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The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been

extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous

system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the

‘microenvironment’. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined

the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of

immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this

article.
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Introduction

In mammals, hematopoiesis commences in the fetal liver before
birth. At the very near the delivery, the source of all blood cells,
namely the hematopoietic stem cell (HSC), migrates from the
fetal liver to the bone marrow (BM) located inside the bone
tissue. In this context, the bone is first established prior to
inhabitation of the BM, and the HSCs rent it for the maintenance
of adult hematopoiesis. Other than marrow of the bone, there is
no system that strictly regulates the circulating blood cell
numbers in steady state and supplies appropriate kinds of cells
on demand during an emergency. Extramedullary hemato-
poiesis observed in patients with myelofibrosis is not an
exception because the chromosomal abnormalities in circu-
lating blood cells indicate a neoplasm. Thus, the bone is
essential for a well-regulated normal hematopoiesis, and
‘the bone equipped with marrow’ can be regarded as a distinct
internal organ.

In addition to the physical role to support the structure of the
body and the physiological role to control mineral metabolism,
the bone contributes to whole body homeostasis through
another important function: the perception of gravity and
mechanical stress. The latter sensory role is mediated by the
bone-buried osteocytes. Osteocytes are terminally differ-
entiated osteolineage cells and are now recognized as strong
regulators of the conventional players in bone remodeling, such
as the osteoblasts and osteoclasts. In the past decade or so,

hematologists have studied extensively the function of all these
bone cells as modulators of the hematopoietic system. In this
review article, I would like to present an overview of the research
on bone cells as microenvironments for HSCs and to introduce
their unique roles as regulators of multiple organ functions, such
as lymphopoiesis and energy metabolism.

Endosteal Microenvironment for Hematopoiesis:
Osteoblasts and their Modulators

In the early in vitro study, bone-forming osteoblasts are known
to have a capacity to support immature hematopoietic pro-
genitor cells (HPCs).1 In vivo studies seeking the specialized
place that supports HSCs in the BM have begun with two
researches published in 2003.2,3 One study showed that both
transgenic mice with constitutively active parathyroid hormone
signaling and normal mice with systemic parathyroid hormone
administration had increased the number of HSCs. The other
study also demonstrated the positive correlation between the
numbers of osteoblasts and HSCs by using mice with con-
ditional inactivation of bone morphogenetic protein receptor
type IA. A recent work has confirmed further the impairment of
HSC self-renewal in the BM in the absence of osteoblasts.4

Currently, these endosteal osteoblastic cells can be isolated
and subdivided into three populations based on the expression
of activated leukocyte cell-adhesion molecule (ALCAM) and
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Sca-1. It is reported that ALCAMþSca-1� mature osteoblast
fraction harbors a greater capacity to support HSC activity,
whereas ALCAM�Sca-1þ mesenchymal progenitors and
ALCAM�Sca-1� pre-osteoblasts mainly support HPCs.5,6

Factors that support or attract HSCs in the osteoblastic
microenvironment have been reported. The [Ca2þ ] level is
considered high in the endosteum due to bone remodeling, and
calcium-sensing receptor expressed on HSCs guides them to
the osteoblastic microenvironment.7 Angiopoetin-1 and
thrombopoietin are reported to be osteoblastic factors that
promote HSC quiescence through Tie2 and MPL receptors,
respectively.8–10 Non-canonical Wnt signaling is also shown to
regulate HSC quiescence at the endosteal region.11 Adhesion
molecules and extracellular matrix proteins, such as N-cadherin
and osteopontin, are also reported to be modulators for
HSCs.12,13 However, some studies question the significance of
N-cadherin-mediated adhesion to osteoblasts for HSC
maintenance.14,15

As bone homeostasis is maintained by the coupling of
bone-forming osteoblasts and bone-resorbing osteoclasts,
osteoclasts are also important players in the endosteal
microenvironment for hematopoiesis (summarized in BoneKEy
Reports review by Anna Teti16). The precursors of osteoclasts
are macrophages, and those located near the endosteum,
called ‘osteomac’, are reported to be critical supporters of
osteoblasts.17–19 Deletion of macrophages leads to rapid
disappearance of osteoblasts,17 followed by mobilization of
HSCs/HPCs from the BM to the circulation.19 It is also reported
that BM CD169þ macrophages support the mesenchymal
stem cells,20 which suggests that macrophages are positive
regulators of a wide spectrum of mesenchymal lineage cells.

In contrast to macrophages, a negative regulator of
mesenchymal lineage cells in the BM is the sympathetic
nervous system (SNS). The BM is a highly innervated organ, and
catecholamine stimulates b2-adrenergic receptor expressed
on osteoblasts to suppress their activity.21 Cytokine granulo-
cyte colony-stimulating factor (G-CSF) is a strong inducer of
high sympathetic tone in the BM,22 which leads to marked
suppression of osteoblasts in the endosteum.23 Catecholamine
signal through b2-adrenergic receptor in osteoblasts
upregulates strongly the vitamin D receptor (VDR) mRNA, which
is essential for normal HSCs/HPCs trafficking.24 It is also
reported that mesenchymal stem cells express b3-adrenergic
receptor and are suppressed by the SNS,25 which suggests
that the SNS is a negative regulator of a wide spectrum of
mesenchymal lineage cells.

