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Perhaps more so than any other tissue, bone has pivotal mechanical and biological functions. Underlying the ability of

bone to execute these functions, whether providing structural support or preserving mineral homeostasis, is the

dynamic remodeling of bone matrix. Cells within bone integrate multiple stimuli to balance the deposition and resorption

of bone matrix. Transforming growth factor-b (TGFb ) uniquely coordinates bone cell activity to maintain bone

homeostasis. TGFb regulates the differentiation and function of both osteoblasts and osteoclasts, from lineage

recruitment to terminal differentiation, to balance bone formation and resorption. TGFb calibrates the synthesis and

material quality of bone matrix and bone’s responsiveness to applied mechanical loads. Therefore, by coupling the

activity of bone forming and resorbing cells, and by sensing, responding to and defining physical cues, TGFb integrates

physical and biochemical stimuli to maintain bone homeostasis. Disruption of TGFb signaling has significant

consequences on bone mass and quality. Alternatively, TGFb is a powerful lever that has the potential to yield

therapeutic benefit in cases where bone homeostasis needs to be recalibrated.
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Postnatal Bone Homeostasis

Bone in the adult skeleton must continuously adapt to changing
physical, endocrine and metabolic demands. The remarkable
ability of the skeleton to support mechanical loads and resist
fracture, while executing its role in mineral, nutritional, and
endocrine homeostasis, is a balancing act that requires
exceptional coordination. Transforming growth factor-b (TGFb ),
a well-known regulator of skeletal development and main-
tenance, continues to emerge as a factor that facilitates the
cellular integration of physical and biochemical inputs to maintain
postnatal bone homeostasis. In bone and in many other tissues,
TGFb regulates cellular migration, proliferation, differentiation,
matrix synthesis and apoptosis.1,2 The activity of the TGFb
signaling pathway is influenced by crosstalk with many other
pathways at the level of TGFb ligands, receptors, agonists and
antagonists.3 The multiscale nature of this regulation allows the
integration of diverse stimuli—including physical and
biochemical—allowing bone toadapt to itsdynamicenvironment.

Bone Remodeling and TGFb

Bone homeostasis is critically dependent on the interactions
between osteoblasts, the mesenchymally derived bone-forming
cells, and osteoclasts, the hematopoietically derived bone
resorbing cells, in a coupled process known as bone

remodeling. Briefly, bone remodeling involves the sequence of
osteoclast recruitment and differentiation, bone matrix
resorption and a reversal phase in which osteoblasts are
recruited to the resorption site where they deposit new bone
matrix. Osteoblasts ultimately become embedded in the bone
matrix as mature osteocytes. TGFb is intimately involved in each
stage of this process. TGFb regulates the recruitment, differ-
entiation and function of both osteoblasts (Figure 1) and
osteoclasts (Figure 2), as well as the crosstalk mediating bone
remodeling and the quality of bone matrix.

Regulation of Osteoblasts by TGFb

At the cellular level, TGFb acts on the osteoblast lineage to
expand the pool of bone matrix-secreting cells. TGFb has long
been known to act as a chemoattractant for osteoprogenitor
cells.4 TGFb recruits osteoprogenitors to the site of new bone
formation or remodeling.5 In bone fractures, osteoprogenitors
migrate toward the site of fracture repair, following a gradient of
TGFb released from platelets and injured bone.6–8 TGFb also
increases the number of osteogenic cells by stimulating
osteoprogenitor proliferation, in part by promoting the
degradation of the cell cycle inhibitor p57Kip2.9 As it does
throughout the body, TGFb regulates the synthesis of extra-
cellular matrix proteins and proteases in bone, including
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alkaline phosphatase, collagen I, osteocalcin, osteopontin,
and matrix metalloproteinase-13 (MMP-13).10 Initially, TGFb
stimulates bone matrix synthesis, perhaps as a function
of its expansion of the osteoprogenitor population. However,
TGFb later inhibits terminal osteoblast differentiation
and bone matrix synthesis by Smad3-dependent repression of

Runx2 expression and function (Figure 1).11 TGFb also
acts on terminally differentiated osteocytes by inhibiting
osteocyte apoptosis, in part through a Smad3 and
vitamin D receptor-dependent mechanism.12 Therefore,
TGFb plays a distinct role at each stage of the osteoblast
life cycle.

