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Genome-wide association studies (GWAS) have been developed as a practical method to identify genetic loci

associated with disease by scanning multiple markers across the genome. Significant advances in the genetics of

complex diseases have been made owing to advances in genotyping technologies, the progress of projects such as

HapMap and 1000G and the emergence of genetics as a collaborative discipline. Because of its great potential to be used

in parallel by multiple collaborators, it is important to adhere to strict protocols assuring data quality and analyses.

Quality control analyses must be applied to each sample and each single-nucleotide polymorphism (SNP). The software

package PLINK is capable of performing the whole range of necessary quality control tests. Genotype imputation has

also been developed to substantially increase the power of GWAS methodology. Imputation permits the investigation of

associations at genetic markers that are not directly genotyped. Results of individual GWAS reports can be combined

through meta-analysis. Finally, next-generation sequencing (NGS) has gained popularity in recent years through its

capacity to analyse a much greater number of markers across the genome. Although NGS platforms are capable of

examining a higher number of SNPs compared with GWA studies, the results obtained by NGS require careful

interpretation, as their biological correlation is incompletely understood. In this article, we will discuss the basic features

of such protocols.
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Introduction

Background
Genome-wide association studies (GWAS) have been very
successful in identifying genetic factors associated with dis-
ease or other human traits. GWAS allow inference over the
whole length of the genome by acquiring direct information on a
relatively small number of loci, taking advantage of the presence
of blocks of high linkage disequilibrium (LD), separated by
recombination hot spots in the genome.1–4 A comprehensive list
of GWAS can be found in the NHGRI Catalogue of published
GWAS at http://www.genome.gov/gwastudies.

Next-generation sequencing (NGS) relies on direct acqui-
sition of information from all amenable loci. The applicability of
one over the other depends on the fine balance between the
lower costs of the former, allowing for analyses of larger cohorts,
versus the superior power of the latter to analyse variants that
are not easily characterised through other variants in LD with
them.

Genome-wide studies
Previous generations of genetic studies made important
contributions in understanding the genetic basis of rare
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diseases that showed clear patterns of familial inheritance.
They required mathematically very complex procedures to
identify genes by demonstrating their cosegregation with the
phenotype. In contrast, linkage was less successful for
common and more genetically complex diseases. Owing to
advances in genotyping technologies and availability of new
information on the structure of the human genome (Human
Genome (http://www.genome.gov/10001772) and HapMap
(http://hapmap.ncbi.nlm.nih.gov/) projects), the road was
paved for LD association that would allow a better under-
standing of these common complex diseases, using genome-
wide genotyping or sequencing.

The methodologies used in modern genetic research are
different from those of previous generations (e.g., linkage
analysis). Genome-wide genetic analyses have to find infor-
matics solutions to deal with extremely large quantities of data
and select the results that are most likely to be true positives
from a distribution of probabilities.

It is important to remember that quantitative genetics does
not provide definite proofs, but rather a probabilistic evaluation
of the likelihood of a hypothesis. Several factors influence the
ability to discriminate between results that are likely to represent
true positives versus random noise, such as statistical power
(which is a direct function of sample size), amplitude of the effect
from that genetic locus, frequency of the risk factor (risk allele)
and degree of the multiple testing of independent hypotheses.
Although power is a direct result of a predetermined study
design, multiple testing is calculated on the basis of the degrees
of independence (LD) between common polymorphisms in the
genome. This will depend on the allele spectrum studied and the
ethnicity of the sample. On the basis of permutational work, it is
established that for most ethnic groups the multiple testing
threshold is B5e� 85 for the average HapMap2-based GWAS.
This practical criterion has been demonstrated in practice to be
a useful guide, and it has withstood the test of time. Never-
theless, this threshold is equivalent to an empirical significance
of P¼ 0.05 after multiple testing, and to minimise the risk of false
positives there is an imperative need to validate results
by replicating them in independent samples.6 If a robust

association between a phenotype and a gene is thus confirmed,
we can be more confident that the gene is implicated in the
phenotype under investigation. However, research should
ideally not be limited to the most strongly associated variant, but
it rather needs to consider the whole gene as a strong can-
didate, requiring more extensive exploration at the genetic level,
as well as through other approaches (e.g., omics).

Scope of this review
This review summarises and outlines some practical details of
the key steps in the quality control (QC) and analysis of genetic
data for GWAS and NGS studies. We offer a step-by-step
protocol, providing the future user with a list of tools and
information enough to help them decide how to perform the
analysis.

Materials

In this protocol, we refer to a series of informatics tools, which
are mostly freely available. The recommended software is listed
in Table 1.

PLINK software
Storage, management and analysis of high-throughput genetic
data are made significantly easier by the PLINK software.7

This tool has been designed to perform a range of analysis in a
computationally efficient manner. It is both freely available and
user-friendly, and it works through command lines for data
management, QC statistics, population stratification detection,
single SNP (single-nucleotide polymorphism) association
analyses, haplotypic tests, copy number variant analysis and
meta-analysis.

Genotyping results must be presented into any of the
accepted PLINK formats. For example, the PED file sets a
linkage-style pedigree file that contains genotype and phe-
notype data, whereas a map file contains SNP location data.
The tutorial shows examples of the input and output files in each
step.

Table 1 Software suggested for the management and analysis of data obtained from GWAS and NGS techniques

Software Web OS Task

PLINK http://pngu.mgh.harvard.edu/Bpurcell/plink/index.shtml Windows, Mac, Linux Data management, quality control,
statistical analysis

R http://www.r-project.org/ Windows, Mac, Linux Statistical computing software,
graphics

IMPUTE2 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html Windows, Mac, Linux Genotype imputation and haplotype
phasing

SHAPEIT2 http://www.shapeit.fr/ Mac, Linux Estimation of haplotypes
MACH 1.0 http://www.sph.umich.edu/csg/abecasis/MACH/download/ Windows, Mac, Linux Inferring missing genotypes, resolve

long haplotypes
Minimac http://genome.sph.umich.edu/wiki/Minimac Linux Implementation of MACH genotype

imputation
BEAGLE http://faculty.washington.edu/browning/beagle/beagle.html Windows, Mac, Linux,

Unix
Phasing, inferring missing genotypes,
imputation, association analysis

METAL http://www.sph.umich.edu/csg/abecasis/metal/ Linux, Unix, DOS Meta-analysis
Haploview http://www.broadinstitute.org/scientific-community/science/

programs/medical-and-population-genetics/haploview/haploview
Windows, Mac, Linux,
Unix (using JAR)

Manhattan plot, linkage disequilibrium

GRAIL http://www.broadinstitute.org/mpg/grail/ Windows Gene relationships
GATK http://www.broadinstitute.org/gatk/download Linux Quality control, analysis of NGS data
Vcftool http://vcftools.sourceforge.net/options.html Linux Working with VCF files (1000G)

Abbreviations: GWA, genome-wide association; NGS, next-generation sequencing.
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If there are more SNPs than individuals, as it almost always is
the case for GWAS analysis, it is convenient using transposed
(TPED and TFAM) input file format, resulting in shorter lines,
which are faster to read using Perl or even PLINK.

One of PLINK’s most important features is the binary file
format, which stores voluminous genotype data more effi-
ciently, using less computation resources. Genotype data is
stored in the BED file, pedigree information is stored in the FAM
file and SNP location data is stored in the BIM file (the latter two
files are flat files). These files can be created using the following
script (where in this particular example PLINK will expect the
files mydata.ped and mydata.map as input):
PLINK --file mydata --make-bed
This command will create three files: mydata.bed, myda-

ta.fam and mydata.bim.
To read the binary file format, use --bfile mydata instead of

--file mydata, which is used to read linkage-style pedigree
files.