Recently, many kinds of perivascular cells have been iden-
tified as a supportive population to maintain HSCs.26–28 Most of
them are mesenchymal lineage cells, and, among them,
nestinþmesenchymal stem cells and CXCL12-abundant reti-
cular cells (CAR cells) are proven to possess differentiation
capacity into osteoblasts.29,30 From the bone researcher’s point
of view, the structure of the BM as the hematopoietic
microenvironment may be simplified as illustrated in Figure 1.
Perivascular mesenchymal stem cells differentiate via
mesenchymal progenitors, pre-osteoblasts, and bone-forming
osteoblasts toward bone-embedded osteocytes. These
mesenchymal lineage cells are regulated by the balance
between SNS-mediated suppression and macrophage-medi-
ated promotion. This bone-forming system in the BM is utilized
by HSCs/HPCs as the hematopoietic microenvironment.

Endosteal Microenvironment for Malignant Hematopoiesis

Hematopoietic malignancies, such as leukemia, myelodys-
plastic syndrome and myeloproliferative neoplasm, arise from
the BM. Recent reports have revealed the considerable con-
tribution of bone cells in the maintenance of leukemia or even in
leukemogenesis.31,32 Minimal residual disease of human acute
myelogenous leukemia cells in immunodeficient mice resides in
the endosteal region after chemotherapy.33 In a murine mye-
loproliferative neoplasm model, it is reported that leukemic cells
remodel the osteoblastic microenvironment by driving the
expansion of osteoblastic cells with abnormal function, which is
favorable for leukemic cells but unfavorable for normal HSCs.34

Two reports had demonstrated the osteolineage cell-intrinsic
leukemogenesis. The genetic deletion of Dicer1 only in
osteoblast precursors in mice caused myelodysplastic syn-
drome and eventually led to acute leukemia.35 Constitutive
activation of b-catenin selectively in osteoblasts in mice also
caused myelodysplastic syndrome/leukemia through the
activation of Notch signaling in HSCs/HPCs.36 Thus, the
osteoblastic microenvironment is essential for both normal and
malignant hematopoiesis.

Contribution of Osteocytes in Endosteal Microenvironment

Osteocytes are the most abundant osteolineage cells, and they
control the balance of activity between osteoblasts and
osteoclasts.37 Network connected with the osteocyte
projections communicates directly with endosteal osteoblast.38

The deletion of Gsa specifically in osteocytes is reported to
enhance G-CSF production from the bone tissue (presumably
from osteocytes), which leads to myeloid expansion in the
BM.39 This study suggests that bone-embedded osteocytes,
which have no direct contact with hematopoietic cells, are
potent in the regulation of BM hematopoiesis.

Osteocyte-mediated regulation of the endosteal micro-
environment for HSCs/HPCs is also demonstrated. G-CSF
administration as aforementioned is often employed in clinic to
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Figure 1 Relationship between bone cell- and blood cell-forming systems.
Perivascular mesenchymal stem cells differentiate toward bone-forming cells.
These mesenchymal lineage cells are regulated by the balance between sympathetic
nervous system-mediated suppression and macrophage-mediated promotion. This
bone-forming system in the bone marrow is utilized by hematopoietic stem/progenitor
cells as microenvironment.
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induce mobilization of HSCs/HPCs from the BM to the
circulation. The collection of these circulating immature
hematopoietic cells by apheresis is now a standard graft-
harvesting method instead of the traditional BM collection for
clinical HSC transplantation as a curable therapy for hema-
tologic malignancies and intractable marrow failures. We had
shown previously that G-CSF induced a high sympathetic tone
in the BM, and the suppression of osteoblastic micro-
environment by catecholamine is one of the pathways to release
HSCs/HPCs from osteoblasts.22 In our subsequent study, the
cellular connection between endosteal osteoblasts and bone-
embedded osteocytes had been disrupted after G-CSF
treatment.40 However, osteolineage cells do not express G-CSF
receptor.22 As osteocytes express b2-adrenergic receptor, and
surgical denervation disrupts the regulation of osteocyte
specific genes, it is confirmed that osteocytes are regulated by
the SNS. We utilized transgenic mice in which osteocytes were
specifically ablated through the targeted expression of a
diphtheria toxin receptor under a DMP-1 promoter.41 Injection
of diphtheria toxin in this mouse model generates osteocyte-
less (OL) mice. In OL mice, G-CSF-induced HSCs/HPCs
mobilization was markedly impaired, whereas their numbers in
the BM were unchanged. In addition to the disruption of
supporting signals from osteocytes to osteoblasts, the
depletion of osteocytes resulted in the disappearance of
osteomacs in the BM. Disappearance of osteomacs is also
observed in G-CSF-induced mobilization.19 Thus, as sum-
marized in Figure 2, osteoblasts maintain the function of
microenvironment for HSCs/HPCs by taking supporting signals
from osteomacs and osteocytes in steady state. In G-CSF-
induced mobilization, osteoblasts are suppressed through
three different pathways: (1) direct suppression by the SNS,