Figure 1 Transforming growth factor-b (TGFb ) regulates the recruitment, differentiation, and function of osteoblasts. The TGFb -activated Smad3 represses Runx2 function to
inhibit osteoblast differentiation. This osteoblast-dependent pathway is also responsible for the ability of TGFb to regulate bone matrix elastic modulus, or stiffness, and it relies upon
the action of Runx2.

Figure 2 Transforming growth factor-b (TGFb ) couples bone formation with resorption through the regulation of osteoblast-derived osteoclast regulatory factors. Osteoclasts
also release and activate TGFb stored in latent form in the bone matrix during resorption through creating an acidic microenvironment as well as through the secretion of matrix
metalloproteinases MMP-2 and MMP-9, which proteolytically activate TGFb . The active TGFb released during osteoclast-mediated bone resorption feeds back on osteoblasts.
TGFb 1-directed migration of bone-derived mesenchymal progenitors to resorptive sites is an essential step in the coupling process. By inducing osteoprogenitor recruitment and
proliferation, TGFb balances matrix resorption with new bone deposition.
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Regulation of Osteoclasts by TGFb

TheeffectofTGFb onosteoclastsalsodependsupon the stageof
osteoclast differentiation.13 TGFb promotes the chemotaxis of
isolated osteoclast precursors into bone,14 and it later stimulates
osteoclast precursor proliferation and differentiation.15–18 TGFb
can act directly on osteoclasts and their precursors through its
type I and type II TGFb receptors. However, many of the effects of
TGFb on osteoclasts are indirect. For example, TGFb acts on
osteoblasts to regulate the expression of osteoclast regulatory
proteins including M-CSF, RANKL, OPG, ephrin B2 and EphB4
(Figure 2).19,20 At low doses, TGFb treatment enhances
osteoclastogenesis by increasing M-CSF expression and
prostaglandin production, as well as the RANKL to OPG ratio.21 In
contrast, high TGFb levels repress M-CSF and RANKL
expression while increasing OPG expression.22–24 Because high
levels of TGFb do not inhibit osteoclastogenesis in pure
osteoclast cultures, the inhibitory effects of TGFb at high doses
are mediated by osteoblasts and thus may serve as a negative
feedback loop to limit bone resorption.13

Coupling of Bone Resorption and Bone Formation by TGFb

The ability of TGFb to regulate osteoblast-derived osteoclast
regulatory factors is one of the mechanisms by which TGFb
couples bone formation with resorption.2,13 Moreover, during
bone resorption, osteoclasts release and activate TGFb stored
in latent form in the bone matrix. The acidic microenvironment
created by osteoclasts directly activates the TGFb ligand from
the latent complex. In addition to secreting TGFb, osteoclasts
also secrete matrix metalloproteinases MMP-2 and MMP-9
that, along with cathepsin K, can proteolytically activate
TGFb.25–27 The active TGFb released during osteoclast-
mediated bone resorption feeds back on osteoblasts. The
TGFb 1-directed migration of bone-derived mesenchymal
progenitors to resorptive sites is an essential step in the
coupling process.5 By inducing osteoprogenitor recruitment
and proliferation, TGFb balances matrix resorption with new
bone deposition. Although many questions remain about the
bone remodeling compartment canopy,28,29 such a structure
may create a microenvironment that limits the diffusion of TGFb
and other growth factors released from the bone matrix by
osteoclasts while facilitating the local recruitment of
progenitors.