Methods

Genome-wide association studies
Study design. Study design is a key consideration before
undertaking a genome-wide association analysis. GWAS can
be performed using any of the types of analytical designs that
could be applied for any other clinical variable of interest,
including case–control, family-based, cross-sectional or cohort
studies. Regardless of the design, informed consent must be
obtained from all participants beforehand, following estab-
lished ethical standards and institutional ethical approvals, as
for all studies involving human subjects.

One of the key determinants of success is power, which will
depend on a set of factors, including the genetic architecture of
the phenotype of interest. The phenotype itself cannot be
modified, and it can have a naturally stronger or weaker causal
relationship with the underlying genetic architecture (e.g.,
heritability, penetrance, presence of pleiotropy, phenocopies,
misclassification and so on), or simply be more or less difficult to
measure precisely (e.g., Marfan syndrome or osteogenesis
imperfecta). Other factors may have strong influence on power,
including magnitude of the effect of an associated variant on the
phenotype (effect size), the frequency of the variant and how
well the genotyped variants (otherwise known as genetic
markers) capture the causative variants through LD. Thus, a
GWAS will have greater power to detect associated alleles that
have stronger effects on the phenotype, are more common or
are more strongly correlated with one or more genotyped
variants. Clearly, therefore, not all truly associated variants are
equally likely to be detected by a GWAS.

However, a key and modifiable determinant of power is
sample size. A good study design should take this into account
by including a sufficient number of individuals displaying the
phenotype of interest (i.e., number of cases). It may be possible
to increase the sample size of the control group using control
samples (or even cases of unrelated disease) from previous
studies or publicly available data sets. At any rate, it is not
recommended that the number of controls be more than four
times that of cases, as only modest power gains at the price of
added genotyping work can be achieved beyond this ratio.8

Other modifiable power determinants include genomic cover-
age, imputation accuracy (where applicable) and laboratory

procedures that may affect genotyping accuracy, sample
matching, genotype QC and so on.

Sample matching is the preferable means to minimise Type I
error rate as per other epidemiologic studies. Yet, the study
design should also consider the clinical characteristics of the
samples, the presence of potential confounders and sources of
bias, as these variables can be included in the association
analysis as covariates.

Biological sample preparation. Good practice when storing and
tracking the samples is essential to minimise spurious results
and loss of overall study power. DNA samples are stored long
term at temperatures of � 4 1C and backed up for future
validation and troubleshooting.

The manufacturer’s instructions should then be followed to
guide the DNA quantity required for a particular assay or chip.
DNA quantification should be performed using picogreen
quantification method.

Genotyping. Depending on the genotyping array selected,
between 300 000 and 2.5M SNPs can be genotyped through
current commercially available SNP chips. Data from The
HapMap Project suggest that the majority of SNPs in the human
genome with a minor allele frequency (MAF) of X5% may be
detected using 550 000 tagging SNP markers in European and
Asian populations, or 1 100 000 tagSNPs in African popula-
tions.4 The major providers of high-throughput genotyping array
platforms on the market are Illumina (San Diego, CA, USA) and
Affymetrix (Santa Clara, CA, USA). Each SNP array has its
unique specifications, costs, coverage and extra features (e.g.,
copy number variations or mitochondrial SNPs).9 Results from
chips can be visualised using the proprietary GenomeStudio or
BeadSudio Suite (Illumina), or the freely available Genotyping
Console suite (Affymetrix).

Genotype QC. A proposed global strategy for QC testing is
shown in Figure 1. Apart from PLINK, extensively described
below, various QC steps can be carried out using other software
packages such as qtool, GenABLE, GS2 and so on. In this
protocol, we recommend performing the individual-level QC,
because individual samples are more likely to be unreliable than
commercialised SNP assays. All command lines listed in the
following section have been inspired from the PLINK software
tutorial. In this protocol, we aim to summarise this extensive
tutorial, to perform a basic QC test. Further information can be
found at the following website: http://pngu.mgh.harvard.edu/
Bpurcell/plink/tutorial.shtml.

Individual-level QC. For some of the QC steps described below,
individuals can be filtered from the data set directly using some
argument (e.g., a ‘missingness’ threshold), whereas others
require the user to create a list of subject IDs to be removed
using the --filter argument in PLINK, or to be retained using
the --keep argument.

The PLINK tutorial provides a complete guide for the QC
process. It is recommended that a clean data set is produced at
the conclusion of the QC steps described here, so that the
integrity of future GWAS analyses is not compromised by
shifting criteria.

Genotyping efficiency: When a large proportion of SNPs fail in
the same sample, this indicates poor-quality DNA for this
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sample, and thus the results provided for this sample are
generally less trustworthy. When genotyping a large number of
SNPs, the recommended threshold is 98–99%,10 such that in a
GWAS individuals would be eliminated if they had missing
genotypes for more thanB5000 SNPs. The following command
from the PLINK tutorial can be used to obtain a summary of
missingness in your sample:
plink --bfile mydata --missing --out

mydata_missing
Individuals with an excess of missing genotype data can be

removed as follows:
plink --bfile mydata --mind 0.01 --make-bed --out

mydata_missing
Excess of heterozygosity is a clear indicator of DNA

contamination. The test essentially compares the observed
(O(HOM)) and expected (E(HOM)) number of homozygotes,
using the following command:
plink --bfile mydata --het --out mydata_het
The PLINK tutorial also advises that if an individual has fewer

homozygotes than expected by chance, this could reflect
sample contamination, showing a strongly negative F-value.
Extreme values (suggested values:o3 standard deviation units
from the mean11) are considered outliers and should be
removed from the data set.

Excess of homozygosity: Alternatively, samples can also
show an excess of homozygosity, carrying values more than
three standard deviation units from the mean.11 These values
can be an indicator of population substructure. Samples with
excess of homozygosity are maintained in the study. It should
be noted that these parameters are population specific;
population isolates and level of inbreeding or migration into
a given population will affect the acceptable values for this
parameter.

Gender information: Phenotype data collected before com-
mencing the GWAS analysis should contain gender information

for every sample. Nevertheless, PLINK can check that gender
data are consistent with the genotypes by using data from
chromosome X to determine sex:
plink --bfile mydata --check-sex --out

mydata_sex
When there is an inconsistency between sex determined in

input pedigree files and sex obtained by X-chromosome
analyses, PLINK highlights this as a PROBLEM. It uses a
threshold of F 40.8 for males and o0.2 for females.

Such discrepancy can also arise owing to chromosomal
abnormalities, such as Turner or Klinefelter syndrome, mosai-
cism or females with long stretches of loss of heterozygosity,10

and thus results from this procedure need to be critically
evaluated. GenomeStudio (Illumina) shows X-chromosome
results per sample, and it is a visual way of identifying gender
mismatches, as well as other alterations in females.

Population stratification: One of the key tests to perform in a
GWAS is the population stratification test. Although some
GWAS studies tend not to have strong population stratification,
fine-scale genetic substructure is quite likely, and it can lead to
spurious results. Population stratification can be prevented in
various ways, the most common of which is a principal
components analysis (PCA), which essentially uses all of the
genetic data to compute the relatedness of every sample to
every other sample. PLINK contains some tools to perform this
test, using pairwise IBS (identity-by-state) distances to create a
relatedness matrix.

Calculating the IBS matrices may be time consuming,
especially for studies with large sample sizes performed in
low-powered computer systems.

The --genome script will perform IBS metrics:
plink --bfile mydata --genome --out mydata_IBS
The above is a computationally intense step and may benefit

from parallelisation. PLINK’s tutorial offers an example of how to
perform this, by creating subsets of samples and running all

Figure 1 Flowchart showing the different steps to take into account when performing the quality control testing on a GWAS.
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unique pairwise combinations in parallel with the resulting files
combined in the end.

Once IBS distances have been calculated, group differences
are obtained using the following script:
plink --bfile mydata --read-genome plink.genome

--ibs-test
This permutes cases to controls and recalculates some

metrics giving 12 separate tests. PLINK recommends T1 as
most appropriate for case–control studies.

