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 Introduction 

 The topic of this review is how bone responds to increased 
mechanical loading. Functional bone adaptation, the relation-
ship linking mechanical loading and bone structure, was rec-
ognized by Roux and Wolff well over a century ago. 1  However, 
only since the 1970s and 1980s have advances in animal 
models and strain measurement techniques allowed research-
ers to explore this relationship with a controlled experimental 
approach. The key experimental models for advancing this field 
have been ones in which controlled external forces are applied 
to the skeleton of a live animal, and the local mechanical strains 
engendered by said forces are known. The primary functional 
outcomes are changes in local bone structure or dynamic indi-
ces of bone formation. Generally speaking, when the intensity 
of applied loading is greater than habitual loading, a bone 
formation (modeling) response is produced. Recent advances 
in biological factor detection (for example, gene expression) 
and genetic manipulation (for example, knockout mice) have 
facilitated examination of the biological mechanisms underlying 
the relationship between loading and bone. 

 An important distinction in all these studies is whether the 
loading stimulus engenders a lamellar or woven bone response. 
Increased lamellar bone formation may be considered an adap-
tive response to mild / moderate overloading, whereas woven 
bone formation may be considered an overloading / injury 
response. Although an appreciation of the lamellar-woven 
dichotomy is not new, it is unfortunate that many reports do 

not show histology or even state which type of bone formation 
was stimulated. 

 Our objectives in this article are to briefly summarize key 
 ‘ classic ’  findings related to bone and mechanical loading, and to 
review recent work on lamellar vs woven bone formation, aging 
and mechanisms by which bone responds to loading. We focus 
on increased loading, and do not address disuse / unloading. 
Moreover, although a wealth of knowledge has been gained 
from  in vitro  and  in silico  experiments, as well as  in vivo  exercise 
experiments, their inclusion is beyond the scope of this brief 
review. We have chosen to mention only results from  in vivo  
animal experiments that used controlled loading parameters.   

 Key Early Findings 

 Seminal studies from Hert, Lanyon and Rubin led to the over 
arching paradigms of cortical bone mechanoresponsiveness. 
The following  ‘ rules ’  relating mechanical loading and cortical 
bone formation are widely accepted. First, dynamic loading 
elicits a response but static loading does not. 2,3  Second, there 
exists a minimum strain threshold. Applied loads that produce 
strains below this threshold induce no change in bone formation 
whereas loads above this threshold increase bone formation in 
a dose-dependent manner. 4  The exact magnitude of the thresh-
old is context-dependent and may vary based on factors such 
as species, age, sex and loading model. Third, the anabolic 
effects of adaptive loading plateau after a relatively low number 
of cycles (    <    100 cycles per day). 5  
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 Trabecular bone has received less attention because most 
loading models target cortical bone only. However, Chambers 
 et al.  6  developed a vertebral compression model in the 1990s, 
and several groups have used this model in recent years. 7  
Similar to cortical bone there is reported to be a context-
dependent minimum force threshold for trabecular bone for-
mation and a linear increase above the threshold. 8  In contrast 
to cortical bone, there is conflicting / insufficient evidence as to 
whether static forces are effective and whether there is a plateau 
effect with respect to cycles and trabecular bone formation.   

 Noninvasive Loading Models 

 A limitation of the models used for the studies cited above is 
that they were surgically invasive, and thus may have intro-
duced unintended side effects related to inflammation and soft 
tissue damage, as well as making them technically challeng-
ing. 2 – 8  To address these concerns noninvasive loading models 
have been developed and implemented in rodents ( Table 1 ). 
For more extensive descriptions of both invasive and nonin-
vasive loading models see Robling  et al.  18  Results from the 
noninvasive models provided further support for the three rules 
described above. 19 – 22  The noninvasive models have also facili-
tated investigation of other loading variables, given insights into 
what mechanisms differentiate adaptive vs injury responses 
(that is, lamellar vs woven bone), and provided evidence sup-
porting the role of osteocytes as load-responsive cells. We have 
focused the remainder of this review on studies utilizing rats and 
mice because a multitude of reagents for and genetic manipula-
tions of these animals are currently available. Furthermore, we 
excluded some studies where the type of bone formed was not 
adequately documented. 