(2) loss of supporting signals from osteomacs and (3) loss of
supporting signals from osteocytes.40

Role of Osteocytes for Remote Organs

Reduced input from mechanical stress, including gravity, on the
bones of bedridden patients and astronauts leads to rapid
progression of osteoporosis and impaired immunity.42–45

Osteocytes act as mechanosensors and contribute to bone
homeostasis by converting mechanical stress to biological
signals.41 Using the mouse tail suspension system, we con-
firmed that microgravity on the hind limbs disrupts osteocyte
cellular network in the bone tissue and reduces the number of
lymphocytes in the suspended BM.46 To elucidate whether
osteocytes were critical for homeostasis of the immune system
and even other organs, we used OL mice that manifested
osteoporosis with defective mechanotransduction.41 Ablation
of osteocytes led to severe lymphopenia due to the lack of
lymphoid-supporting stroma in both the BM for B-cell
precursors and the thymus for T-cell precursors, and a marked
loss of white adipose tissues. These phenotypes were
reversible when osteocytes were replenished within the bone in
B3 months. In vivo supply of T-cell progenitors and humoral
factors via shared circulation with a normal parabiotic partner
did not rescue thymic atrophy in OL mice, which suggested
strongly the origin of the lymphopoietic defect from the
impaired thymic microenvironment.

Certain areas of the central nervous system, such as the
ventromedial hypothalamic nucleus and the arcuate nucleus,
control bone metabolism via the SNS in response to leptin
signaling.21,47 To test whether osteocytes cooperated with the
central nervous system to regulate fat metabolism, osteocytes

Steady state G-CSF

Osteoblast Macrophage Catecholamine HSC

Adrenergic  
       neuron 

Figure 2 Alteration of endosteal microenvironment by cytokine G-CSF. (a) Osteoblasts as microenvironment for hematopoietic stem/progenitor cells are supported by
osteomacs (endosteal macrophages) and osteocytes in steady state. (b) In G-CSF-induced mobilization, osteoblasts are suppressed through three different pathways: (1) direct
suppression by the sympathetic nervous system, (2) loss of supporting signals from osteomacs and (3) loss of supporting signals from osteocytes.
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were deleted in ventromedial hypothalamic nucleus- or arcuate
nucleus-ablated mice. In this condition, the mice demonstrated
significant obesity with high amount of white adipose tissues
before diphtheria toxin injection, and, after osteocyte deletion,
they displayed general fat loss with hepatic steatosis. This
severe fatty liver was at least partially due to the suppression of
fat clearance genes in the liver by hypothalamic and osteocyte
ablation. These results revealed that osteocytes maintained
peripheral fat in cooperation with the central nervous system.46

Thus, the bone tissue equipped with osteocytes orchestrates
remote organs to maintain whole body homeostasis of
immunity and fat metabolism (Figure 3).

Recently, osteocalcin produced by osteoblasts has been
recognized as a critical homeostatic regulator of glucose
metabolism by acting on pancreatic b cells and adipocytes.48 It
is also reported that insulin produced by pancreatic b cells upon
osteocalcin stimulation further promotes the osteocalcin
production from osteoblasts as a positive feedback
mechanism.49,50 It was reported that, in a mouse model,
inducible ablation of osteocalcin-expressing cells resulted in
the alteration of both glucose and fat metabolisms. Interest-
ingly, exogenous osteocalcin rescued only the diabetic phe-
notype but not fat loss in this model.51 Together with the fact that
osteocalcin is highly expressed not only in osteoblasts but also
in osteocytes,40 and with our observations on OL mice in which
glucose metabolism is not altered, but fat loss is prominent,
mesenchymal lineage cells may control finely the energy
metabolism depending on their differentiation stages. More-
over, osteoblasts and osteocytes may regulate preferentially
glucose and fat metabolisms, respectively (Figure 4).

Concluding Remarks

Although a large number of fish species possess acellular
bones, some have cellular bones with osteocytes, the dis-
tribution of which is less dense than in mammals.52 As our
ancestors moved from the sea onto the ground in the process of
evolution, our body has been stimulated continuously by the 1G
gravity. Systems to survive enduring harsh conditions, such as
unlimited kinds of infections, unstable temperature and star-
vation on the ground, may have been refined under the
inevitable mechanical stress of gravity. Thus, it seems

reasonable that osteocytes as mechanosensory cells regulate
critically the hematopoiesis, immunity and energy metabolism.
Another important point is that our body responds to these
stresses with inter-organ communication (Figure 5). Any organ
in our body (perhaps including the brain) will not be appro-
priately functional without supportive signals from other organs.
The bone, in particular, has an essential role in this network.
Hematologists utilize this fact in clinic already. For example, the
mobilization of HSCs/HPCs by G-CSF can be regarded as a
transient deviation of this network. It is also possible that the
irreversible deviation of this network may lead to diseases and
aging.
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