Osteocyte-Mediated Perilacunar Remodeling and TGFb

Osteocytes, the most abundant bone cells embedded in
lacunae throughout the bone matrix, have recently been shown
to modify their perilacunar matrix. Under physiological stress of
lactation, cortical bone osteocytes express several proteins,
including proteases, that allow these cells to resorb their local
bone matrix to release mineral into the circulation for milk
production. The lacunae around these TRAP-positive osteo-
cytes enlarge with lactation and return to normal following
weaning as the local bone matrix is replaced.30 This lactation-
mediated perilacunar remodeling requires MMP-13.30,31 Even
in normal conditions, perilacunar remodeling is required to
maintain the collagen and mineral organization of cortical bone
matrix and the ability of bone to resist fracture. The expression
of MMP-13 is tightly regulated by TGFb, parathyroid hormone,
glucocorticoids and other factors.32–35 TGFb has also been

shown to be important for the stability of osteocytes,36 and it
may be possible that osteocytes may exert their actions on the
matrix through the TGFb -mediated regulation of proteases
such as MMP-13.33,34 Taken together, maintaining the stability
of osteocytes and the osteocytic-mediated dynamic remo-
deling of perilacunar bone matrix may be yet another way in
which TGFb regulates bone homeostasis.

Regulation of Bone Mass and Bone Quality by TGFb

Several mouse models demonstrate the consequences of
altering TGFb signaling on bone mass. Given the multiplicity of
TGFb activities on osteoblasts, osteoclasts and osteocytes, it
should not be surprising that these phenotypes fail to reveal a
simple anabolic orcatabolic role for TGFb in bone. For example,
a low bone mass phenotype results from mutations that
increase TGFb signaling (by overexpression of the activated
ligand37), as well as from those that reduce it (by ablation of the
key TGFb effector Smad3).12 Rather, these mouse models
clearly illustrate the key role of TGFb in the intricate coupling of
osteoblast and osteoclast activity during bone remodeling, and
the subsequent effects on bone quality and fracture resis-
tance.38 Many of the bone phenotypes become more severe
with age, consistent with the importance of TGFb in maintaining
postnatal bone mass.12,37,39

In addition to bone mass, the fracture resistance of bone is
determined by several other factors including the bone
microarchitecture, geometry and extracellular matrix material
properties.40,41 Each of these factors is biologically defined by a
number of key signaling molecules. Consequently, mice with
mutations in the TGFb pathway exhibit alterations in other
aspects of bone quality as well. In particular, TGFb regulates
bone matrix material properties.38 Unlike bone mass, this effect
is dose dependent, such that the elastic modulus of bone matrix
is reduced in genetically modified mice with elevated TGFb -
signaling; but increased in those that have lower TGFb signaling
activity.38 Similarly, postnatal pharmacologic inhibition of TGFb
type I receptor function is sufficient to increase the elastic
modulus of bone matrix, demonstrating that these properties
are regulated postnatally and must be maintained.20,38 TGFb
regulates bone matrix elastic modulus, or stiffness, through an
osteoblast-dependent mechanism that relies upon the action of
Runx2.42 Just as TGFb -activated Smad3 represses Runx2
function to inhibit osteoblast differentiation,11,42 this pathway is
also employed to control bone matrix stiffness (Figure 1).
Although TGFb also regulates the material quality of skin,
tendon and dentin matrix,43–45 the extent to which it also targets
master transcriptional regulators to do so remains unclear.

TGFb as an Integrator of Physical and Biochemical Stimuli
in Bone

The ability of TGFb to regulate bone matrix material properties
may be important for the mechanical and biological function of
bone. Bone matrix material properties are biologically regulated
and anatomically distinct, suggesting that this regulation offers
a selective advantage to the organism. The functional
significance of this regulation for long bone fracture resistance
has so far proven difficult to distinguish from the many other
factors that affect bone quality. Nonetheless, analyses of a
unique bone, the cochlea, revealed that each GPa decrement in
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elastic modulus was responsible for nearly 2 dB of hearing loss,
which may contribute to the hearing loss in patients with
cleidocranial dysplasia.42,46,47 Although the ability of osteo-
cytes to regulate bone matrix stiffness in response to TGFb is
yet unknown, in light of recent studies, it is intriguing to consider
the possibility that osteocytes have the capacity to quickly
change the material quality of the perilacunar bone matrix. This
could be particularly important as extracellular matrix stiffness
itself is a potent regulator of osteoblast gene expression and
cellular apoptosis.12,48,49 Factors that change extracellular
matrix stiffness may in turn alter the physical cues in the cellular
microenvironment to direct bone cell behavior.