 A noninvasive four-point bending model was created by 
Turner  et al.  23  for use with rats, and later adapted for use with 
mice 9  ( Figure 1 ). The tibia rests on two stationary pads; two 
movable pads apply a transverse force to the lateral side of 
the limb such that a bending moment is created in the cen-
tral portion of the diaphysis. Features of this loading method 
are that a defined strain gradient can be produced in cortical 
bone over a known area and that loading is applied in a non-
physiological direction. The main limitation of this model is that 
direct pressure on the periosteal surfaces and overlying soft tis-
sues often triggers a woven bone response, which occurs as an 
 ‘ all or nothing ’  phenomenon, 19  suggesting it is not proportional 
to the loading stimulus. The pressure-induced bone formation 
complicates interpretation of periosteal results 19,10  especially in 

smaller animals such as mice. For this reason, use of this model 
has declined and we do not recommend it. 

 Another model that generates tibial bending is the cantilever 
model developed by Gross  et al.  11  for use in mice. In this model, 
the knee is held rigid while a transverse load is applied to the 
distal end of the tibia, generating strains large enough to induce 
a periosteal bone formation response. A practical limitation of 
this model is that it is difficult to grip the knee and thus the 
peak force (and strain) is limited in magnitude and does not 
stimulate an endocortical response. Like the four-point bend-
ing model, the loading mode (direction) is non-physiological, 
which means that the applied loads generate a strain stimulus 
that is non-habitual in distribution / direction. It is unclear how 
the response to this novel stimulus differs from the response 
when loads are applied in a habitual direction, although these 
differences are likely to be in the degree of response rather than 
its fundamental nature. 

 Another noninvasive loading approach, axial compression, has 
become the gold standard for studying mechanically induced 
bone formation in rats and mice. Axial compression is meant to 
mimic physiological loading through the joints. Its first applica-
tion by Torrance  et al.  17  on rat forelimbs successfully utilized the 
natural curvature of the ulna to create bone-stimulating strain 
on the medial and lateral periosteal surfaces without soft tissue 

  Table 1     Summary of the three noninvasive loading models 

    Loading model    Limb 
tested  

  Stimulated 
bone types  

  Animals used    Physiological?    Complications    References  

   Four-point bending  Tibia  Cortical  Rat and mouse  No  Woven bone at 
loading points 

 Akhter  et al.  9 ; 
Silva and Brodt 10  

   Cantilever bending  Tibia  Cortical  Mouse  No  Limited strain 
range 

 Gross  et al.  11  

   Axial compression  Tibia  Cortical and 
trabecular 

 Mouse  Yes    De Souza  et al.  12 
Fritton  et al.  13  

     Fibula    Mouse      Moustafa  et al.  14  
     Ulna    Rat and mouse      Kotha  et al.  15 ; 

Lee  et al.  16 ; 
Torrance  et al.  17  

  Figure 1             Schematic of four-point tibial bending. Bottom fixed points support the leg; 
top contact points displace downward. Reprinted from Turner  et al.  79  with permission.  
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damage or ectopic periosteal reaction ( Figure 2 ). Approximately 
two-thirds of the total forelimb force is carried by the ulna. 15  The 
forelimb compression model has since been applied to mouse 
ulna. 16  In both mice and rats, forelimb compression is used to 
study cortical responses in the central diaphysis of the ulna 
(although the radius could be examined as well). 

 The axial compression approach was later developed for 
the mouse hindlimb, with a focus on the tibial response 12,13  
(although the fibular response can also be examined 14 ). The 
greatest bone formation is on the periosteal surface experienc-
ing maximum strain, although depending on the force applied, 
endocortical responses are also seen. Axial compression of the 
tibia also permits examination of the trabecular bone response 
because loads are transmitted through the proximal metaphy-
sis. We are not aware of axial tibial compression being used 
in rats.   

