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1Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059, Saint-Etienne, France. 2Université de Lyon,
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Bone is a composite organ that fulfils several interconnected functions, which may conflict with each other in

pathological conditions. Bone vascularization is at the interface between these functions. The roles of bone

vascularization are better documented in bone development, growth and modeling than in bone remodeling. However,

every bone remodeling unit is associated with a capillary in both cortical and trabecular envelopes. Here we summarize

the most recent data on vessel involvement in bone remodeling, and we present the characteristics of bone

vascularization. Finally, we describe the various techniques used for bone vessel imaging and quantitative assessment,

including histology, immunohistochemistry, microtomography and intravital microscopy. Studying the role of

vascularization in adult bone should provide benefits for the understanding and treatment of metabolic bone diseases.
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Introduction

The skeleton is an adaptable system that integrates a number of
mechanical, biochemical and nervous signals. Moreover, bone
is a feedback controlled composite organ that fulfils several
interconnected functions including locomotion, involvement in
phosphate and calcium metabolism, synthesis of endocrine
molecules and hematopoiesis, which may conflict with each
other in pathological conditions. Bone vascularization is at the
interface between these functions. As for other organs, blood
flow within a bone is tightly correlated with its metabolic activity:
by controlling oxygen and nutrient delivery, bone vessels
become a limiting factor, which may alter the various phy-
siological functions of bone and could potentially modulate
treatment efficacy in metabolic bone diseases. Hemody-
namics, oxygen consumption and energetic metabolism are
intimately coupled with the activities of bone formation and
resorption during bone modeling and remodeling. The roles of
vessels have been well documented in various bone modeling
situations. Blood vascular penetration into the avascular car-
tilage template is a landmark of the early steps of endochondral
ossification, and the invasion by blood vessels of the growth
plate hypertrophic zone is an essential event for bone elon-
gation.1 The development of a new vascular network is a critical
step in wound healing and represents a primary limiting factor in
functional tissue regeneration.2 Overall, bone modeling is
characterized by a tightly regulated positive coupling between

osteogenesis and angiogenesis. Therefore, bone vascular-
ization has become a relevant therapeutic target in both fields of
fracture repair3 and bone tissue engineering.4 In contrast, the
relationships between vessels and bone remodeling remain
poorly understood. In this review, we summarize the current
knowledge on the role of vessels in bone remodeling and briefly
describe the various techniques available for bone vessel
identification and quantification. The methods for assessment
of bone blood perfusion are beyond the scope of this review.

The Role of Vessels in Bone Remodeling

Within cortices, the remodeling cutting and closing cones,
which build secondary osteons, are centered by a vessel
(Figure 1; bottom). It is necessary to stress that mice and rats
lack a well-developed Haversian remodeling system and mostly
lose cortical bone at the endosteum, in contrast to larger
mammals whose increased Haversian remodeling is a major
cause of cortical porosity and age-related bone loss. In humans,
Haversian vascular canals are roughly parallel to the diaphysis
axis and highly connected at right angle to ‘Volkman’ canals. In
the mouse, canals exhibit a radial pattern and are poorly
branched (as shown by Schneider et al.5), whereas in the rat,
they are more interconnected and oriented like in humans
(Figure 2)6. Thus, the organization of cortical vascularization in
long bones strongly differs among species. As a result, the role
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of vessels in physiological cortical bone remodeling and in
pathological conditions may not be strictly comparable
between models.

In contrast to cortical bone, diagrams illustrating trabecular
bone remodeling drawn 20 years ago constantly lacked
the bone vessel. However, those designed more recently
repeatedly show a capillary close to the remodeling unit (http://
stemcells.nih.gov/info/2006report/chapter11.htm). Indeed,
there is accumulating evidence that the bone vasculature is a
crucial partner in the bone remodeling process and has a role in
the resorption/formation coupling. Bone vessels bring osteo-
clast precursors at the bone surface where remodeling is about
to take place and ‘feed’ the remodeling unit with new cells as
long as necessary (Figure 1). As for the osteoblastic lineage,
studies suggest that osteoprogenitors could be recruited from
circulating cells,7 differentiated from pericytes,8,9 or from cells
located in the canopy10 that isolate the bone remodeling
compartment from the bone marrow11,12 (Figure 1; top).
Interestingly, canopy cells are in close contact with capillaries
and Delaissé’s team recently demonstrated that vessel posi-
tioning relative to the bone surface was highly dependent on the
remodeling status of the bone remodeling compartment,13

suggesting substantial vessel plasticity. The complex molecular
crosstalk between bone and vascular cells (reviewed in
reference 14) is progressively unraveled and includes the cues
involved in angiogenesis, such as vascular endothelial growth
factor receptor15 or preosteoclasts/preosteoblasts homing,

such as Sphingosine-phosphate 1 concentrations16 or CXCR4/
CXCL12 signaling,17,18 which control cell trafficking through the
vascular wall.