Just as TGFb maintains bone mass and quality in response to
changing biological conditions, it also participates in the
anabolic response of bone to mechanical load. In bone and
many other tissues, the expression of TGFb ligands responds to
physical stimuli including fluid flow and compressive loads.50

Using an in vivo hind-limb loading model, we recently found that
mechanical loading of bone represses TGFb signaling through
Smad2/3.51 This mechanosensitive regulation of TGFb is
essential for the anabolic response of bone to mechanical
loads. In this way, TGFb is critical for the ability of bone to
continuously adapt to changing stimuli—both biological and
physical.

Human Pathologies

Given its critical roles in directing bone cell fate and the coupling
of osteoblast/osteoclast interactions, it is perhaps not sur-
prising that disruptions in TGFb signaling have been implicated
in deregulation of bone mass and quality in several human
pathologies as it does in several mouse models.12,20,37–39,52

These studies have shown that increased TGFb signaling
reduces bone mass and bone quality, producing a bone
phenotype that is similar to osteoporosis. Other skeletal
pathologies due to deregulation of TGFb signaling include
Camurati–Engelmann disease and osteopoikilosis. Camurati–
Engelmann disease, also known as progressive diaphyseal
dysplasia, is characterized by hyperostosis and sclerosis of the
base of the skull and the long-bone diaphyses. Camurati–
Engelmann disease is the result of TGFB1 mutations in either a
signal peptide or the latency-associated propeptide,53–55 and
these mutations result in increased levels of bioactive TGFb1
and subsequently increased TGFb signaling.56 In this case, the
deregulated activation of TGFb 1 results in hyperactive for-
mation of fragile bone.5,55,56 Osteopoikilosis is a skeletal
dysplasia characterized by symmetric but unequal distribution
of hyperostotic regions across the skeleton, with variants that
also include sclerosis of the skin. Osteopoikilosis can be
attributed to the loss of LEMD3 (LEM domain-containing 3),
which confers increased bone morphogenetic protein and/or
TGFb signaling.57–59 These diseases illustrate the essential role
of TGFb in bone homeostasis, and the dramatic effects that
result from the deregulation of TGFb.

Therapeutic Potential

Many studies have investigated the therapeutic utility of
manipulating the TGFb pathway in the skeleton, through the
direct administration of TGFb or the regulation of TGFb
effectors. For example, the inhibition of TGFb signaling, either

by the pharmacologic inhibition of the TGFb type I receptor5,20

or by TGFb blockade using antibodies,28,29,60 exerts positive
effects on both bone mass and bone matrix quality that cul-
minate in improved fracture resistance. Antagonizing TGFb
also protects bone from breast cancer metastasis.61 Impor-
tantly, the effect of TGFb critically depends on the cell and
tissue context.3 In particular, TGFb signaling has distinct effects
during different stages of the bone regenerative response and
has critical roles in the intramembranous ossification process
during fracture healing. The exogenous delivery of TGFb
enhances bone regeneration around bone implants over a 4-
week period with increased regenerated bone volume fraction,
bone contact area and reduced implant-tissue gap,62 likely
because of the ability of TGFb to recruit osteoprogenitors to the
implant site. Numerous studies have explored mechanisms by
which TGFb enhances the bone regenerative response and
bone union during fracture healing. These result in part from the
ability of TGFb to promote chondrogenesis. This complements
the ability of TGFb released from bone and platelets following
trauma to mobilize mesenchymal stem cells and osteopro-
genitors to the injury site.63 In addition, TGFb calibrates the
timing of chondrocyte and osteoblast differentiation in order to
ensure an adequate cell population for repair before ossification
of the fracture site.64

Conclusion

As bone remodeling is critical for the metabolic and mechanical
roles of the bone, TGFb maintains bone homeostasis by
coupling the osteoblast and osteoclast activity, mediating the
biological responsiveness towards mechanical stimuli, mobi-
lizing stem cells, and calibrating the differentiation of bone
forming and resorbing cells. Disruption of TGFb signaling
has adverse consequences in bone mass, quality, and
regeneration. Because of the potent effects of TGFb, leveraging
TGFb signaling for the directed homeostatic and regenerative
response of bone may provide valuable therapeutic benefits.
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