 Key Mechanical Parameters Affecting the Loading 
Response 

 For all noninvasive models three independent parameters of 
dynamic loading are commonly modulated, each of which 
may influence the amount of new bone formation: magnitude, 
frequency and rest-insertion. 

 Magnitude refers to the peak applied force or strain, as they 
are linearly coupled (that is, increasing loading force linearly 
increases strain). Typically, peak strain is controlled as this 
tightly correlates to the amount of bone production. 22,24,25  
Also, application of the same force magnitude to all animals 
may result in different bone strains across experimental groups, 
depending on differences in bone geometry and material prop-
erties. However, once the force required to produce a target 
strain is established for an individual animal, the same force 
can safely be applied to species-, sex-, age-, weight- and geno-
type-matched animals and can be assumed to impart similar 
strains. For details on this procedure see Saxon and Lanyon. 26  
The range of strain magnitudes that stimulate a bone formation 

response depends on the animal variables listed above as well 
as the other loading variables. Generally, local peak strains in 
the range 1200 – 2000 microstrain ( �  � ) have been shown to elicit 
a lamellar bone formation response. 22,26  Turner  et al.  19  noted 
a switch from lamellar to woven when the applied peak force 
(and hence peak strain) exceeded a threshold, although the 
particular strain threshold they reported (1900    �  � ) was for the 
rat tibial bending model and may not apply to other models. 
An important caveat in all loading studies is that the strain mag-
nitude is only controlled for at the start of the study. Over time, 
as adaptation occurs, the values of strain may differ. 

 The second parameter, frequency, also has a thres hold 
response. Similar to static loading, very low frequencies 
(    <    1   Hz) produce little response. With increasing frequency 
bone formation increases until a peak is reached around 
10 – 20   Hz. 17,27 – 29  There is some evidence that frequencies over 
 ~ 20   Hz are dampened by the overlying soft tissues and joints, 
thus resulting in lower applied strain on the bone surface and no 
additional benefit. 27  A frequency of 2 – 4   Hz is commonly used, 
which matches the range of stride frequency reported for rats 
during locomotion. 24  

 The third parameter, rest insertion, is based on the observa-
tion that increased lamellar bone formation in response to load-
ing was saturated after relatively few cycles. 5  Essentially, cells 
become desensitized to any additional stimulation. Two meth-
ods of restoring mechanosensitivity are to either break the total 
cycles up into shorter bouts separated by several hours 25,30  or 
insert a short ( ~ 10   s) rest in between each cycle. 31  For exam-
ple, Robling  et al.  25  saw a >50 %  increase in bone formation if 
360 cycles of axial compressive loading were divided into four 
90-cycle bouts separated by as few as 3   h rather than admin-
istered in one bout. Likewise, Srinivasan  et al.  31  enhanced the 
response to tibial cantilever loading by adding a 10-s hold 
between each cycle. 

 Strain rate is another parameter shown to modulate bone 
formation. 32,33  But if loading magnitude and frequency are 
prescribed, then strain rate is not an independent factor. In 
practice, it is difficult to decouple frequency and strain rate 
effects. Moreover, to achieve different strain rates while keep-
ing number of cycles and total loading time similar across study 
groups, a dwell or rest has to be inserted between cycles. 
The dwell effectively mimics a rest insertion and introduces 
another variable. 

 Depending on the combination of the three independent 
loading parameters and the end point (for example, number of 
cycles, loss of stiffness and increase in displacement) you can 
not only  ‘ switch on ’  quiescent bone cells in as little as one bout 
of mechanical loading but also control whether the response is 
lamellar or woven bone. 34  The concept of a single bout being 
sufficient to induce lamellar bone formation was established 
by Forwood  et al.  35  They noted that new bone formation is 
histologically evident 5 – 8 days after a bout of loading, and that 
subsequent loading bouts incrementally increase the magnitude 
of the bone formation response in a  ‘ quantum ’  manner, a finding 
consistent with the later rest insertion studies.   