Recently, Kusumbe et al.19 described two subtypes of bone
vessels according to their high (H) or low (L) level of CD31 and
endomucin expression. In young animals, H vessels contain
more proliferating endothelial cells. They are abundant in the
primary spongiosa and run along the cortical endosteum. H
vessels are more surrounded with osteoprogenitors, express
higher levels of HIF-1a but are less numerous than L-type
vessels. Most interestingly, inhibition or activation of the HIF-1a
signaling pathway in endothelial cells only modulates bone
mass and perivascular osteoprogenitor number. Genetic
lineage tracing showed that H endothelial cells mediate
neoangiogenesis in bone. The amount of H endothelial cells
declines with age in the bone marrow, whereas that of total
endothelial cells does not. Deferoxamin treatment, which
stabilizes HIF-1a, was osteogenic and led to substantial
expansion of type H endothelium and emergence of vessel-
associated osteoprogenitors in aged animals. Xie et al.20 further
showed that platelet-derived growth factor-BB, exogenous or
released by preosteoclasts, induces type H vessel and sti-
mulates bone formation in OVX mice. Altogether, these exciting
data emphasize the high heterogeneity of bone vasculature and
clearly identify the bone vessel as a therapeutic target in
metabolic bone diseases. However, the kinetics of vessel
behavior during the whole remodeling process (activation,

Figure 1 Illustration of spatial and functional relationships between blood capillary and the bone remodeling compartment in trabecular (top) and cortical envelopes (bottom).
Circulating osteoclast precursors home to the bone surface through the vessel wall and the canopy where the bone remodeling unit is about to take place. The vessel also feeds the
bone remodeling compartment with osteoblast progenitors via pericytes borne by the vascular wall or via circulating cells.
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resorption, formation and quiescence, cf Figure 1) and the
precise molecular mechanisms that control it remain unknown.

Involvement of Bone Vasculature in Metabolic Bone
Diseases: Clinical Perspectives

Certainly, the abundant literature showing strong associations
between osteoporosis and atherosclerosis or vascular

calcifications led to the concept of the ‘bone–vascular axis’
suggesting common pathophysiological links between skeletal
and vessel diseases,21 especially in the ageing context.
However, a limited number of studies specifically analyzed the
connections between bone vascularization or perfusion and
metabolic bone diseases in humans. Burkhardt et al.22 found on
histological sections that bone marrow vessels became
increasingly scarce with age. In line with these morphological

Figure 2 (a–f) Imaging of barium-infused vessels in tibia of mice (a–c) and rats (d–f). Arrows: cortical vessels, arrow head: trabecular vascular network. t, trabecular bone; c,
cortical bone. (a) Horizontal toluidine blue-stained 5-mm-thick section of barium-infused mouse tibia upper metaphysis. (b) Micro-CT image (3-mm resolution, Nanotom, GE
Inspection Technology, Boston, MA, USA) of the same tibia section illustrated in a. (c) 3D rendering of synchrotron radiation microtomography (SR-CT) of the vascular network in
mouse tibia upper metaphysis (1.5-mm resolution). (d) Seventy-mm-thick stack of SR-CT images of rat upper tibia metaphysis. (e) 3D rendering of SR-CT imaging of cortical (yellow)
and trabecular vascular network (red) in tibia diaphysis after segmentation and removal of the bone component. (f) 3D rendering of SR-CT imaging of cortical and trabecular vascular
network (red) after segmentation and removal of the cortical bone component. (g–i) Intravital microscopy of Rhodamine B dextran-infused vessels in mouse calvaria (g, h) and tibia
metaphysis (i). Performed on anesthetized mouse after incision of the skin and slight grinding of the cortical bone (tibia), 10 min after IV injection in the tail vein of Rhodamine B
dextran with the Two-photon confocal microscope TCS-SP2, Leica Microsystems. (d, e) Two z-images of the same field separated by 50 mm, d being more superficial than e. Green:
second-harmonic generation signals derived from bone collagen. Thin arrows: Rhodamine-filled osteocyte lacunae, thick arrows: Rhodamine–dextran-filled capillary (note the red
blood cells inside the vessel), arrow heads and dotted line: endocortical surface. mc, marrow cavity; na, nutrient artery in tibia; 3D, three-dimensional; IV, intravenous.
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findings, Wang and colleagues, using magnetic resonance
imaging, reported a reduction in bone perfusion in post-
menopausal osteoporotic women, as compared with age-
matched healthy controls,23 whereas a decrease in bone
vascular density was observed in ovariectomized rodents.24,25