Pairwise IBS metrics only need to be calculated once for a set
of individuals and can be reused. Using --read-genome
option, cluster analysis can be run multiple times including
different constraints, such as pairwise population concordance
(--ppc 0.0001) or maximum cluster size (--mc 2). PLINK’s
tutorial provides a list of arguments to be used.

Group relatedness in the sample may be visualised using R or
PLINK, using the proposed command:
plink --file mydata --read-genome plink.genome

--cluster --mds-plot 4
In the output file, parameters C1 to C4 correspond to principal

components 1 to 4. PCAs are measures of particular sample
collections and are not invariable properties of the samples.
They are meant to show the relative relationship of samples.
Plotting each principal component against the other will offer a
scatter plot with a point per individual (Figure 2).

PLINK’s tutorial advises to detect which individuals are
outliers by calculating a sample mean and variance (transform-
ing this measure into a Z-score). Extreme Z-scores (usuallyoor
44 standard deviation units) are considered outliers.

Cryptic familial relationships: The IBS matrix can also be used
to detect cryptic familial relatedness. In a homogeneous sample
(individuals are similar, after removing IBS outliers) with a large

number of SNPs available, IBS can be used to calculate
genome-wide IBD (identity-by-descent) information; for this,
we use the --genome command as indicated above.

Barring contamination during DNA sample handling stages
before the genotyping, PI_HAT values above 0.1 indicate a
definite and close familial relationship between that pair of
samples, and therefore one sample per pair should be excluded
from the analysis (unless software that can accommodate for
family structure is used for the GWAS). Deciding which sample
will be removed from the pair showing familial relationship could
be based on user criteria—that is, removing the one that
minimises the sample number loss or phenotype availability and
interest.

PI_HAT values above 0.1 could also indicate contamination,
and the samples involved need to be further investigated.

Occasionally, especially in inbreed populations, SNPs will be
strongly correlated with each other, which may bias the IBS
analysis. In these circumstances, the need to select a subset of
SNPs that are not correlated (or rather are only weakly
correlated) with each other arises. The software tutorial
recommends applying this test to a subset of SNPs in linkage
equilibrium, using an r2 threshold of, for example, 0.2:
plink --bfile mydata --indep-pairwise 50 5 0.2 --

out mydata_IBS
This creates one list of the SNPs to be retained in the analysis

(mydata_IBS.prune.in) and another for those to be excluded
(mydata_IBS.prune.out).

SNP-level QC. It is recommended that at the end of the
QC process a clean dataset is created to be used for
future analyses, to avoid differences due to shifting QC
measures that future users may adopt. As for the individual-
level QC steps described above, SNPs can be filtered from the
data set directly using various arguments (e.g., MAF threshold),
or using a list of SNP IDs to be removed with the --exclude
argument in PLINK, or to be retained using the --extract
argument.

Genotyping efficiency: SNPs are tested for their genotyping
efficiency (call rate), and those that fail in a large number of
samples should be removed because they may produce
unreliable results. The recommended threshold for call rate
is 98–99%.10 This stringency could be reduced for small sample
size studies. SNPs with low call rates can be removed using the
following command:
plink --bfile mydata --geno 0.01 --make-bed --out

mydata_geno
Hardy–Weinberg equilibrium (HWE): Deviations from HWE

may indicate systematic genotype miscalling or population
stratification,12 but they may also be owing to intense natural
selection pressures of the variant associated with the trait under
study.

HWE can be assessed using the following command:
plink --bfile mydata --hardy --out mydata_hardy
The tutorial shows that for a case–control study each SNP will

have a test for ALL, AFF (cases only) or UNAFF (controls only).
For quantitative traits, only ALL(QT) will appear for SNP. This
procedure will only consider founders in the sample—that is,
individuals from whom the pedigree files specify that the father
and mother are unknown and not included in the sample. It will
not take into account the relatedness between two individuals,
as calculated by PI_HAT or any other method.

Figure 2 Example of scattered plot in SPSS (IBM Corp., IBM SPSS Statistics for
Windows, Armonk, NY, USA) for the PC1 versus PC2, showing some outliers from the
Caucasian population (blue dots¼CEU, green dots¼CHBþ JPT, cream dots¼
YOR, purple dots¼ study samples).
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In case–control studies, it is important to examine HWE in
controls separately (considering that some true associations
are expected to be out of HWE). If there are multiple populations
included in the study, HWE needs to be analysed in each
population separately.

Once the HWE information is obtained per SNP, a specific
threshold can be set, and those SNPs failing it can be removed,
using --hwe command. Popular exclusion threshold is
Po10e� 5:13

plink --bfile mydata --hwe 0.00001 --make-bed --
out mydata_hwe

Information for failing SNPs will be provided for cases and
controls separately:
Writing Hardy-Weinberg tests (founders-only)

to [ mydata.hwe ]
30 markers failed HWE test ( p o¼ 0.00001 ) and
have been excluded
34 markers failed HWE test in cases
34 markers failed HWE test in controls
In a case–control study, this test is based on controls only.
MAF: Statistical power to detect associations is extremely

low for rare SNPs, which, especially for older chips, are also
more susceptible to biases in genotype calling;10,14 thus, these
SNPs can be removed using the following command:
plink --bfile mydata --maf 0.05 --make-bed --out

mydata_maf
In the above case, alleles with an MAF lower than 0.05 will be

excluded. PLINK sets a default value of MAF¼ 0.01. The
threshold selected depends on the size of the study and the
effect size expected. There are some tools such as CaTS
Power (http://csg.sph.umich.edu/abecasis/CaTS/index.html)
or Quanto (http://biostats.usc.edu/Quanto.html) that provide
a frequency below which the study is underpowered,15 but
these calculations should also take into account the fact that
power will differ if these results are intended to contribute to
larger meta-analyses consortia or stand-alone publications.

Batch effects. Batch effects must be taken into account when
combining samples from different platforms or those that have
been processed in different laboratories. Turner et al.10 suggest
a simple approach to detect batch effects, by testing differ-

ences in average MAF and genotype call rate for the same SNP
in each plate. They also propose that testing one plate against
the others in a GWAS analysis can also be performed. Although
it is more time consuming, it gives a clear impression of any
batch-related significance. To perform this, one of the batches
or plate is coded as case and compared with the rest of the
batches, coded as controls. A simple association test should be
performed to detect any deviation from the expected uniform
distribution of the P-values. The same procedure should be
applied to all the batches. Should moderate batch effects be
detected, they can be treated in the same way as population
stratification.10

Association testing. A standard post-QC analysis protocol is
summarised in Figure 3.

In a case–control setting, a basic w2 analysis comparing allele
frequencies between cases and controls can be performed
using the following command:
plink --bfile mydata --assoc --out mydata_assoc
Confidence intervals can also be computed using the

argument --ci X, where X may usually be 0.95 or 0.99.
PLINK’s tutorial also provides information on association

tests under other genetic models, including the Cochran–
Armitage trend test, a 2 d.f. genotypic test and tests under a
dominant or recessive (1 d.f.) model. The results for all of these
tests can be obtained using the argument --model instead of
–-assoc.

Exact test statistics, using Fisher’s exact test, can be
obtained using the argument --fisher instead of --assoc,
or using --fisher in addition to --model.