 Damage as a Stimulus for Woven Bone Formation and 
Intracortical Remodeling 

 Woven bone formation is triggered under a variety of loading 
conditions. It may occur after relatively few loading cycles when 

  Figure 2             Micro computed tomography of rat forelimb positioned for axial compression 
loading. The olecranon sits in a fixed cup, whereas the flexed wrist is displaced downward 
with each load cycle. Reprinted from Uthgenannt  et al.  36  with permission.  
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the applied strain magnitude exceeds some threshold; 19  it is 
unclear if this reflects a damage response or an extreme on the 
strain-adaptive continuum. More clearly, under conditions where 
loading produces discrete bone damage (for example, a stress 
fracture) robust woven bone formation ensues. 34,36 – 39  Although 
it looks disorganized, woven bone formation is a well-regulated 
response to certain extreme conditions. A woven bone response 
occurs when there is a  ‘ need ’  to accrue bone at a faster rate 
than can be accomplished by lamellar bone formation. 

 Despite the obvious differences in histological organization, 
lamellar and woven bone can be forming at the same time on 
contiguous segments of the bone surface. To estimate the 
maximal rate for lamellar bone apposition, we analyzed bone 
sections where a lamellar – woven transition was evident 
( Figure 3 ). Transverse, undecalcified sections ( n     =    100) were 
obtained from a previous study in which damaging fatigue 
loading of the rat ulna was used to stimulate woven bone for-
mation. 36  Samples were included from different timepoints, 
damage levels and longitudinal locations. The average mineral 
apposition rate for lamellar bone just adjacent to woven bone 
was 3.5 ± 1.1    � m per day (data not previously reported). This 
 ‘ upper bound ’  for lamellar mineral apposition rate likely depends 
on a number of factors, but these observations indicate that 
there is a maximal rate at which a single team of osteoblasts 
can deposit lamellar bone. 

 To better understand bone ’ s responses to damaging loading, the 
ulnar axial loading protocol of Torrance  et al.  17  was adapted to cre-
ate a model of controlled, fatigue damage. 37,38,40  Basically, by cycli-
cally loading the forelimb until a certain loss of stiffness or increase 
in displacement is reached, one can control the amount of bone 
damage (for example, loss of strength, micro- and macro-cracks) 
and examine both the periosteal modeling (formation) response and 
the intracortical remodeling response. Using this model, we have 
shown that the amount of periosteal woven bone formation directly 
parallels the amount of induced fatigue damage 36  ( Figure 4 ). In 
this setting, woven bone formation is clearly not an  ‘ all or nothing ’  
response but is well modulated in location and extent. Additional 
support for the concept that bone damage induces a proportional 
woven bone response came from a follow-up experiment. 41  In 
this study, creep loading (that is, progressive displacement under 
a static force) was applied until prescribed levels of bone dam-
age were produced. Even in the absence of dynamic loading, 
damage alone resulted in significant woven bone formation in a 
dose-dependent manner. 

 Apart from the periosteal response, microdamage pro-
duced by fatigue loading triggers intracortical osteoclastic 

remodeling. 37,39,40  Kennedy  et al.  42  have demonstrated that 
microcracks cause local osteocyte apoptosis and that the 
adjacent, non-apoptotic osteocytes produce osteoclastogenic 
factors such as RANKL. Additional support for this mechanism 
of targeted bone remodeling came from experiments wherein 
apoptosis was inhibited and local resorption was diminished. 43  
Recently Herman  et al.  44  demonstrated that damage sever-
ity governs osteocyte apoptosis, osteoclast recruitment and 
resorption. Increased apoptosis and osteoclast resorption were 
found in the areas containing and proximal to microcracks, but 
not areas with less severe (diffuse) damage.   

 Effect of Aging 

 Does age alter the mechanoresponsiveness of the skeleton? 
If so, this may be one factor contributing to age-related bone 
loss. However, the few published studies that directly address 
this question have not reached consensus ( Table 2 ). Two earlier 

  Figure 3             Woven – lamellar transition. Transverse section of the periosteal surface 
of a rat ulna, collected 14 days after fatigue loading. 36  Calcein green was administered 
on day 7 and alizarin red on day 12.CB, original cortical bone; LB, new lamellar bone; 
M, muscle; WB, new woven bone.  