Jumping to simplistic conclusions, one could think that ‘the
more vessels/perfusion, the better for bone’. However, although
overexpression of vascular endothelial growth factor receptor in
the chondro-osteoblast lineage in adult mice is angiogenic and
increases trabecular bone mass, it also induces fibrotic marrow
and cortical porosity, reminiscent of what is observed in
secondary hyperparathyroidism.1 Some non-malignant bone
diseases are associated with complex vascular anomalies.
Paget’s disease and reflex sympathetic dystrophy at its early
stage26 both feature a significant increase in bone blood flow
and accelerated resorption; however, the former leads to bigger
bones, whereas the latter is associated with bone loss. These
caricatural examples somehow emphasize the fact that the
functional relationships between bone remodeling and vessels
may not be as straightforward as previously thought.

Morphological and Functional Heterogeneity of Bone
Vessels

Bone is highly vascularized. Sub-periosteal and bone marrow
vessels are connected via the cortical vascular network. Bone
marrow vessels are heterogeneous and include small ) classic *

capillaries (o10–15 mm) and a majority of sinusoid capillaries
(20–30mm), which belong to the venous capillary system. It is
noteworthy that there is no lymphatic vessel in the normal bone
marrow, whereas sub-periosteal lymphatic vessels run along
the outer surface of the cortical bone.27 Both classic capillary
and sinusoid networks are linked by transitional vessels, which
share some features of the vessels they connect to.28 The basal
membrane of sinusoids is absent or discontinuous. Their wall is
perforated by inter- and intra-endothelial pores through which
mature hematopoietic cells traffic towards the blood circulation,
whereas intravascular soluble and relatively large molecules
can be rapidly extravasated.29

Endothelial cells share basal membrane with pericytes, which
are borne by the vessel wall. The pericyte vessel wall coverage
is variable according to the type of vascular bed. Sixty-five
percent and 71% of the adventitial sinusoid surface are covered
by pericytes in the bone marrow of the rat30 and the mouse,31

respectively, this percentage being potentially reduced
when egress of hematopoietic cells increases. In healthy
humans older than 50 years, an average of 51% (±20%)
of the bone marrow microvessels were reported to be covered
by pericytes.29

Sinusoids and classic capillaries networks differ in terms of
spatial organization. The sinusoid network is denser, isotropic
and organized in a mesh-like structure, whereas the capillary
bed has a tree-like shape. Finally, direct measurements at the
endosteum of the rabbit fibula have shown that sinusoidal blood
flow is only one-tenth of that in capillaries.32 Expectedly,
numerous sinusoids irrigate the ‘red’ hematopoietic marrow,
whereas scarce classic capillaries are observed in the ‘yellow’
fatty marrow.33–35 Using standard histological staining pro-
cedures of iliac crest biopsies from normal human subjects,
Burkhardt et al. reported that the age-associated reduction in
the capillary and sinusoid beds correlated with the overall

increase in bone marrow fat volume.20 In contrast, in the lower
third of the diaphysis of rodents, a region filled with marrow
adipocytes, we counted4100 vessels per mm2, whereas there
were 60–65 vessels per mm2 in the metaphysis where the
marrow is essentially hematopoietic.36 These discrepancies
underline that the relationships between bone adipocytes and
vessels are complex, which may be related to the various
subtypes of fat cells found in the marrow.37