PLINK can also perform stratified analyses, when a cluster
variable is specified (using the --within command). Tests for
both, overall disease/gene association and heterogeneity of
the disease/gene association, can be performed, taking into
account this clustering. Selecting the right stratified analysis will
depend on the cluster structure, either a small number of
clusters with a large number of cases and controls or a very
large number of clusters with small number of individuals per
cluster, as indicated in the tutorial. Statistical tests include
Cochran–Mantel–Haenszel, Breslow–Day of homogeneity of
odds ratio or partitioning the total association w2 to perform

Figure 3 Data analysis flowchart.
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between- and within-cluster association.
One of PLINK’s most powerful analysis options is its

ability to fit regression models, using the --linear or --
logisticargument for quantitative and dichotomous/disease
response phenotypes, respectively. Covariate data are pro-
vided in a separate text file (read with --covar command), and
this option can also be combined with a separate phenotype
data file, using the--pheno argument, which allows the user to
fit a range of complex models against a range of response
phenotypes, using the following commands:
plink --bfile mydata --linear --pheno phe.txt

--covar cov.txt --out mydata
plink --bfile mydata --logistic --pheno phe.txt

--covar cov.txt --out mydata
For the test, information will be provided for additive effects of

allele dosage and results for each covariate.
Finally, it is possible to include an adjustment for multiple

testing, such as the Bonferroni correction. The command below
will generate a file with P-values corrected for the total number
of tests performed:
plink --file mydata --assoc --adjust --out

mydata_adjusted
All command lines were obtained from PLINK’s tutorial. It also

offers detailed information on different association tests.
A conventional P-value threshold for GWAS association is

5� 10� 8 in samples of European ancestry,5 but a more
stringent threshold may be required for samples of African
ancestry, owing to their greater genetic diversity.6

Family-based GWAS analysis. Some family-based GWAS analysis
can be carried out using PLINK (trios), but for others software
such as QTDT and MERLIN will be needed.

PLINK: This software allows the user to analyse family-based
samples using the TDT (transmission disequilibrium) test for
linkage-given association. For an SNP, TDT analyses parents
who are heterozygous for a variant and checks whether this
SNP has the same frequency among the inherited alleles
compared with the noninherited ones. The TDT test is not
affected by population stratification. To perform the analysis,
the following PLINK command can be used:
plink --bfile mydata --tdt
PLINK also facilitates analysis of parent of origin, separating

heterozygous fathers from heterozygous mothers, using the
following command:
plink --bfile mydata --tdt --poo
QTDTsoftware: This package contains a number of modules

that facilitate TDTanalysis and a variety of association analyses.
The software and its modules can be used under various
scenarios and are highly flexible. However, the output is not well
suited to a large-scale analysis.

MERLIN software: This package does not correct for
population stratification, and thus if the user is concerned
about stratification in their samples then this parameter
should be included as covariate, or genomic control methods
should be applied. However, MERLIN is a widely used software
that accommodates family structure into the analyses. Its
main advantage over alternatives such as GenAbel is its
immediate compatibility of its input files with PLINK. MERLIN
requires three files: a PED file, which is identical to that used by
PLINK; an MAP file, which is a three-column file that can be
obtained through simple editing of PLINK’s MAP file; and a DAT

file, which is essentially the list of SNPs names (or phenotypes)
in the exact order in which they appear in the PED file, preceded
by the letter ‘M’ (‘A’ for binary diseases or ‘T’ for quantitative
traits).

Imputation. Imputation is an essential tool for maximising the
information obtained from GWAS data. GWAS studies are
generally based on the genotyping of 300 000–2.5 million
variants throughout the genome,16 which is only a small fraction
of the many millions of variants across the genome. To improve
genome coverage, imputation allows the genotypes of SNPs
that are not present in the SNP chips to be estimated on the
basis of genetic linkage and founder haplotype mapping
studies. In this case, genotyped markers are phased and
compared with a reference panel such as from the HapMap or
1000 Genomes projects (among others). Identification of shared
haplotypes allows imputing the missing genotypes according to
the reference panel.17 Multiple tools are available for imputing
missing genotypes and nongenotyped SNPs, such as
IMPUTE,16,18–21 MACH and fastPHASE/BIMBAM, which
consider all genotypes and are more accurate for rare poly-
morphisms. Other and less used options include PLINK, TUNA
and BEAGLE.17

SHAPEIT2 software:22,23 This tool is very useful for phasing
haplotypes before using IMPUTE2 for imputation. The software
accepts diverse types of input files, including PLINK files (PED/
MAP or BIM/BED/FAM). Before phasing can be performed,
genotype data must be split into separate chromosomes, which
can be done using the --chr argument with --recode or
--make-bed in PLINK.

The following script, obtained from the tutorial, is used to
specify the input files (PLINK input files, as an example):
shapeit --input-ped chr20.unphased.ped

chr20.unphased.map -M chr20.gmap.gz --output
-max chr20.phased
--input-thr option allows the user to change the thresh-

old for uncertainty in the genotypes. The default value is 0.9.
This tool performs some data checking, including tests for

individuals or SNPs with 45% missing data, detection of
singleton SNPs and detection of completely missing SNPs or
individuals. The software tutorial indicates how to modify some
algorithm parameters, including the number of threats (--
threat n option) and the default number of MCMC iterations
(--burn X, --prune Y, --main Z). Model parameters,
including the ‘numberof conditioning states on which haplotype
estimation is based’ (--states), window size (--window),
genetic map of recombination rates (--input-map) and
effective population size (--effective-size) can also be
modified.
--chrX command can be used to phase data from

chromosome X.
A key point before imputation is alignment of the physical

positions of SNPs in the GWAS data to those in the reference
panel. Most recent reference panels use the Single Nucleotide
Polymorphism Database (dbSNP) build 37 coordinates, and if
the GWAS data are based on an older build, the LiftOver tool can
be used to translate these positions to build 37. The following
command, as shown in the tutorial, can then be used to check
the alignment of SNPs:
shapeit -check -B chr20.unphased --input

-ref chr20.reference.hap.gz chr20.reference.
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legend.gz chr20.reference.sample --output-log
chr20.alignments

To list all alignment problems, the tutorial recommends the
use of the following command in Linux:
cat chr20.alignments.snp.strand|grep ‘strand’
Once GWAS data are correctly aligned, the next step is to

phase the chromosomes. The software recommends phasing
whole chromosomes, instead of making chunks, using the
following command:
shapeit -B chr20.unphased -M chr20.gmap.gz

-O chr20.phased
IMPUTE2 is the recommended tool for imputation after

phasing with SHAPEIT2.
The website http://mathgen.stats.ox.ac.uk/impute/pre-

phasing.with.SHAPEIT_IMPUTE2.html offers an example
on how to use SHAPEIT and IMPUTE2 to perform a
prephasing imputation, including some files that are publicly
available.

Further information about the use of SHAPEIT and the
complete tutorial can be found at https://mathgen.stats.ox.
ac.uk/genetics_software/shapeit/shapeit.html#home.

IMPUTE:19 Imputation with one-phased reference panel (pre-
phasing) is the most common imputation scenario when
imputing non-genotyped SNPs into a study from a reference
panel. The following commands from the IMPUTE website
show how to perform the analysis in IMPUTE v.2:
impute2
-m ./Example/example.chr22.map \

-h ./Example/example.chr22.1kG.haps \

-l ./Example/example.chr22.1kG.legend \

-g ./Example/example.chr22.study.gens \

-strand-g./Example/example.chr22.study.strand \
-int 20.4e6 20.5e6 \

-Ne 20000 \

-o ./Example/example.chr22.one.phased.impute2
IMPUTE tutorial provides detailed information of each

argument.
Once all parts of the chromosome have been imputed, the

cat command (in LINUX computer systems, or ‘cp’ in DOS-
based ones) allows the user to merge the chunks into a file for
the whole chromosome.

The IMPUTE tutorial offers a list of scripts to perform the
analysis in IMPUTE v.2 (https://mathgen.stats.ox.ac.uk/
impute/impute_v2.html#home). It also contains a series of
examples to illustrate the use of this software.

Haplotype reference and haplotype legend files, as well as
recombination rates and strand reference data, are provided on
the IMPUTE website.