  Figure 4             Woven bone-dose response. Transverse sections of the periosteal surface 
of rat ulnas, collected 14 days a\fter fatigue loading. Calcein green was administered on 
day 7 and alizarin red on day 12.The amount of periosteal woven bone increases with 
increasing bone damage. Damage is controlled by the applied fatigue displacement. 
Modified from Uthgenannt  et al.  36  with permission.  
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studies reported that aged animals had a negligible response 
to loading protocols that were previously shown to be strongly 
anabolic in younger animals. 45,46  However, these studies used 
loading models with some of the previously noted limitations 
(invasive, 45  periosteal contact 46 ). More recently, Srinivasan 
 et al.  47,48  reported that aged (22 month) C57Bl / 6 mice have 
a markedly diminished periosteal response to cantilever tibial 
bending compared with young – adult (4 month) mice loaded to 
the same peak periosteal strain. We have examined this question 
using axial tibial compression in BALB / c mice at different ages, 
with strain matching across the age groups. We recently reported 
that 4-month-old mice added more cortical bone than 2-, 7- 
and 12-month-old mice after 6 weeks of daily tibial loading. 49  
Interestingly, loading increased the expression of osteogenic 
genes in older mice, offsetting the normal declines that occurred 
with aging ( Figure 5 ). In a separate experiment comparing 
7-month- (adult) vs 22-month-(old) mice, we found no deficit in 
the bone formation response to loading in the old mice. 50  

 Based on available evidence, our current view is that under 
some conditions old animals can respond robustly to loading with 
a re-activation of bone modeling. Although the magnitude of the 
response may be diminished compared with younger animals, 
old bones are clearly mechanoresponsive. Additional work is 
needed to better define the loading and animal factors that 
might contribute to age effects, and to determine a mechanistic 
basis for any differences between young and old animals.   

 Osteocytes as Mechanosensors 

 Osteocytes are widely believed to be the primary mechanosens-
ing cell in bone. Their abundance and interconnectivity make 

them prime candidates for this function, although direct  in vivo  
evidence is still quite limited. 51,52  Tatsumi  et al.  53  reported that 
mice in which osteocytes were acutely ablated were relatively 
resistant to bone loss with hindlimb unloading, although the 
absence of osteocytes did not affect bone gain during reload-
ing. Recently, Kwon  et al.  54  used the same transgenic mice and 
reported diminished loss of cortical bone with unloading when 
compared with wild type. However, when mice with osteocyte 
ablation were subjected to an anabolic, intramedullary pressure 
stimulus, they had no deficit in their response. We are unaware of 
comparable experiments performed using a direct loading model 
(for example, axial compression). Perhaps the best evidence for 
the role of osteocytes in mechanoresponse comes from studies 
on the role of osteocytes in Wnt signaling (reviewed below). 

 It is thought that osteocytes indirectly sense strain via the 
increased fluid movement through the lacunar / canalicular 
system that occurs when pressure gradients are created by 
functional loading, although it is also possible that osteocytes 
sense the bone strain directly. 51,52  Although not the focus of 
this review, a wealth of  in vitro  information exists that attests 
to the mechanosensitivity of osteocytes to fluid movement 
and substrate strain. For recent and detailed reviews see Chen 
 et al.  51  and Jacobs  et al.  52  

 Owing to the tight correlation between local strains experi-
enced by osteocytes and formation of new bone, conventional 
wisdom says that osteocyte signaling remains local. Thus, 
adaptation is limited to the highly strained regions of loaded 
bones. However, arguments have arisen suggesting a sys-
temic response to loading regulated by the nervous system 
whereby loading stimulates neuronal signaling causing systemic 
bone formation and also affecting local bone formation. 55,56  
Although there is compelling evidence to support this claim, it 
has only been shown in the setting of loading-induced woven 
bone formation, which, as will be discussed below, involves 
many more biological processes and pathways than lamellar 
bone formation. Furthermore, this claim has been specifically 
refuted by other studies. 34,57  The importance of systemic effects 
in loading-induced bone formation remains to be determined, 
although most evidence indicates that local effects dominate 
the response.   