We do not know whether there are variations in the vascular
network structure or morphology throughout the skeleton in
humans. In 4-month-old mice, we counted similar number of
barium-infused microvessels in tibia and femur,38 and, in
younger mice, Lassailly et al.39 did not find any difference in
bone vessel densities between calvaria and long bones.
Furthermore, these authors studied perfusion efficiency
assessed after Ho 33342 dye perfusion followed by analysis of
the bone marrow cell dye uptake. There was no difference in
overall perfusion efficiency between long bone diaphyses,
epiphyses and calvaria. However, truly hypoxic cells (as
measured by pimonidazole staining that identifies cells
exposed to oxygen partial pressure (PO2) o10 mm Hg) were
less frequent within calvaria as compared with long bones.
Thus, although the bone marrow is highly vascularized, its
perfusion is heterogeneous, some regions being poorly
perfused and hypoxic, regardless of the type of bone. Recently,
Spencer et al. were able to perform in vivo measurements of
PO2 using two-photon phosphorescence lifetime microscopy
in mice. They found a PO2 decreasing gradient from the
periosteum (50 mm Hg) to the extravascular bone marrow
compartment, with PO2 as low as 9.9 mm Hg in this latter area.
However, the peri-endosteal region (zone located at 0–20mm
from the bone surface) in which the smallest vessels were
observed exhibited intermediate values (21.9 mm Hg in the
vessels and 13.5 mm Hg outside the vessels).40 A growing
number of reports suggested a critical role of local hypoxia in the
hematopoietic niche related to the stemness maintenance of
the hematopoietic stem cells. These data emphasize the fact
that vessel count cannot be a surrogate marker of blood supply
or perfusion in bone and that the combination of morphological
and functional analyses are necessary to better understand the
bone/vessel relationship.

Methods for Assessment of Bone Vascularization

Assessment of bone vascularization requires visualization
and identification of the vascular structures before their
quantification. It consists in either labeling the vessel wall or
filling the vascular network with a contrast product.

Vessel Wall Labeling
Vessel wall labeling can be performed via the use of reporter
genes driven by endothelial-specific promoter, immuno-
histochemistry or intravenous injection of molecules captured
by endothelial cells. Tie226 or VE Cadherin (also called
Cadherin 5)41 promoters may be employed in the mouse,
considering that the Tie2 promoter is activated in classic
capillaries and not in sinusoids.26 Immunohistochemistry
targets either endothelial cells (summarized in Table 1) or
smooth muscle cells (anti-smooth muscle alpha-actin anti-
bodies). In addition, functional properties of endothelial cells
may be exploited for capillary detection such as endocytosis of

Bone vascularization
M-H Lafage-Proust et al

4 APRIL 2015 | www.nature.com/bonekey

http://www.nature.com/bonekey


fluorescent acetylated low-density lipoprotein (Dil-Ac-LDL)26 or
isolectin binding.26 Li et al. combined the analysis of green
fluorescent protein-Tie2 expressing capillaries and Dil-Ac-LDL
endocytosis (sinusoids) to characterize the bone marrow
vascular bed. They described ‘transitional’ microvessels
interfacing and connected to the sinusoid and capillary net-
works whose specific function remains unknown. Wang et al.
demonstrated that endomucin antibody specifically stains
sinusoids as compared with the non-specific expression of VE
Cadherin.39 The pericytes can be identified with anti-platelet-
derived growth factor receptor b, desmin or neuro-glial antigen
2 antibodies.42 In addition, a growing body of studies reports
expression of a various number of proteins (such as nestin,43

leptin receptor44 in mice or CD14619 in humans) by sub-
populations of pericytes, which are involved in the hemato-
poietic niche.

Most of the studies use 5-mm-thick cryosections and immu-
nofluorescence, although some authors utilize decalcified par-
affin-embedded samples with terrific results.11,13 Recently,
Adams’ team published outstanding low magnification images of
immunofluorescence-labeled vessels on 300-mm-thick frozen
decalcified mouse whole tibia sections.45 Finally, it is also possible
to perform in vivo vessel labeling by intravascular injection of
antibodies46 or isolectin,37 followed by in vivo or ex vivo confocal/
multiphoton microscopy. After immunological staining, vessel
quantification may be automated, sometimes preceded by
manual tracking, provided that labeling is clean enough.47