Imputation can be speeded up by prephasing, thus splitting
the imputation process into two parts: (1) phasing the
chromosomes to be imputed and (2) imputing these from
the reference panel. IMPUTE tutorial provides the scripts used
for both steps:

Step 1: Pre-phasing:
impute2
-prephase_g \

-m ./Example/example.chr22.map\
-g ./Example/example.chr22.study.gens \

-int 20.4e6 20.5e6 \

-Ne 20000 \

-o ./Example/example.chr22.prephasing.impute2

Step 2: Imputation into prephased haplotypes:
impute2
-use_prephased_g \

-m ./Example/example.chr22.map \

-h ./Example/example.chr22.1kG.haps \

-l ./Example/example.chr22.1kG.legend \

-known_haps_g ./Example/example.chr22.pre-
phasing.impute2_haps \

-strand_g./Example/example.chr22.study.strand \
-int 20.4e6 20.5e6 \ #values similar to prephase
step
-Ne 20000 \

-o ./Example/example.chr22.one.phased.impute2
-phase
The IMPUTE tutorial provides further information about

each argument. This method is also useful when imputing
into different reference panels, because chromosomes can be
prephased once and stored for multiple uses later on.

Similarly to imputation, IMPUTE2 tutorial shows the steps to
follow for pre-phasing and provides examples.

MACH 1.0 software:17,24 This tool requires Merlin-data-format
input files, as well as a pedigree file. Reference haplotype panels
are based on HapMap and 1000G data. The first step is to build a
model to relate the GWAS data to the reference haplotypes. The
most important considerations are the number of iterations used
to estimate the model parameters(--round) and the number of
individuals in the sample. Then, the following script, containing a
marker list file, a linkage-format genotype file and a haplotype
reference and legend file, can be used to build the model:
mach1 –d gwas.dat –p gwas_subset.ped –s hapmap.

legend –h hapmap.phased –hapmapFormat –greedy –r
100 –prefix step1

The second step consists of carrying out the genotype
imputation, using the following script:
mach1–dgwas.dat–pgwas.ped–shapmap.legend–h

hapmap.phased –hapmapFormat --crossover step1.rec
--errormap step1.erate --greedy --mle --mldetails
--prefix step2
--mle indicates that maximum-likelihood genotype imputa-

tion should be carried out.
Both scripts have been extracted from the MACH 1.0 tutorial.

These guidelines also provide information about the output files:
*.mlgeno, *.mldose, *.mlqc and *.mlprob files.

MACH2DAT software can use MACH data to run an
association test for quantitative and qualitative traits, requiring
*.ped and *.dat files in Merlin format, and using the following
script, provided in the Mach2dat wiki (http://genome.sph.u-
mich.edu/wiki/Mach2dat:_Association_with_MACH_output):
mach2dat –p myfile.ped –d myfile.dat --infofile

myfile.mlinfo --dosefile myfile.mldose
Minimac software:16 This tool is an implementation of MACH

that runs with lower memory and is able to handle thousands of
haplotypes.16 Minimac tutorial describes the software workout
as ‘involving an initial step to estimate haplotypes for the entire
sample and then imputing missing genotypes using the
reference panel’.

This tutorial recommends the first step to be run in MACH,
using the following command:
mach –d sample.dat –p sample.ped --rounds 20

--states 200 --phase --interim 5 --sample 5
--compact
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To perform the imputation step, the tutorial specifies that
‘Minimac requires a file listing the markers, extracted from the
second column of the *.dat file’. Then, the software will work,
based on MACH-selected haplotypes from the previous test,
using the following script, as described in the tutorial:
minimac --refHaps ref.hap.gz --refSnps

ref.snps.gz --haps target.hap.gz --snps target.
snps.gz --rounds 5 --states 200 --prefix results

It is also possible to impute chromosome X using Minimac,
although the X-chromosome pedigree file first needs to be split
by sex. Minimac tutorial provides a simple description of the
protocol to follow.

BC|SNPmax software: This software can be purchased from
the BCPlatformsLtd (Esbo,Finland), whichalso offers imputation
as a service. BC|SNPmax is a database platform (https://
www.bcplatforms.com) that provides tools for integrated genetic
and clinical data management and analyses with a queue system
that enables segmentation of large analyses. The BC|SNPmax
system has user-friendly interface tools for data preprocessing,
alignment, variant calling, data cleaning and epidemiological
dataanalyses. In the genotype imputation workflow, BC|SNPmax
supports programs MACH, SHAPEITand PHASE in prephasing.
For imputation, users can use programs IMPUTE, BEAGLE and
MINIMAC. The system has integrated dbSNP marker maps and
consequent reference panels. The results of imputation can be
analysed using a variety of most commonly used GWAS and
linkage analysis programs such as PLINK, SNPTEST,
MACH2QTL, Eigenstrat and ProbABLE.

In BC|SNPmax, PLINK files can be easily used as input files,
and they must be identified as PLINK files when uploaded to the
system. SNPs for imputation can be selected using PLINK
parameters, such as --maf (MAF), --max-maf (maximum
MAF), --geno (maximum per-SNP missing), --mind (max-
imum per-person missing) and --hwe (Hardy–Weinberg dis-
equilibrium P-value). When both MACH and MINIMAC are used
for imputation, the first step consists of phasing the data using
MACH. It is necessary to identify the dbSNP build used for
phasing (build 36 or build 37, as above), and the tool offers the
option to fragment the chromosomes into the desired number of
SNPs. All of the parameters supported by MACH can also be
used here (--states, --rounds, --interim, --sam-
ple, --compact). Phased haplotypes and pedigree informa-
tion should be uploaded into the BC|SNPmax data set for
imputation, and imputation will then be performed using
Minimac and R postprocessing. The interface shown in Figure 4
will be displayed, allowing selection of the dbSNP build for
imputation, the number of chromosomes to be included in the
analysis, the reference panel (HapMap or 1000G) and the
population. As for the previous phasing step with BC|SNPmax,
any of the parameters used with MACH can be applied here. A
final QC test is run after imputation, and markers with an r2 value
of o0.3 should be removed.24

BEAGLE software.25–27 The working guidelines provided with
the software describe all steps to perform the analysis. We
summarise this process below:

Input files for this software contain markers in rows and
individuals in columns, with every allele in a different column. An
initial column will indicate ‘I’ for indicator, ‘A’ for affection status
and ‘M’ for marker. Genotypes can be provided unphased or
phased. For GWAS data, each chromosome should be phased
separately using the following command:

java -Xmx1000m -jar beagle.jar unphased¼
fileA.bgl phased¼fileB.bgl markers¼markers.txt
missing¼? out¼example

BEAGLE will impute nongenotyped markers in the study file
(file A) based on a reference panel (file B). The tutorial explains
each argument of the script and offers a number of parameters
that can be included in the script, such as niterations¼
onumber of iterations4, nsamples¼onumber of sam-
ples4, excludecolumns¼oexcluded columns file4,
excludemarkers¼oexcluded markers file4 and so on.
Once phasing is completed, a *.log file summarising the process
and a *.phased.gz file are created. BEAGLE can also perform
an association test for haplotypes, using the following
command:
java -Xmx800m -jar beagle.jar data¼data.bgl

trait¼T2D out¼example
As previously mentioned, the BEAGLE tutorial includes

detailed information about each of the arguments in the script.
All commands have been extracted from the BEAGLE tutorial.

Meta-analysis. This approach allows the researcher to increase
the number of samples analysed, as well as the number of
markers, by combining results from different GWAS studies.1

Data for SNPs that have not been genotyped in one or more
studies are inferred through imputation.28 Thus, meta-analysis is
a powerful tool for discovering variants with small effects or those
that are very rare, which require large sample sizes.

