ Tj = i∈ijkTk.

We now derive the condition 2.6. The Bianchi 
identity can be expressed as

	 dF F dx dx dx D F dx dx dxv
v

v
v= ∂ ∧ ∧ = ∧ ∧γ µ

γ µ
γ µ

γ µ 	
		  (2.7)

Since Fµv is a two-form, Eq. 2.7 can be re-
expressed as

	

dF D D
ie

D D D

ie
D D D dx d

v v v

v

= ⋅ + ⋅ - ⋅ ∧

- ∧ ∧ ⋅ ∧

{

( ) }

γ µ µ γ γ µ

γ µ
γ

F FΦ Φ Φ Φ Φ

Φ Φ Φ

1

1 xx dxvµ ∧ .
	

�

(2.8)

Using the Jacobi identity, the cyclic property of the 
trace, and (Dγ ∧ Dµ)Φ = −ieFγµ∧Φ, we can re-express 
Eq. 2.8 as

	

dF D D
ie

D D D

D dx dx d

= ⋅ + ⋅ - ⋅ ∧

- ⋅ ∧ ∧ ∧ ∧

{

( )}
γ µυ µυ γ γ µ υ

µυ γ
γ µ

F F

F

Φ Φ Φ Φ Φ

Φ Φ Φ

1

xxυ .
	

		

(2.9)

The first term vanishes because of the Jacobi 
identity. The second and fourth terms cancel because 
the condition given in Eq. 2.6 is satisfied. The third 
term vanishes for the following reason. Without 
loss of generality we assume that Φ is an element 
of the Cartan subalgebra multiplied by a constant. 
Furthermore, Eq. 2.6 is equivalent to the following 
condition imposed on the root vectors Eα, ie, the rais-
ing and lowering operators of the weights,a

	 Φ ∧ = ±E Eα α  or 0.	 (2.10)

Consequently, if Eq. 2.10 is satisfied, 
D Dµ υΦ Φ Φ∧ ∝  or commutes with Φ; otherwise, 
there would exist a root vector which does not satisfy 
Eq. 2.10. Since DγΦ does not commute with Φ (othe-
wise, it would be zero) and is “perpendicular” to Φ, the 
third term vanishes. Thus, we have shown that Eq. 2.6 
is sufficient to imply dF = 0. The seemingly restrictive 
condition, Eq. 2.10, placed on the “direction” of Φ 
ensures that for an arbitrary gauge field, F, the electro-
magnetic field is consistently defined; otherwise, the 
Bianchi identity for the electromagnetic field dF ≠ 0. 
Thus, the condition ensures that the electromagnetic 
field is always defined for the particular gauge group 
and not just for one or more of its subgroups.

Dyon Solutions in SU(N)
We now construct dyon solutions for SU(N). The choice 
of Φ must be in accordance with Eq. 2.10. To this end 
we consider the root vector Eα of SU(N ) whose root is

	 α α α= ( , , , , ),0 0 2 1


	 (3.1)

where

	

α

α

1

2

2 1

2
2 1

=
-

= -
-

N
N

N
N

( )

( )
.

	 (3.2)

Let HN−i (i = 1, 2) be those elements of the Cartan 
subalgebra for which

	 H E EN i i- ∧ =αα ααα . 	 (3.3)

We choose

	
Φ = -

1

1
1α

H N 	 (3.4)

This choice of Φ satisfies the condition 2.10 for 
all root vectors of SU(N). For example, in the case 
of SU(3) this corresponds to the choice Φ = 1

1
2α

H  as 
can be seen in Figure 4.

As in the work of Harvey2 we assume that the 
potential V (Φ ⋅ Φ) to be of a form such that the vacuum 

aThe equivalence of the two conditions can be shown by assuming a general 
form for Aµ, ie, Aµ = Aµ

ata where ta is an Eα or an element of the Cartan subagebra, 
and performing the calculations in Eq. 2.6 directly.
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expectation of Φ is non-zero. When a specific form of 
V (Φ ⋅ Φ) is required we use

	
V ( ) ( ) .Φ Φ Φ Φ⋅ = ⋅ -λ υ

8
2 2 	 (3.5)

In general, the Higgs vacuum is defined to be the 
set of all Φ such that V (Φ ⋅ Φ) = 0. For the specific 
form of the potential given by Eq. 3.5 this implies that 
Φ ⋅ Φ = v2 and consequently that the various vacuum 
states can be labeled by v.

