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The Importance of Phosphorus in 
Mammalian Physiology 
 
Phosphorus plays an important role in 
several metabolic processes, such as 
intracellular signaling, enzyme function, 
energy metabolism, cell membrane integrity, 
nucleic acid chemistry, and bone 
mineralization (1-9).  Phosphorus is an 
integral component of hydroxyapatite in 
bone (4).  Severe hypophosphatemia from 
any cause can result in serious metabolic 
disorders, such as muscle weakness, 
rhabdomyolysis, hemolysis, neutrophil and 
platelet dysfunction, cardiomyopathy, and 
rickets or osteomalacia (10-25).   
 
Adaptations to Changes in Dietary 
Phosphorus in Mammals 
 
Mammalian organisms have developed the 
capacity to adapt to a low dietary intake of 
phosphorus by increasing the efficiency of 
phosphorus absorption in the intestine and 
reducing the amount of phosphorus 
excreted in the urine (26-31).  Conversely, 
when dietary phosphorus is present in 
adequate or large amounts, the efficiency of 
phosphorus absorption in the intestine is 
reduced, and increased amounts of 
phosphorus are excreted by the kidney.  The 
movement of inorganic phosphate across 
the apical borders of the intestinal 
absorptive cell and the proximal tubular cell 
is mediated by sodium-phosphate (Na+-Pi) 
cotransporters that move sodium and 
phosphate ions together from the lumen into 
the cell (32-45).  This uptake of phosphate is 
a secondary active process, powered 
primarily by the activity of the sodium-

potassium ATPase present along the 
basolateral surface of absorptive epithelial 
cells.  The number of Na+-Pi transporters in 
the intestinal absorptive cell and proximal 
tubular cell is directly proportional to the 
amount of phosphate needed to preserve 
homeostasis. 
 
It is important to remember that although 
various circulating factors and hormones 
play a role in regulating the efficiency of 
phosphate absorption in the intestine and 
kidney, a number of nonhormonal, locally 
produced or intrinsic factors are also 
important in altering the efficiency of 
phosphate transport in the kidney and 
intestine (46;47).  The major hormones 
involved in the regulation of phosphate 
transport in the intestine or kidney include 
1α,25 dihydroxyvitamin D3 [1α,25(OH)2D3], 
parathyroid hormone (PTH), growth 
hormone (GH), and insulin-like growth factor 
1 (IGF-1) (35;48-81).  The primary effect of 
1α,25(OH)2D3 is to increase the efficiency of 
both phosphorus absorption in the jejunum 
and ileum and phosphate reabsorption by 
the proximal tubule of the kidney 
(48;51;53;54;57-59;64;81-92).  In addition, 
1α,25(OH)2D3 increases bone mineral 
mobilization and serum phosphate 
concentration (48;53).  The primary effect of 
PTH with respect to phosphate homeostasis 
is to decrease the efficiency of phosphate 
reabsorption in the proximal tubule 
(26;35;41;61;63;68;70;71;93-100).  PTH 
indirectly influences phosphate absorption in 
the intestine by increasing both the activity 
of the 25(OH)D3 1α-hydroxylase and 
synthesis of 1α,25(OH)2D3 (101).  PTH also 
enhances bone mineral mobilization, 
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thereby increasing the amount of phosphate 
entering the extracellular fluid space.  The 
net effect of the acute administration of PTH, 
however, is a reduction in serum phosphate 
concentration mediated by an increase in 
the fractional excretion of phosphate in the 
kidney, the effects of 1α,25(OH)2D3 being 
offset by the increases in phosphate 
excretion in the kidney directly mediated by 
PTH.  GH and IGF-1 increase the 
reabsorption of phosphate primarily through 
renal mechanisms (67;73-80). 
 
Sequence of Metabolic Events That 
Occur With a Change in Dietary 
Phosphorus Intake 
 
A reduction in the dietary intake of 
phosphorus is associated with a decrease in 
serum phosphate concentration, a reciprocal 
increase in serum calcium concentration, a 
decrease in PTH release from the 
parathyroid gland, and direct stimulation of 
25(OH)D3 1α-hydroxylase activity, which 
results in an increase in the synthesis of 
1α,25(OH)2D3 (48;56;81;82;102).  The 
reduction in circulating PTH concentration 
results in a decrease in the fractional 
excretion of phosphorus by the kidney.  The 
increase in the synthesis of 1α,25(OH)2D3 
results in an increase in both phosphorus 
absorption in the intestine and phosphate 
retention by the kidney.  These two events, 
namely a reduction in circulating PTH 
concentration and an increase in 
1α,25(OH)2D3 concentration, increase 
overall phosphate retention and absorption 
and thus counteract the reduction in dietary 
phosphate.  An increase in dietary 
phosphate is associated with an increase in 
PTH concentration and a reduction in the 
synthesis of 1α,25(OH)2D3. 
 