All included data sets should use the same parameters and
definitions for each variable, and samples must be unrelated. To
avoid any relatedness between individuals, it is possible to
correct the number of times that the w2 statistic for the
association is inflated for the inflation factor l,1 which is
considered normal with values B1.29 Heterogeneity in meta-
analyses may occur when phenotypes are difficult to assess
and standardise, or due to different ancestry, and can be
reported as a value of Cochran’s Q (significant when Po0.10).
When meta-analyses include a large number of studies
(typically 10 or more), heterogenetity is quantified using I2, a
parameter that shows overlap (or rather lack of it) between
results of individual studies. It ranges from 0 to 100%, where 0–
25% is considered to reflect low heterogeneity and 475% is
considered to reflect very strong heterogeneity.30 If the number
of studies included in the meta-analysis is rather small, a P-
value for the differences in estimated effect sizes of each
population may be calculated instead.

Meta-analysis assigns a weight to each study result,
whereby those studies with greater precision (typically propor-
tional to sample size) are given higher weights. The most
commonly used meta-analysis method is the fixed-effect
approach, which assumes that there is no between-study
heterogeneity, and meta-analysis is performed to increase
power. Inverse variance weighting is the most common
model.1,31 The Cochran–Mantel–Haenszel approach is
an alternative method that returns very similar results.
A random-effect meta-analysis assumes that the effect varies
across studies following a normal distribution (reviewed in
Evangelou and Ioannidis13).

The METAL software described below is a very useful tool for
performing meta-analysis based on GWAS data.32

Input files: Each input file should include the marker name, the
coded allele and the other allele. Sample size-weighted
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analyses also require the direction of effect of the tested allele,
corresponding P-value and sample size. If meta-analysis is
based on standard errors, then the estimated effect size for
each marker and standard error are required.

Analysis: The meta-analysis can be executed using the
ANALYZE command.

Additional options: Other commands can be used to
customise the meta-analysis according to the characteristic
of the studies involved, including alternatives to the
P-value analysis, genomic control for population stratification,
strand used, filtering of SNPs for analysis, inclusion of
noncomplete lines, tracking allele frequency and other
options.

METAL tutorial provides more information about the above-
mentioned steps, as well as an example of a METAL script.

Linkage disequilibrium. GWAS results need to be checked to
detect whether the trait-associated SNPs are in linkage dis-
equlibrium (LD), and therefore, containing the same genetic
information. Regional LD can be examined using the Haplo-
view33 tool (http://www.broadinstitute.org/scientific-commu-
nity/science/programs/medical-and-population-genetics/
haploview/haploview).

The first step includes selecting the HapMap download and
the corresponding genomic positions for the SNP to test, within
the specific version of HapMap.

Figure 4 Interface of BCSNPmax software for imputation step, showing the different parameters available for the analysis.
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Figure 5 LD blocks for the selected area (TNFRSF11A as example) displaying results for (a) D0 and (b) r2 figures.
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The software will show the LD blocks within the highlighted
area, as shown in Figure 5. The two commonly used
measures for LD are D0 and r2. D0 ranges between 0 and 1,
where 1 reflects complete LD. R2 is the square of the
Pearson’s correlation between the two genotypes; an r2

40.8 indicates that the two SNPs in question convey very
similar information.9

The same results as shown in the LD plot are also provided in
a table, where it is possible to select one SNP and obtain a list of
SNPs in LD with it. In this case, the r2 threshold can also be set,
as well as the SNPs in the data set to be tagged and the
aggressiveness of the tagging algorithm.

As mentioned in the section on Cryptic Familial Relationships
(section Individual-level QC), LD can be used for SNP pruning,
selecting only non-redundant SNPs from a region with a dense
SNP data. Further information can be obtained in the Haploview
tutorial.

Graphical representation of GWAS results. Manhattan plot
(Figure 3): This provides a graphical representation of the
results of a GWAS analysis; the � log 10 P-values for association
are plotted on the y axis and the physical position of the
corresponding SNPs are plotted on the x axis.

The simplest way to create a Manhattan plot is using
Haploview, on the basis of the results obtained from the
association test.

Haploview offers the option to upload PLINK-formatted result
files, allowing the user to browse the association results file. The
Integrated MapInfo option should be selected. Further plot
options allow the user to enter the scale of the y axis (� log 10)
and the thresholds for significance and suggestiveness.

A Manhattan plot can also be created using R. As Haploview
cannot handle imputed data, this is the only option
available. S Turner proposes a simple pipeline on his blogspot
‘Getting Genetics Done’ (http://gettinggeneticsdone.
blogspot.co.uk):
4source("http://dl.dropbox.com/u/66281/

0_Permanent/qqman.r")
4mydata¼read.table("mydata.dat",

header¼TRUE)
4manhattan (mydata, colors¼c("#FF6A6A",

"#3A5FCD", "#E066FF", "#FFC1C1", "#878787",
"#CD0000", "#00008B", "#32CD32", "#CDCD00",
"#8B008B", "#00EEEE", "#4D4D4D", "#FF4040",
"#3A5FCD", "#EE82EE", "#ADADAD", "#8B1A1A",
"#00008B", "#006400", "#8B8B00", "#8B008B",
"#00868B"))

Either using Haploview or R software, a Manhattan
plot similar to that shown on Albagha et al.34 can be
displayed.

Quantile–quantile plot (Q–Q plot) (Figure 3): This is a
graphical technique that displays the distribution of the results
of a GWAS analysis. Expected P-values are plotted against
observed P-values for each SNP under the null hypothesis of no
association. True associations that deviate from the expected
results will appear in the tail of the distribution. A Q-Q plot can be
created using R,35 for example, as shown in Albagha et al.:34

4pvals o- read.table("pvals.txt", header¼T)
4observed o- sort(pvals$PVAL)
4lobs o- -(log10(observed))
4expected o- c(1:length(observed))

4lexpo- -(log10(expected / (length(expected)
þ1)))
4pdf("qqplot.pdf", width¼6, height¼6)
4plot(c(0,7), c(0,7), col¼"red", lwd¼3,
type¼"l", xlab¼"Expected (-logP)", ylab¼"
Observed (-logP)", xlim¼c(0,7), ylim¼c(0,7),
las¼1, xaxs¼"i", yaxs¼"i", bty¼"l")
4points(lexp, lobs, pch¼23, cex¼.4, bg¼
"black")
The script above has been extracted from http://www.inside-

r.org/questions/generating-data-frame-based-qq-plot.
Regional plot (Figure 3): After finding SNPs associated with

the trait of interest, it may be necessary to plot the GWAS results
in the surrounding region, which can be done using LocusZoom
(http://csg.sph.umich.edu/locuszoom/). LocusZoom can also
plot information about LD for SNPs in the selected region (based
on HapMap and 1000 Genomes Project data), and gene
information from the USCS browser.36 Albagha et al.37 shows
some examples of a typical result from LocusZoom, indicating
SNPs within a recombination area (delimited by the peaks).
Colours distinguish the strength of LD between each SNP and
the selected marker.

Forest plot (Figure 3): This type of graph can be used to display
the results of a meta-analysis. The effect size estimate (mean or
odds ratio) for each study is represented by a box, whose size is
proportional to the weight of the study in the overall analysis, and
a line corresponding to the 95% confidence interval is also
shown. The pooled effect size estimate across all studies is
usually represented by a diamond at the bottom of the graph,
whose width corresponds to the confidence interval of the
pooled estimate. The position of no effect is shown as a vertical
line crossing the x axis 1 (for odds ratios) or 0 (for means).