Defineb

	

T
E

T H H

T T T

T T T
i

T H

z
N N

x

y

N

±
±

- -

+ -

+ -

⊥
-

=

=
+

= +

= -

=
-

α

α
α α

α

α

| |

| |
2 2 1 1

2

1 2

2

2
++ -α

α
2 1

2
H N

| |
.

	 (3.6)

Thus, HN−1 and HN−2 can be expressed as

	

H T T
H T T

N z

N z

- ⊥

- ⊥

= +
= -

1 1 2

2 2 1

α α
α α

,
.
	 (3.7)

Make the ansatz that the Higgs field Φ and vector 
potential A in Eq. 2.1 take the form

	

Φ = +

= + - -
⊥( ( ) ) ,

( ) ( ) ( )( cos ) ,

Q r T T v
ge
g

S r T dt T C W r d
z

z z

α α

υα θ φ
1 2

1 1A 	
		

(3.8)

where

	

W r Q r S r r

W r Q r S r g
g e v r

r

g
m

( ), ( ), ( ) , ;

( ), ( ) , ( ) , ;

→ →

→ → - →∞

0 0

1 1
1

as

as
α

== +g ge m
2 2 .

	
		

(3.9)

Here C is an arbitrary constant, and quantities ge 
and gm are the electric and magnetic charges. Applying 
the gauge transformation

	 χ = - -e e ei T i T i Tz y zφ θ φ 	 (3.10)

to A and Φ we obtain

	

A A→ -

= + -

- -χ χ χ χ

α θ φ θθ φ

1 1

1

1
ie

d

g
g S r v T dt W r

e
T d T de

r( ) ( ) ( sin ).
	

		

(3.11)

and

	
Φ Φ→

= +
-

⊥

χ χ
α α

1

2 1v T Q r Tr[ ( ) ].
	 (3.12)

We have used the fact that

	d i T d T d T drχ χ θ φ θ φ θθ φ
- = - - + -1 1[( cos ) sin ]. 	

		  (3.13)

The elements of the Lie algebra Tr,Tθ, and Tφ are 
defined as (See Appendix A)

T T T T
T T T T

r x y z

x y z

= + +
= + -

sin cos sin sin cos
cos cos cos sin

θ φ θ φ θ
θ φ θ φθ ssin

sin cos .
θ

φ φφT T Tx y= - + 	

(3.14)

In Eq. 3.8 the constant C has been set equal to 1/e 
to eliminate the string singularity. For specificity we 
assume that V (Φ⋅Φ) is given by Eq. 3.5. Following 
’t Hooft3 we substitute Eqs 3.11 and 3.12  into the 
Lagrangian density, Eq. 2.1, to obtain the Lagrangian

L d r L g
g e

v

dx s x s w g
g

m

e

= =

+ -



-

∫

∫
∞

3
2 1

2 2 2 2 2

0

4

1
2

2 1

2

π
α

α
| |

[{ ( ) }( )

{

'

ww w
x

w g
g

q x q w x q

m'

'

( ) }( )

{ ( ) } ( ) ] .

2
2

2
2 2

2 2 2 2 2 2 2

2

2 1 2
8

1

+ -

- + - - - 


β

	
(3.15)

bAlthough |α| = 1 for SU(N), we, nonetheless, explicitly include |α| in subsequent 
formulae in antic-pation of generalizing these results to G2.
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In Eq. 3.15 the variable of integration r has 
been transformed to the dimensionless variable x 
where

	
x g e

g rm=
υ α1 . 	 (3.16)

and

	
β λ

α
=







g
g em | |

.
2

	 (3.17)

The functions w, q, and s are the transformed 
functions W, Q, and S, ie,

	

w x W r
q x Q r
s x S r

( ) ( ),
( ) ( ),
( ) ( ).

=
=
=

	 (3.18)

In obtaining Eq. 3.15 we have used the 
relationships,

	

F

F

F

tr
e

r

t
e

t
e

g
g

S r T

W r g
g

S r T

W r g
g

S

=

= -

= -

' ( )

[ ( )] ( )

[ ( )] (

υ α

υ αθ θ

φ

1

11

1 rr T

W r
e

T

W r
e

T

W r W r
e

r

r

) sin

( )

( ) sin

( ) ( ( ))

'

'

υ α θ

θ

φ

θ φ

φ θ

φθ

1

2

F

F

F

= -

=

= - ssin ,θ Tr

	 (3.19)

and

	

D Q r T
D W r Q r T
D W r Q r

r rΦ
Φ
Φ

=
= -
= -

' ( )
[ ( )] ( )
[ ( )] ( ) sin

υ α
υ α

υ α θ
θ θ

φ

1

1

1

1
1 TTφ .