Filling the Vascular Network with Contrast Product
Injection of fluorescent molecules and intravital microscopy.
Branemark was the first to perform intravital microscopy of
bone vascularization by observing under a microscope a trans-
illuminated rabbit fibula.48 The use of fluorescent probe
intravenous injection combined with intravital microscopy of
mouse calvaria was introduced by Von Andrian’s team.49 Two-
photon fluorescence can be collected through the bone cortex
via a confocal microscope as long as that the cortex is flat and

thin enough, which makes mouse calvaria the best candidate
for this imaging technique. After mouse anesthesia, fluorescent
tracers (Rhodamine/fluorescein isothiocyanate-labeled
dextran or smaller particles such as quantum dots) are injected
into the blood circulation followed by observation under the
confocal microscope. Under two-photon excitation, type 1
collagen is easily identified via second harmonics generation
(Figure 2g–i). Using this technique, Lo Celso et al.50 quantified
the spatial relationships between bone marrow vessels,
hematopoietic stem cells and green fluorescent protein (GFP)-
runx2-positive osteoblastic cells. Some authors insert a glass
window in rodent femur after perforating the cortex, which
allows longitudinal survey of bone vessels with time-lapsed
imaging. Using this technique, trafficking of GFP-labeled
preosteoclasts through the capillary walls could be markedly
observed.16 Grinding tibia cortex down to a 100mm thickness
permits to image the tibia marrow cavity51 (Figure 2g–i).

Radio-opaque contrast product, histology and microtomography
imaging
Choice of the contrast product. Pioneer anatomists and
surgeons52–54 used infusion of gelatin-india ink as a contrast
product, followed by visualization of bone vessels on whole
mounts or histological sections. This technique is still used for
the analysis of cortical vessels in animal models.55

Lateron, vascular corrosion casts were obtained after infusion
and polymerization of methylmethacrylate resin followed by
bone matrix digestion and scanning electron microscopy
imaging. Beside resin, rubber such as latex can be infused;
however, its molecular size and viscosity limit its penetration into
the fine branches of the vascular network and only the primary
arteries and a few of the larger secondary arterioles may be
injected,56 restricting its use to anatomy studies. This infusion
technique can be used in human cadavers, rodents57 or bigger
animal models. Radio-opaque compounds such as barium
sulfate or, more recently, lead chromate-loaded silicon (Microfil,
Flow Tech, Inc., Carver, MA, USA) were used. They allow both
histology and X-ray-based imaging including microtomography

Table 1 Main endothelial markers used for identification of microvessels in the bone marrow of mice, rabbit and humans.

Mice Humans

Marrow
sinusoids

Marrow arteriolae/arterial
capillaries

Marrow
sinusoids

Marrow arteriolae/arterial
capillaries

References

Von Willebrand
factor

� Li et al.28

þ þ Pusztaszeri et al.76

þ þ Soki et al.77

CD31 � Li et al.28

þ þ Pusztaszeri et al.76

þ þ Coenegrachts et al.78

þ þ Van Valckenborgh
et al.71

MECA32 þ þ Li et al.28

Laminin þ Li et al.28

Tie2 � þ Anghelina et al.79

Endomucin þ � Wang et al.41

Lectin þ þ Li et al.28

Ac LDL þ � Li et al.28

CD34 ± þ Kristensen et al.11

þ þ Pusztaszeri et al.76

VEGFR3 þ þ Singbrant et al.74

Abbreviation: VEGFR3, vascular endothelial growth factor receptor 3. Gray cells represent the antibodies able to differentiate sinusoids from capillaries.
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(mCT). Microfil is suitable to image vessels outside the bone,58

within muscles, as well as in soft organs. In contrast, we
demonstrated that a bariumsulfate solution (with barium particle
size of 1–2mm, Micropaque, Guerbet, Roissy, France) is a better
tool for bone vessel visualization within trabecular bone in
rodents, because it fully penetrates the marrow vessels
including the smallest ones and it does not shrink after resin
embedding34 (Figure 2) as Microfil does. Indeed, most of the
publications using Microfil opacification of bone marrow vessels
show few ball-shaped vessels and discontinuous vascular
networks.59,60 In cortical bone, the vessels were reproducibly
filled with barium in rats61 (Figure 2d–f) but not in mice34

(Figure 2b), probably because of inadequate rheology/output of
the barium solution for infusion of mouse cortical vessels. In line
with our results, Schneider et al.62 quantified the cortical canal
network before and after barium infusion and found that the
volume of the vascular network was much smaller than that of
the cortical porosity.