A forest plot can easily be created using R (the manual will
help with the arguments included), as shown in Albagha et al.:37

4trials o-read.table ("mydata_forest_plot.
txt", as.is¼TRUE, header¼TRUE)
4 library(rmeta)
4 attach(trials)
4 metaplot(OR, se, labels¼cohort, logeffect¼

FALSE, conf.level¼0.95, xlab¼"Odds ratio",
ylab¼"Study Reference", zero¼1, summn¼1.50,
sumse¼0.038, sumnn¼692.52, colors¼meta.
colors(box¼"magenta", lines¼"blue", zero¼"
red", summary¼"orange", text¼"forestgreen"))
4grid.text("Forest_plot_meta-analysis", .5,

.9, gp¼gpar(cex¼2))
Note: Values for sumn, sumse and sumnn on the script above

are random data.
GRAIL software38 (Figure 3): This software establishes

relationships between genes in different loci associated with
a specific trait. The GRAIL tutorial offers some guidelines about
the process: Input data consist of a selection of SNPs (listed as
rs numbers, based on HapMap release 21 or release 22) from
the GWAS, or a series of genomic regions (labelled as ID CHR
START(bp) END(bp)). It is recommended that every region
represent a unique gene and do not overlap. Query regions and
seed regions need to be determined for the analysis. Seed
regions are high-confidence associations, and query regions
are those to be evaluated. GRAIL assigns a P-value to each
region depending on its connectivity and picks the candidate
gene. VIZ-GRAIL is required to visualise the results. Guidelines
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for running grail, the files needed to create the input files and the
graphic and Perl scripts can be found at http://www.broadin-
stitute.org/mpg/grail/vizgrail.html. An example of results
obtained using GRAIL can be found in Estrada et al.39

Genetic risk scores. Individual SNPs identified by GWAS generally
confer only a modest disease risk for a complex disease, and
thus it may be useful to model the combined effects of multiple
SNPs to explore the distribution of their effects in the general
population. This can be done by constructing a genetic risk
score (GRS), which is the number of risk-modulating alleles at a
series of SNPs associated with the phenotype of interest.40

These SNPs can be selected using a ‘best-guess’ approach,
which includes SNPs in or near genes that are known to be
relevant for the phenotype of interest, or using a ‘top-hit’
approach, which includes SNPs that are strongly associated
with the phenotype of interest, regardless of what is known
about the biological mechanisms underlying the association. It
has been also proposed to extract all SNPs associated with the
phenotype at a given threshold, cluster them according to LD
patterns and select the SNPs depending on their statistical
significance and replication.41 The R package PredictABEL
provides a function, riskScore, for constructing a crude
(unweighted) GRS or one weighted by the magnitude of the risk
effects observed for each SNP in a GWAS or meta-analysis:
riskScore (weights, data, cGenPreds, Type)
weights are the observed beta coefficients for each SNP,

data is the data set analysed, cGenPreds indicates which
genetic variables are to be included in the GRS and type is
used to indicate whether the GRS should be weighted or
unweighted.

Exploiting publicly available GWAS data. The database of geno-
types and phenotypes (dbGap, http://www.ncbi.nlm.nih.gov/
gap) is a platform for depositing and sharing the results and raw
phenotype, genotype and sequencing data produced by gen-
ome-wide studies. Detailed documentation about the study
(description, design, history and publications), phenotype
summary data, genotyping and sample QC data and an
association results browser are available via open access.
Individual-level phenotype and genotype data, as well as pre-
computed univariate genotype–phenotype association results,
are available to legitimise researchers via controlled access.

This data repository offers a powerful and versatile way of
increasing the power of genetic association analyses, perform-
ing exploratory studies or informing and optimising research
planning.

Methods for NGS
Current NGS assays measure genotype variation across loci,
but they generally do not re-assemble de novo the sequencing
reads. At the time of writing, NGS technologies obtain infor-
mation from short sequences (between 35 and a few hundred
base pairs, depending on the technology used), which are
overlaid to a preexisting library of the genome sequence of that
particular species.

Consequently, NGS is more suited to detecting single-base
variations in the genome of a species and less efficient for larger
variations, whereas larger insertions, deletions or balanced
re-arrangement of chromosomes are less likely to be detected.
There are, however, many ongoing attempts to implement

algorithms that would improve calling of more complex
polymorphisms, which may be useful in the future.

Given the large number of sequences that can be aligned with
a library and the potentially large number of variants within
them, a variant is observed (‘called’) after an automated system
makes a decision that the evidence for a polymorphism is
sufficiently strong at a particular site. This decision is prob-
abilistic in nature. To increase calling accuracy and to protect
against technical artefacts, a certain experimental redundancy
is needed; for example, the same region should be sequenced
numerous times in separate experiments in the same individual,
and a variant is called when it is observed in a sufficiently large
number of them. This notion is referred to as ‘sequencing
depth’.

Study design. There are a few considerations that must be made
before running the NGS assays—for example, the practical
balance between a perfect depth of the NGS coverage and the
still significant economic costs associated with it. Study
designs will vary depending on the samples available and the
purpose of the study. For example, if the target is a rare, perhaps
Mendelian, disorder there is an incentive to sequence the few
available individuals at high depth (60–80� or more). However,
if samples are abundant and finding variants with low fre-
quencies present in the general population is the purpose, then
sequencing thousands of subjects at low depth (e.g., 4–10� )
may represent a reasonable compromise.

Early steps: sequence information and QC. Obtaining raw
sequence reads, aligning them to libraries and calling the
variants is often done using proprietary software, which
depends on the sequencing platform used. Non-profit aca-
demic centres often prepare tools that are either alternative or
complementary to those suggested by the NGS platform
manufacturers (such as GATK by the BROAD Institute,
Cambridge, MA, USA; Table 1).

There are many alternatives for sequencing QC, which partly
reflects different views and expectations of the variations
expected from a given assay. The most popular tool is currently
the variant quality score recalibration (VQSR), which can be
used separately or as part of the GATK suite.

The use of VSQR is a highly specialised skill, and it is out of the
scope of this review. Its purpose is to assign a confidence score
to each observed variant based on raw read depth, mapping
quality, haplotype scores and similar indices. Using these data,
VSQR creates Gaussian-distributed information scores for
each variant that can be used to determine QC thresholds.

NGS data exploration and analysis. Typically, results come in
one of two formats: VCF (http://vcftools.sourceforge.net/
specs.html) or BED (https://genome.ucsc.edu/FAQ/FAQfor-
mat.html). A commonly used tool that can handle both formats
is vcftool. This program cannot generate meaningful asso-
ciation results, but it is particularly useful for exploring the data
and for generating summary statistics.

After obtaining and installing vcftools, it can be run in one of
the two ways:
vcftools --vcf oinput_filename.vcf4
or
vcftools --bed oinput_filename.bed4
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depending on whether the data are in VCF or BED format.
Vcftools can be used to merge information contained in multiple
input files, extract information from a large file and save it into a
smaller file, or convert the data to other formats such as PLINK,
IMPUTE and so on.

The results can be explored for a part of the data set (e.g., a
chromosome by setting the filter--chr,or--from-bpand--
to-bp for a region) or for the whole data set. It is also possible to
remove all sites that do not have a high-enough quality score
(--minQ filter) or depth (--min-meanDP) or missingness
(--geno).

Vcftools includes other filters, such as:
--maf Minor Allele Frequency
--mac Minor Allele Counts
--hwe Hardy-Weinberg Equilibrium
Statistics that vcftools can generate include the following:
--freq generates minor allele related frequency information
--counts which reports the exact counts at each site
--depth reporting the mean depth per individual
--site-depth reporting depth by site
--site-qualitywhich, as the name suggests, reports the
quality of sequencing
--hardy reporting Hardy-Weinberg equilibrium
--het for the individual heterozygosity
--TsTv which calculates the Transition/Transversion ratio
It is noteworthy that several of these statistics have a relative

value in terms of QC. For example, Hardy–Weinberg is expected
to look normal for rarer alleles even in the presence of serious
technical problems owing to lack of power to detect significant
departure from equilibrium, whereas the Ts/Tv ratio at which a
human genome-wide scale is about 2.1 will be a lot higher in
cases in which the assays have targeted GC-rich regions of the
chromosome, exons or can vary, higher or lower in other
species.