	 (3.20)

We now apply the variational principle to Eq. 3.15 
with respect the functions s(x), q(x), and w(x) to obtain 
the Euler-Lagrange equations:

g
g

x s s w

x q q w x q q

e





- - =

- - - -

2
2 2

2 2 2 2

2 1 0

2 1
2

1

{( ') ' ( ) }

( ') ' ( ) ( )
β

==

-
- -

- - - =



 { } 





0

1 2
1 0

2

2
2

2
2g

g
w

w w w
x

q
g
g

s wm e"
( )( )

( )( ) .

		

(3.21)

The magnetic and electric charges of the dyon can 
be obtained as follows. The magnetic charge, gm, is 
given by

	
g B dSm

i
iS

=
∞∫ , 	 (3.22)

wherec

	
Bi F

e r
ijk

jk

ir

= - =1
2

1
2∈ δ . 	 (3.23)

The quantity Fij is obtained from Eqs. 2.5 and 3.19. 
Thus, asymptotically in the limit of large r

	

g dS

dS

B dS

e

m
i

iS

i
iS

i
iS

= ⋅

= ⋅

=

=

∞

∞

∞

∫
∫

∫

( )

( )

| |
.

B

B

Φ

Φ1

4

1

2

υα

π
α

	
(3.24)

We have used the fact that

	
T Ta b ab⋅ = 1

2| |
,

α
δ

	
(3.25)

for (a, b = r, θ, φ). Similarly, the electric charge is 
given by

	
g E dSe

i
iS

=
∞

∫1
4π

, 	 (3.26)

where

cFields given in standard font correspond to electromagnetic fields while those in 
boldface correspond to Yang Mills fields, eg, Bi = -1/2 ∈ijk Fjk or Ei = -F0i. 
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E F g

g
S ri i e ir= - =0

2 1| |
'( ) .

α
υ α δ 	 (3.27)

Thus, asymptotically in the limit of large r

	
E g

r
i

e

ir

= δ
2

	 (3.28)

so that

	

g E dS

E dS

E dS

g

e
i

iS

i
iS

i
iS

e

= ⋅

= ⋅

=

=

∞

∞

∞

∫
∫

∫

1
4

1
4
1

4

1

π

πυα

π

( )

( )

.

Φ

Φ 	
(3.29)

The asymptotic form of S(r) given by Eq. 3.9 was 
chosen specifically to yield this result. Furthermore, 
the electric charge is quantized in integer multiples of 
the eigen-values, hN−1, of the operator HN−1

	 ge = nhN−1e,	 (3.30)

where n is an integer. For the fundamental representa-
tion h NN − =1 1α /  so that

	
g n

N
ee = α1 . 	 (3.31)

Substituting for α1 (Eq. 3.2) we obtain

	
g n

N
N

N
ee =

-
1

2 1( )
. 	 (3.32)

We now derive an explicit expression for the mass 
of the dyon. To facilitate this derivation we, first 
express the magnetic charge, gm, and electric charge, 
ge alternatively as

	
g D d rm

i i= ⋅∫1

1

3

υα
B Φ ,	 (3.33)

and

	
g D d re

i i= ⋅∫1
4

1

1

3

π υα
E Φ , 	 (3.34)

Eqs. 3.33 and 3.34 have been obtained by integrat-
ing Eqs. 3.24 and 3.29 by parts and using the fact that 
Fµv satisfies the Bianchi identity and Euler equation, 
ie, (See, for example, Harvey2 who discusses this in 
some detail.)

	

D
D

v

v

[ ]

[ ] .
α µ

α µ

F
F

=
∗ =

0
0

	 (3.35)

We now proceed with calculating the mass of the 
dyon as follows. Since the field Φ does not depend on 
time, the energy (mass), md, of the system is given by

m d rd
i i i i i i= ⋅ + ⋅ + ⋅ + ⋅ -



∫

1

2 8
2 2 3E E B B D DΦ Φ Φ Φ

λ
υ( ) .	