The Phosphatonins and Phosphate 
Homeostasis 
 
In 1994, based on experiments performed 
with tumor cells derived from a patient with 
hypophosphatemia associated with 
oncogenic osteomalacia (OOM), we 
postulated the existence of a phosphate-
regulating substance that had properties 
distinct from that of PTH and other unknown 
phosphate-regulating factors (103).  This 
substance, called “phosphatonin,” increased 

renal losses of phosphate and inhibited the 
synthesis of 1α,25(OH)2D3 (104).  Both of 
these biological properties resulted in 
hypophosphatemia, and consequently, in 
osteomalacia.  At least four phosphaturic 
peptides have now been identified in tumors 
associated with OOM -- fibroblast growth 
factor 23 (FGF-23), secreted frizzled-related 
protein 4 (sFRP-4), matrix extracellular 
phosphoglycoprotein (MEPE), and fibroblast 
growth factor 7 (FGF-7) (105-110).  Of 
these, FGF-23 and sFRP-4 have also been 
shown to inhibit the 25(OH)D3 1α-
hydroxylase activity that should normally 
increase in the face of hypophosphatemia.  
Thus, only FGF-23 and sFRP-4 can be 
appropriately classified as "phosphatonins" 
(111).  Both of these peptides inhibit the 
reabsorption of phosphate in the proximal 
tubule of the kidney in vivo and in cells in 
culture by enhancing the internalization of 
Na+-Pi cotransporters in renal cells (111).  
They also inhibit 25(OH)D3 1α-hydroxylase 
activity, thereby reducing the synthesis of 
1α,25(OH)2D3 and inhibiting the obstruction 
of phosphate in the intestine and kidney 
(106;109;112). 
 
Phenotypic Similarity in Oncogenic 
Osteomalacia,  Autosomal Dominant 
Hypophosphatemic Rickets, and X-linked 
Hypophosphatemic Rickets 
 
OOM (also known as tumor-induced 
osteomalacia), autosomal dominant 
hypophosphatemic rickets (ADHR), and X-
linked hypophosphatemic rickets (XLHR) are 
characterized by a similar biochemical 
phenotype of low serum phosphate 
concentration, phosphaturia, and a 
decreased tubular maximum for phosphate 
(despite a reduction in serum phosphate); 
normal or low normal serum calcium 
concentration; generally normal PTH 
concentration,; reduced serum concentration 
of 1α, 25 dihydroxyvitamin D3; and the 
presence of osteomalacia or rickets 
(111;113;114).  ADHR has been shown to 
be caused by activating mutations of the 
gene for FGF-23, which results in the 
formation of an FGF-23 variant that is 
lacking a furin protease site and thus 
resistant to proteolysis (108;115).  Mutations 
in the endopeptidase PHEX are found in 
patients with XLHR and the murine model of 
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the disease, the Hyp mouse (116).  It is 
hypothesized that inactivating mutations in 
the PHEX protein prevent the proteolysis of 
a phosphaturic substance, perhaps FGF-23. 
 
Clinical Conditions Associated With 
Hypophosphatemia and Altered FGF-23 
Concentration 
 
Several clinical conditions associated with 
hypophosphatemia have now been shown to 
be associated with elevated FGF-23 
concentration.  Some (but not all) patients 
with OOM have an elevated FGF-23 serum 
concentration (117-119).  Following removal 
of a tumor, FGF-23 concentration generally 
returns to normal.  Some patients with XLHR 
also have an elevated concentration of FGF-
23 (119-121).  An elevated FGF-23 
concentration is seen in patients with 
humoral hypercalcemia of malignancy, 
chronic renal failure, and fibrous dysplasia 
(111;122-126).  Patients with primary 
hyperparathyroidism have a marginally 
elevated FGF-23 concentration that is not 
substantially altered following 
parathyroidectomy (122;127-129).  Of 
interest, patients with stage III and IV 
ovarian cancer who have no alteration in 
serum phosphate concentration also have 
an elevated FGF-23 concentration (130).  
Conditions associated with 
hyperphosphatemia are also associated with 
increases in FGF-23.  These conditions 
include chronic renal failure, tumoral 
calcinosis, hypoparathyroidism, and 
hyperthyroidism (125;131-134).  In these 
latter conditions, it is thought that the FGF-
23 concentration is elevated to reduce 
persistent hyperphosphatemia. 
 
Regulation of FGF-23 by Phosphate and 
1α,25(OH)2D3
 
From a physiological perspective, it would 
be appropriate for FGF-23 concentration to 
be regulated by the intake of dietary 
phosphorus and serum phosphate 
concentration.  When the serum phosphate 
concentration is elevated, FGF-23 
concentration might be expected to 
increase, and the opposite would be 
predicted to occur when the serum 
phosphate concentration is diminished.  
Additionally, because 1α,25(OH)2D3 

increases phosphate retention and serum 
phosphate concentration, such increases 
might be mitigated by an increase in FGF-
23.  Studies in both humans and animal 
models have begun to shed light on the 
regulation of FGF-23 by phosphate and 
1α,25(OH)2D3. 
 