NGS data analysis. Currently, a plethora of analytical tools
are available for NGS data. There are two main approaches:
single-variant and gene-based techniques. The single-variant
methods are essentially applications of regression models,
whereas the gene-based approaches look at accumulation
of evidence, suggesting that a gene is involved in susceptibility
to the phenotype of interest. Among many programs
written to implement the analytical approaches, Plinkseq
(http://atgu.mgh.harvard.edu/plinkseq/input.shtml) is the
most flexible, and it implements most of the current approaches
at the same time. This section will describe the use of
Plinkseq and the ways it can implement these analytical
algorithms.

The first step for running a Plinkseq analysis is to create a
project. This is simply done by entering the following command:
Pseq oproject_name4 new-project --resources

opath_to_directory_containing_resources4
Note that before creating the new project it is advisable to

create a directory containing all annotations and resources,
which can be downloaded from the Plinkseq website.

At this stage, the project is just a skeleton, and it needs the
actual NGS genotype data to become fully functional. New vcf
files can be added to a Plinkseq project using the following
command line:
pseq oproject_name4 load-vcf --vcf oinput_

file_name.vcf4

and then the project will contain the basic information that is
needed to run an analysis. Optionally, it is possible to load
phenotypes into a project:
pseq oproject_name4 load-pheno --file ofile_

containing_phenotypes4
Although the last step is not always necessary, it may be

advantageous in certain circumstances (e.g., when covariate
adjustment is required). The above commands will create large
data sets, as large as the vcf files that contained the initial
information. After the projects have been created, the original
vcf files and phenotype data files can be deleted from the
system to save space, whereas the resources will need to be
accessible at all times.

Plinkseq is capable of performing association analyses for
qualitative or quantitative phenotype variables. For the former
case, the command is as follows:
pseq oproject_name4 v-assoc --phenotype

ophenol_name4
If at this point the genotype/phenotype files have not been

incorporated into the project as described above (load-pheno),
it is necessary to also specify the file:
pseq ovcf_file4 v-assoc --phenotype ofile_con-

taining_phenotypes4 ophenol_name4
A quantitative analysis is run using the following command:
pseq oproject_name4 glm --phenotype ophenol_

name4 --covar ocovariate_1, Covariate_2 etc. 4
Common gene-based analyses implemented in current

studies include burden tests, case-unique analysis, variable
threshold test, frequency-weighed test, C-alpha, summary of
single site statistics test and, recently, Skat and Skat-o tests. In
Plinkseq, it is possible to run one or more of these tests at the
same time using the following command:
pseqoproject_name4 assoc --tests calpha vt fw

sumstat --phenotype ophenol_name4 --mask
loc.group¼refseq

This will run gene-based tests in which genes are defined as
Refseq transcripts. The user can choose which tests to include
after the --test parameter.

Interpretation of NGS association results. NGS data is different
from GWAS data, and caution is required when interpreting the
association results. The main difference is in the sheer number
of extremely rare variants, which, unless filtered, may inflate the
number of Type I errors in the results.

In many respects, this is a lesser problem in qualitative
analyses, where it is possible to run exact tests and/or
permutation procedures that efficiently control for false posi-
tives. However, there are no exact tests for quantitative
analyses, and permutation procedures are very resource-
intensive, and thus it is advisable to reduce the number of
rare variants analysed as single variants by filtering those with
allele frequencies that are unlikely to give any meaningful
results. This will also contribute to relieving the burden of
multiple testing.

It is currently unclear as to what the optimum whole-genome
sequencing level of significance for association should be. The
widely adopted 5� 10� 08 significance threshold of GWAS is
based on a haplotype structure and LD distribution that is
different from what we can expect for rare variants. As of the
time of writing, no simulation studies addressing this issue have
been published.
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Another issue concerns the gene-based tests. Normally,
the genes contain a large number of both common
and rare variants. The former can dilute the effect of the
rare variants and often would have been identified
through GWAS. In practice, filtering the common variants is
helpful, but the results become very dependent on the
filtering thresholds and interpretation often becomes difficult.
Another difficulty is the definition of the gene. Using the
command line above, only transcription initiation through
transcription termination sites will be accounted for. However,
this definition of the gene is not necessarily suitable under all
circumstances. Often ad hoc definitions, for example, coding
variants only, or definitions including the promoter may
be more successful for certain phenotypes. Finally, there is
the added difficulty that transcription variants of the same
gene may be counted separately. For example, it would be
difficult to interpret a result when only some, but not other,
alternatively spliced transcripts are associated with a given
phenotype.

Three ‘rules-of-thumb’ for NGS results: replication, replication and
replication. Given that NGS analyses are so recent and no
comprehensive framework is universally accepted yet, it is
important to have validation panels, either through internal
resources or larger collaborations. This is far more critical for
NGS studies than for GWAS, in which conventional significance
thresholds are very conservative.42 All results should be
interpreted with extreme caution and taken as provisional when
the validity is suspicious. Coding variants causing some rare
syndromic disorder could be considered as possible excep-
tions, due to their reduced independent validation.

Yet, replication is not necessarily straightforward for NGS
results, and there are some expected difficulties in replicating
NGS results. Often, rare variants will display ethnicity speci-
ficity, that is, they will be relatively well-powered (present in
sufficient numbers) in one population but not necessarily in
another. It also remains to be seen whether ranking of variants
according to their statistical probabilities of association is as
efficient a tool as it was in the GWAS; standards error of
estimated effect sizes of rare SNPs may depend less on total
sample sizes than on common SNPs, making these estimates
and, consequently, probability ranking less reliable. Finally,
multiple rare but high-impact variants may be located within the
same gene, and their effect may only be detected in the samples
in which they happen to be enriched but not others.

Best practice guidelines for successful NGS analyses are
likely to change in the near future, as more experience and data
sets become available to the community.

Discussion

This protocol describes two methods for managing high-
throughput data, such as GWAS and NGS. The crucial step in
performing a GWAS study is to secure high-quality data. Various
tests can be applied to curate the data, both at SNPs and
individual level, to remove those results that do not achieve the
desired level of quality. PLINK software is a useful tool for
performing this selection. To achieve robust and significant
results after a GWA study, a large number of samples should be
included in the analysis. However, achieving a large sample size
may require the analyst to merge several smaller cohorts in a

meta-analysis, with the possibility that different cohorts are
genotyped on different platforms and arrays. At this point,
imputation is required to avoid reducing the number of SNPs
that are available for analysis. Reference panels from the
HapMap and 1000 Genomes projects provide a great number of
in silico SNPs to fill in the gaps in the original genotyped results.
Displaying the results in a Q–Q plot or Manhattan plot will help
determine whether there is any marker that is significantly
associated with the trait under study. However, the key
point for a GWAS hit is being able to replicate it in an inde-
pendent cohort.

NGS is a very recent approach for analysing a large quantity of
data, obtained from whole genome, whole exome or targeted
sequencing. Although the possibility of analysing the whole
genetic content would be very useful for detecting markers that
are not captured by other studies, such as GWAS, this approach
is only used to detect single-nucleotide variations, not large
deletions or insertions. Analysing the results from an NGS test
and understanding their biological meaning also represents a
significant challenge. As for GWAS results, replication of
significantly associated variants in an independent cohort is
crucial.

Both methods are valuable for identifying small areas of the
genome that may be implicated in the development of diseases
or other phenotypes of interest. Research will continue with the
identification of the causal variant in the gene, which will
subsequently lead to functional studies to explore the role of the
gene in the phenotype.

Recommended Further Reading

We recommend reading the user manuals and tutorials pro-
vided in the website of each of the above-mentioned software:
PLINK, R, IMPUTE, SHAPEIT2, MACH1.0, Minimac, BEAGLE,
METAL, Haploview and GRAIL. They will provide a better
understanding of the mechanism of action for each tool, as well
as to perform any variation in the protocol proposed to fit
specific data analysis.

Multimedia

Illumina Company: http://www.illumina.com/
Affymetrix Company: http://www.affymetrix.com/estore/
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