 Mechanoresponsive Pathways 

 Early efforts to identify the pathways activated by mechani-
cal loading focused on prostaglandin E 2 , 58  nitric oxide 59  and 
cyclooxygenase-2. 60  All three factors were noted to be released 

  Table 2      In vivo  studies comparing young and old animals using direct loading models 

    Authors    Loading model    Animals    Age    Findings  

   Rubin  et al.  45   Isolated ulnar compression  Turkey  1 and 3 years  Aged animals unresponsive to protocol 
that is anabolic in younger animals 

   Turner  et al.  46   Tibial four-point bending  Rat  9 and 19 months  Markedly diminished endocortical 
response in older animals 

   Srinivasan  et al.  47,48   Tibial cantilever bending  C57Bl / 6 mouse  4 and 22 months  Diminished response in older animals; 
rescued by concurrent Cyclosporin A 
treatment 

   Silva  et al.  49   Tibial axial compression  BALB / c mouse  2, 4, 7 and 12 months  All ages responsive; bone accrual 
moderately greater at 4 months 

   Brodt and Silva 50   Tibial axial compression  BALB / c mouse  7 and 22 months  Aged animals have equivalent perio-
steal response, greater endocortical 
response 

  Figure 5             Relative expression of type I collagen mRNA in tibial samples from control 
and loaded limbs of mice aged 2 – 12 months. Right hindlimbs were loaded daily by axial 
tibial compression for 1 week. With aging there is a natural decline in expression of 
this bone matrix gene (relative to the reference gene  cyclophilin ), indicating reduced 
bone formation. Mechanical loading increases expression in older animals, offsetting the 
age-related decline. (Modified from Silva  et al.  49 )  * loaded vs control,  P     <    0.05.  
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within minutes following loading, and pharmacological inhibition 
diminished bone formation. Many  in vitro  and  ex vivo  studies 
have supported these findings and investigated other pathways 
(for example, Papachristou  et al.  61 ). However,  in vitro  and  ex vivo  
studies will never truly replicate the complex  in vivo  scenario. 
Unfortunately, interpretation of many early  in vivo  studies is 
challenging because they failed to clearly differentiate between 
lamellar and woven bone formation. 

 Recent technical advances provide many opportunities for 
extending our knowledge of  in vivo  bone mechanobiology. 
Quantitative PCR and microarray technologies allow extensive 
probing of gene responses, while genetically modified mice 
allow studies into biological mechanism.  In vivo  microarray 
studies have shown that during lamellar bone formation, genes 
relating to cell signaling, movement, proliferation and metabo-
lism have a modest peak in transcriptional activity shortly after 
loading (4 – 8   h), 62 – 64  most of which return to basal levels by 
24   h. 63 – 65  Somewhat surprisingly, another peak was reported 
to occur around 12 – 16 days for genes related to solute carrying, 
matrix production, transforming growth factor- �  signaling and 
Wnt /  � -catenin signaling. 64  The importance of estrogen signaling 
in mechanoresponsiveness of bone has also been established 
by a number of  in vivo  studies (recently reviewed elsewhere 
Melville  et al.  66 ). A key result is that loss of circulating estrogen 
does not appear to strongly alter loading responses, whereas 
loss of signaling through the estrogen receptor alpha diminishes 
responses to loading. 

 Compared with lamellar bone formation, the number of dif-
ferentially regulated genes occurring in the context of load-
ing-induced woven bone formation is markedly greater. 65  
Inflammation, cytoskeletal remodeling, cell adhesion and devel-
opmental pathways are all affected, with inflammatory genes 
being particularly notable 1 and 24   h after loading ( Figure 6 ). 
Angiogenesis occurs with woven but not lamellar bone forma-
tion. 34  Processes associated with injury and anabolism are 
dominant early after damaging loading, while the expression 
of factors related to bone remodeling / resorption are activated 
later, showing increases from 1 to 7 days. 34,39,65,67    