Microtomography imaging. Duvall et al.63 thoroughly described
the algorithms for mCT imaging of the vascular network in the rat
hindlimb ischemic model and illustrated the influence of
threshold levels on results. Using a similar approach with
Scanco mCT devices (VivaCT and mCT40 Scanco Medical AG,
Basserdorf, Switzerland), we analyzed the influence of both
spatial resolution and threshold on trabecular bone vascular-
ization in barium sulfate-infused rat tibiae after decalcification
and found significant positive correlations between histology
and mCTresults.64 Synchrotron radiation mCT imaging provided
better spatial resolution compared with conventional mCT and
did not require sample decalcification, thus allowing to visualize
vessels in three-dimensions and analyze their location in
relation to the bone surfaces.61 Using an IMAGEJ-based
software, we completed our analysis on histological sections by
measuring the mean distance between vessels and the bone-
forming surfaces (identified by the presence of osteoid)
according to the vessel size. With these specific tools, we
showed that intermittent PTH 1-84 was osteogenic but not
angiogenic and relocated the smallest vessels closer to the
bone-forming sites, in rats.65 In mice, conventional mCTwith 10-
mm3 voxel size is not suitable for bone vascular imaging even
after sample decalcification.34 As expected, 1.5-mm-thick
slices obtained with synchrotron radiation mCT provided
excellent contrast between vessels and trabeculae as did
conventional mCT (Scanco mCT50 and GE nanoCT) with a 3-mm
resolution (Figure 2). As said above, we were not able to fully
infuse the cortical vascular network with barium sulfate solution
in mice (as seen in Figure 2). Yet, it is possible, using mCT, to
image the cortical porosity to assess the vascular cortical
network, provided that the resolution is high enough.66

Bone Vascular Quantitative Assessment
Bone vessel quantification has been performed on three-
dimensional mCT data sets from barium or Microfil-infused
bones. Most of the teams use the software developed for
measurements of trabecular bone, which generates para-
meters such as vascular volume per tissue volume (%), mean
vessel thickness (mm) or separation and vessel number (/mm).
Expectedly, numerical results depend on the quality of the
image, which itself is contingent upon infusion conditions,
leading to high variability of mouse bone marrow vessel

densities among the studies. Vessel quantification can also be
performed on histology or mCT images of immunohis-
tochemistry stained or barium-filled vessels, respectively, by
means of manual count (grid)34 or semi-automatic60 image
analysis. Vascular volume per tissue volume (VV/TV, %) or per
marrow volume (VV/Mar V,%) and mean vessel number per
mm2 of bone marrow area (V Nb/Mar Ar) are measured, and the
mean vessel area (mm2) is calculated by dividing the total vessel
area (in mm2) by vessel number.34,67 Unfortunately, in contrast to
the field of malignant diseases associated with bone marrow
angiogenesis,68 there is no methodological consensus on the
parameter nomenclature and regions of interest for the
quantification of bone marrow vessels. This leads to a pro-
nounced heterogeneity of the results among the various
publications. As an example, the vascular density in C57BL/6
mouse tibia or femur varies from 4069 to 28070 vessels per mm2

of bone marrow with CD31 antibodies, from 2071 to 15072 per
mm2 with vascular endothelial growth factor receptor 3 anti-
bodies, and was found as low as 10 per mm2 with anti-CD34
antibodies in 6-month-old mice.73 Furthermore, we were able to
show that, beside differences in vessel count due to metho-
dology, mouse genetic background, age and sex modulate the
bone marrow vessel density.34 These discrepancies may not
influence the interpretation of the results within one study but
make comparisons between studies difficult.

On the basis of synchrotron radiation mCT images of cortical
bone, Schneider et al.74 reported mouse strain and sex-related
differences in vascular channel structure and density. In human
bone, Cooper et al.75, using skeletonization techniques were
able to image and quantify the density and connectivity of the
cortical ‘vascular’ porosity. Their work suggests that three-
dimensional morphologic analysis of the canal network may
provide novel insights into bone physiology that are not possible
with two-dimensional approaches. Thus, intra-cortical porosity
could serve as a surrogate parameter for assessing vascular
density in this envelope. In contrast, measurement of vascular
volume with this technique might be less accurate, the pore size
being highly dependent on the resorption and formation periods.

Conclusion

Blood vessels exhibit tight structural and functional relation-
ships with bone cells, which are not fully understood. A better
understanding of vessel function improved the management of
various diseases, which affect the kidney, heart or brain. Thus,
studying the roles of vascularization in bone by the means of
adequate tools and reproducible techniques should provide
similar benefits for the comprehension and treatment of
metabolic bone diseases.76–78
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