		
(3.36)

The mass can be expressed more conveniently as 
follows. Define

∆ = -





-





+ -





-

2 ( ) .

.

r E g
g

D g
g

D

B g
g

D g

i e i i e i

i m i i

Φ Φ

Φ

E

B mm i

g
D Φ





.	 (3.37)

Expanding Eq. 3.37, substituting it into Eq. 3.36, 
and performing the change of variables, Eq. 3.16, we 
obtain

	

m g
g e

g

d
m

m

m

= +

= +

4 1

1

2 1
2

1
2

π
α

υ α δ

υ α δ
| |

( )

( ),
	 (3.38)

where

δ δ βm dx x x q2 2 2 2 2

0

1
2

2
8

1= + -





∞

∫ ( ) ( ) 	 (3.39)

and δ 2(x) = ∆2(r). Specifically,
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δ 2
2 2

2 2

2

2 1 2( ) ( ( )) ( ) '
'

x g
g

w q w
x

w w
x

q

g

m= 





- - + - -















+ ee

g
s q w s q

x






- + - -





2
2

2 2

22 1( ' ') ( ) ( ) .

	

	

(3.40)

In obtaining Eq. 3.38 we have also used Eqs. 3.33 
and 3.34.

In general, the Euler-Lagrange equa-
tions cannot be solved in closed form; how-
ever, if V (Φ ⋅ Φ) =  0, ie, λ =  0, one can show that 
E Bi

e
i i

m
ig g D g g D= ± = ±/ /Φ Φand  are exact 

solutions, or equivalently

	

s q
w q w

xq w w
x

= ±
= ± -

= ± -
' ( )

' ( ) .

1
2

	
(3.41)

Eq. 3.41 can be solved (See Harvey2.)

	

w x
x

q x x

= -

= -

1

1
sinh( )

coth( ) .
	 (3.42)

For this solution dm δm
2 0=  so that the mass of the 

dyon assumes its minimum value

	 md = gυα1.	 (3.43)

This is a BPS state.
General solutions to Eqs. 3.21 exhibit the follow-

ing behavior:

w x x q x x s x x x

w x q x
x

x

( ) , ( ) , ( ) , ;

( ) , ( )
exp(

,
)

 


 

2 0

1

and as

and

→

-
- β

ss x x x( ) , . - → ∞
1

as
	

	

	

(3.44)

In Figures 1–3 we show numerical solutions for 
( / ) ( / ) /g g g ge m

2 2 1 2≈ ≈  when β =  5 and β → ∞. 
For comparison we also show the solution β = 0, ie, 
λ = 0. These two numerical solutions can be used 
for estimating the quantity δm

2  on whose value the 

the mass of the dyon depends. Of relevance in per-
forming these calculations, and not apparent from 
Figure  2, is that as β β β→ ∞ ≈ <<, / .q x xfor 1  
Consequently, we can integrate Equation  3.39, 
numerically, to obtain

	
δ β

βm
2 41 5

63≈ =
→ ∞{. ,

. .
for
as

	 (3.45)

0
0

0.2

0.4

0.6

0.8

1

5 10

χ

W

15 20

β
β
β

→
=
=

8

5
0

Figure 1. Shown are numerical solutions of the function w(x) when β = 5 
and β → ∞. For comparison the exact solution when β = 0 is also shown.

0
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0.4

0.6

0.8

1

5 10

χ

q

15 20

β
β
β

→
=
=

8

5
0

Figure 2. Shown are numerical solutions of the function q(x) when β = 5 
and β → ∞. For comparison the exact solution when β = 0 is also shown.
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These results suggest that the mass of the dyon is 
relatively insensitive to the value of β, a result alluded 
to in the work of ’t Hooft.3

Application to SU(3) and G2
SU(3)
As a concrete application of the theory presented in 
Section 3, we apply the theory to SU(3) and contrast 
the dyon solutions obtained to those of SU(2). Our 
purpose is to construct those dyon solutions which 
are inherent to SU(3) while not being associated with 
those of the various SO(3) or SU(2) subgroups of 
SU(3). The generators of SU(3) are T Ta a a a, ( / ,= λ λ2  
being the Gell-Mann matrices). The Cartan subal-
gebra H3−i (i  =  2, 1) is H1  =  T3 and H2  =  T8. First, 
we assume that the Higgs field, Φ, asymptotically 
approaches the vacuum state of the potential given 
by Eq. 3.5 for large values of the radial coordinate 
r, ie, lim .r→∞ ⋅ =Φ Φ υ 2  Figure 4 is a depiction of the 
root system of SU(3). Based on this figure, an obvi-
ous choice for the asymptotic form of Φ is