 Importance of WNT / Lrp5 Pathway 

 The WNT / Lrp pathway has emerged as a key regulator of 
skeletal anabolism, and has been implicated as an important 
mechanoresponsive pathway in bone (reviewed in Bonewald 

and Johnson 68 ). In lamellar bone formation, WNT signaling 
has recently attracted attention due to: (1) the complete lack 
of response to loading in mice lacking LRP5 (a key receptor of 
WNT ligands) 69  and (2) an increased, dose-dependent response 
in constitutively active LRP5 mice. 70  Sclerostin, the protein 
product of the  Sost  gene, is an LRP5 antagonist and has been 
identified as mechanoresponsive.  Sost  expression in osteocytes 
decreases with increased mechanical strain 71 – 73  Alternatively, if 
 SOST  levels cannot decrease, which has been accomplished in 
mice by periostin knockout 72  or  SOST  over expression, 73  new 
lamellar bone will not form. 

 The effect of WNT / Lrp signaling on bone formation is thought 
to be through downstream effects on  � -catenin. Canonical WNT 
signaling blocks  � -catenin degradation allowing increased trans-
location to the nucleus and transcription of osteogenic target 
genes. But,  in vitro  assays have shown multiple ways to affect 
 � -catenin levels without modulating WNT signaling. 74  More 
recently,  in vivo  knockout of factors such as Stat3, 75  midkine 76  
and HIF-1  �  77  have significantly modulated load-induced lamel-
lar bone formation. It is hypothesized that each of these factors 
affects  � -catenin levels through non-WNT mechanisms. 

 The role of WNT / Lrp /  � -catenin signaling on bone responses to 
damaging loading remains to be determined. One recent study has 
shown a decrease in osteocytic sclerostin levels in bones loaded 
with a protocol that induced woven bone formation. 78  Lastly, 
we reported marked downregulation of  Sost  expression after 
damaging fatigue loading and before woven bone formation, 65  
suggesting that osteocytes might be orchestrating the woven 
bone response to bone damage thru the Wnt / Lrp pathway.   

 Conclusions 

 In conclusion, several loading models can be used to apply 
precisely controlled mechanical loads to bone to study adap-
tive and injury responses. Noninvasive models are necessary to 
study the molecular mechanisms and resulting gene regulation. 
Three such models have been developed and are commonly 
used: four point bending, cantilever bending and axial compres-
sion. All three types of loading stimulate osteogenesis, but not 
all mimic physiological loading and thus may cause off target 
effects. Furthermore, all the models are limited to appendicular 
long bones. This precludes or limits the study of mechanical 
loading on flat bones and trabecular bone. The most physiologi-
cal model is compressive axial loading, which can be applied 
to either the ulna or the tibia. Depending on how parameters 
such as strain magnitude, cycle frequency, rest insertion and 
test end point are applied, the response outcome can be tuned 
from adaptive (mostly lamellar) to damage / injury (mostly woven). 
Strikingly, both are dose-dependent and can be provoked in as 
little as one bout of loading with few cycles. 

 The mechanisms elicited in lamellar and woven bone forma-
tion pathways are still not fully understood. Nonetheless, con-
trolled  in vivo  studies of gene expression and knock out have 
indicated a role for cell signaling, cell metabolism and WNT / Lrp 
signaling in lamellar and woven bone formation, with the addi-
tion of inflammation and angiogenesis in woven bone formation. 
At this time, it is unclear if the importance of these pathways is 
universal to all loading-induced bone formation, or if different 
pathways will be more / less important as a function of load-
ing method, animal age and other factors. Nonetheless, with 
current understanding of how to control formation outcomes 

  Figure 6             Gene transcription profiles are greatly different for woven bone 
formation compared with lamellar bone formation. Venn diagram shows the number 
of differentially expressed genes (DEGs) in woven vs lamellar loading groups based 
on microarray analysis of rat ulnae collected 1   h, 1 and 3 days after mechanical loading. 
From McKenzie  et al.  65    
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and advancement of genetic models, researchers are poised to 
clarify known mechanisms and discover new ones.   
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