	 Φ = υH2,	 (4.1)

so that Φ is

	
Φ Φ= =1

1

2

1α υ α
H . 	 (4.2)

where α1 3 2= /  for SU(3). This choice of Φ can 
be seen to satisfy Eq. 2.10 by inspection of Figure 4. 
There are other equivalent choices for Φ, which 
can be obtained by 2π/6 rotations of the coordinate 
axes of the root diagram, H2

'  and H2
" being two such 

examples. They are related to the center of SU(3) and 
SU(2), respectively.6 Thus, there are 3 × 2 equivalent 
choices for Φ. An equivalent way of understanding 
the factor of three is to note that H2 is a diagonal 
matrix with values of one in all diagonal elements 
except for a value of minus two in one of the diagonal 
elements; however, the minus two can be in any one 
of the three diagonal elements resulting in three pos-
sibilities of H2. This result generalizes to SU(N) in the 
obvious way.

For SU(3) the simple root vector Eα corresponding 
to Eq. 3.1 is α =  (α2, α1) =  ( / , / ).1 2 3 2  The gauge 
transformation, χ, used to remove the string singular-
ity is given by (For comparison see, for example, the 
discussion of Ryder5.)

	

χ
θ θ

θ θ

φ θ φ

φ

φ

=

=
-

- -

-
e e e

e

e

i T i T i T

i

i

z y z

cos / sin /

sin / cos /

2 0 2
0 1 0

2 0 2













.
	 (4.3)
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Figure 3. Shown are numerical solutions of the function s(x) when β = 5 
and β → ∞. For comparison the exact solution when β = 0 is also shown. 
To the accuracy of the approximations the numerical solutions are indis-
tinguishable from the exact solution corresponding to β = 0.
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Figure 4. Root system of SU(3). The axes H1 and H2 show the angles 
that the root vectors make with respect to the two elements of the Cartan 
subalgebra. The primed and double primed axes represent two other 
equivalent sets of axes, one corresponding to the center of the group 
SU(3) and the other to the group SU(2).
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Applying the results of Section  3 and using the 
fact that |α| = 1 we obtain the following results. The 
magnetic field of the dyon is

	
B

e r
i

ir

= 1
2

δ . 	 (4.4)

Asymptotically, as r → ∞, the electric field is

	
E g

r
i

e

ir

= δ
2 , 	 (4.5)

where, in the case of the fundamental representation,

	
g n ee = 1

3
3

2
. 	 (4.6)

The mass of the dyon is given by

	
m gd m= +υ δ3

2
1 2( ). 	 (4.7)

The SU(3) dyon is, in a certain sense, less mas-
sive than the corresponding SU(2) dyon by a factor of 

3 2/ , since α = 1 for SU(2). The electric charge and 
magnetic charge satisfy the relationship

	
g g n

e m = 4
3

3
2

π . 	 (4.8)

For comparison with SU(2) the relationship is

	
g g n

e m = 4
2

π . 	 (4.9)

At this point we comment that, substantively, 
there is little difference between SU(3) and SU(2) 
monopoles, other than the difference in their mass. 
Another difference relates to the interpretation of Eq. 
3.8. Asymptotically, in the SU(2) case Φ is a map-
ping from the two sphere in configuration space into 
a two sphere of radius υ in field space; whereas, in 
the SU(3) case Φ is a mapping of the two-sphere in 
configuration into a two-sphere of radius υ 3 2/  in 
field space.

G2
For G2 it is not possible to apply the definition of the 
electromagnetic field, Eq. 2.5, to an arbitrary gauge 
field for a particular field Φ, or equivalently there 
does not exist a field Φ satisfying the condition Eq. 
2.10, as is apparent from studying the root system 
of G2 depicted in Figure 3. If, however, we restrict 
our consideration to two families of gauge fields that 
are linear combinations of the Cartan subalgebra and 
either the long root vectors or the short root vectors, 
it is then possible to find two fields Φ which satisfy 
the condition Eq. 2.10, one for each family of gauge 
fields. These two fields are

	

Φi

H i

H i
=

=

=










1

2

2

1

1

2

α

α

if 

if 

,

.
	 (4.10)

Decomposition of the adjoint representation in this 
manner is related to the fact that SU(3) is a regular 
and maximal subalgebra of G2.1 Specifically, the long 
root vectors and the Cartan subalgebra of G2 form an 
SU(3) subalgebra of G2. Under this SU(3) algebra the 
14 dimensional adjoint representation of G2 trans-
forms as an 8 3 3⊕ ⊕ . In addition, there is an SU(2) 

H1

H2

( 1
2 ,

√
3

2 )

(1, 0)

(0, 1√
3
)

( 1
2 , 1

2
√

3
)

Figure 5. Root system of G2. The axes H1 and H2 show the angles that 
the root vectors make with respect to the two elements of the Cartan 
subalgebra.
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subalgebra of G2 which tranforms each element Eα of 
the 3 representation into an element E−α of the 3. Thus, 
we have two different electric fields, one associated 
with the long root vectors and Φ2 and the other associ-
ated with the short root vectors and Φ1. The dyon solu-
tions associated with Φ2 are the SU(3) dyon solutions 
discussed in Section 4.1, while the dyon solutions asso-
ciated with Φ1 possess different properties (We refer to 
these dyons as e-dyons to distinguish them from the 
dyons associated with the long root vectors). Although 
the e-dyon solutions cannot be obtained directly from 
the results presented in Section 3, they can be obtained 
from those results with minor modification, ie, inter-
change 1 with 2 in Eqs. 3.1 and 3.2, and then proceed 
with the analysis, as we now describe briefly. Consider 
the short root vector α = ( / , / ),1 2 1 2 3  and define

	
Φ Φ= =1

1

1 2
H
/

. 	 (4.11)

Proceeding with the analysis as in Section  4.1, 
we obtain the following results. Since |α|2 = 1/3, the 
e-dyon’s magnetic charge is

	
g

em = 4 3π . 	 (4.12)

In addition, the quantization condition for the elec-
tric charge is

	
g n

e =
2

. 	 (4.13)

Thus, the relationship satisfied by the magnetic 
and electric charges is

	
g g n

e m = 4
2

3π . 	 (4.14)

Finally, the mass of the e-dyon is

	
m g

d m= +υ δ
2

1 2( ). 	 (4.15)

Conclusions
In Section  2 we have adopted the definition of the 
electromagnetic field first proposed by ’t Hooft3 in the 

context of SO(3). In the application of this definition 
to other gauge groups we have suggested that a rea-
sonable criterion, which should be satisfied, is that the 
electromagnetic field defined in this manner should 
exist for an arbitrary gauge field. We then have derived 
a specfic condition, Eq. 2.10, which is necessary for 
this criterion to be satisfied. Applying the definition 
of the electromagnetic field to SU(N) in Section  3 
we have constructed dyon solutions possessing both 
topological electric and magnetic charge. Assuming a 
|Φ|4—like potential for the Higgs field we have esti-
mated the mass of the dyon, finding it to be relatively 
insensitive to the coupling parameter λ characterizing 
the potential and only slightly greater than the BPS 
bound. Finally, we have applied the general results of 
Section 3 specifically to SU(3) and G2. For SU(3) the 
electric/magnetic charge relationship and mass of the 
dyon are given by Eqs. 4.8 and 4.7. For G2 we have 
found that it is not possible to satisfy the criterion for 
the electromagnetic field; however, considering G2 
under the action of its SU(3) subalgebra and relaxing 
the criterion imposed on the electromagnetic field we 
have discovered two different types of dyon solutions. 
One of these solutions corresponds to dyon solutions 
associated with SU(3). The other solution, denoted an 
e-dyon, has somewhat atypical properties. Most nota-
ble is the fact that the magnetic charge is gm = 4π 3/e, 
e being the gauge coupling. This differs from the ’t 
Hooft/Polyakov monople where gm = 4π 1/e.
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Appendix A
Herein, we provide mathematical relationships which 
are useful in deriving results presented in Section 3. 
The quantities Ti, (i  =  r, θ, φ), are a representation 
of the SU(2) algebra, and T⊥ commutes with each of 
the Ti, ie,

	

T T i T
T T

i j ijk k

i

∧ =
∧ =⊥

∈
0.

	 (A-1)

Furthermore,

	

Tr

Tr

Tr

( )
| |

( )
| |

( ) .

TT

T T

T T

i j ij

i

=

=

=

⊥ ⊥

⊥
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2
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