In humans, short-term alterations in dietary 
phosphate intake do not seem to influence 
FGF-23 concentration.  Larsson et al. (125) 
fed human subjects normal, high-, or low-
phosphate diets for 72 hours.  FGF-23 
concentration did not change substantially in 
this study, suggesting that dietary phosphate 
did not regulate FGF-23 concentration.  In a 
subsequent study (135), a high- or low-
phosphate diet was given to humans with 
concomitant changes in dietary calcium 
designed to minimize changes in PTH.  In 
this study, modest decreases or increases 
(well within normal range) in FGF-23 were 
observed following the administration of a 
low- or high-phosphate diet, respectively.  In 
neither of the two studies were short-term 
changes in urinary phosphate excretion 
evaluated to determine whether temporal 
changes in the renal excretion of phosphate 
directly correlated with temporal changes in 
FGF-23.  Thus, in humans, it seems that 
dietary variation in phosphate intake has no 
(or at most an extremely modest) effect on 
phosphate excretion in the kidney.  In 
neither study was the effect of dietary 
phosphate on 1α,25(OH)2D3 or the effect of 
1α,25(OH)2D3 on FGF-23 examined. 
 
Recent information regarding the regulation 
of FGF-23 by 1α,25(OH)2D3 in rats has 
become available.  Saito et al. (136) showed 
that serum FGF-23 concentration increased 
following the administration of 1α,25(OH)2D3 
to intact rats in a dose-dependent manner.  
A dose of 10 ng/kg/rat, given intravenously 
three times a week for two weeks, elicited 
no change in serum FGF-23 concentration.  
No changes in serum phosphorus were 
noted at this dose.  However, a dose of 30 
ng/kg/rat, given intravenously three times a 
week for two weeks, was associated with a 
modest increase in serum FGF-23 and a 
clearly measurable increase in serum 
phosphorus concentration.  Marked changes 
in serum FGF-23 concentration were noted 
following the administration of 100 ng/kg/rat 

7 
 

Copyright 2005 International Bone and Mineral Society 



BoneKEy-Osteovision. 2005 June;2(6):5-16 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;2/6/5 
DOI: 10.1138/20050164 
 
three times a week for two weeks.  There 
was a direct correlation between serum 
phosphorus and serum FGF-23 
concentration.  In thyroparathyroidectomized 
rats, 1α,25(OH)2D3 also increased serum 
FGF-23 concentration.  Of interest, in 
thyroparathyroidectomized rats, serum FGF-
23 concentration was at the low end of 
normal, despite an elevated serum 
phosphorus concentration.  This response is 
different than that observed in 
hypoparathyroid humans, where serum 
FGF-23 concentration is elevated (134).  
Saito et al. (136) next tested the effect of 
diets containing different amounts of 
phosphate on serum FGF-23 concentration 
in rats that had undergone a 5/6 
nephrectomy.  In these animals, a high-
phosphate diet was associated with a 
substantial increase in serum FGF-23 
concentration, when compared with that 
observed in rats fed a normal or low-
phosphate diet.  There was a direct 
correlation between serum phosphate  and 
serum FGF-23 concentration in 
nephrectomized rats.  No results were 
reported for the effects of dietary phosphate 
on serum FGF-23 in rats with normal renal 
function.  Reports have appeared in abstract 
form, suggesting that the amount of 
phosphate in the diet regulates serum FGF-
23 concentration in rats with normal renal 
function (137). 
 
What conclusions can be drawn concerning 
the regulation of FGF-23 by 1α,25(OH)2D3 
and dietary phosphate in humans and rats?  
When 1α,25(OH)2D3 concentration is 

elevated in an effort by the organism to 
provide more calcium and phosphate for 
bone mineralization, there is clearly no 
advantage to driving the serum phosphate 
level down by increasing FGF-23.  FGF-23 
may decrease or turn off the synthesis of 
1α,25(OH)2D3 after the demands for calcium 
and phosphate have been satisfied, thus 
complementing local factors, such as an 
increase in tissue 24-hydroxylation of 
1α,25(OH)2D3 (138).  With respect to the 
regulation of FGF-23 by dietary phosphate, 
one must conclude at present that the effect 
of dietary phosphate intake on FGF-23 
serum concentration in humans is modest.  
Furthermore, there is no information 
concerning correlations between phosphate 
excretion measured over shorter periods of 
time (i.e., < 72 hours), variations in dietary 
phosphate, and changes in serum FGF-23 
concentration.  In rodents with renal failure, 
the effect of dietary phosphate on serum 
FGF-23 concentration seems to be more 
marked than in humans, and it is possible 
that FGF-23 plays a more important role in 
phosphate homeostasis in the rodent than in 
humans.  The role of other tumor-derived 
phosphaturic factors (i.e., sFRP-4, MEPE, 
and FGF-7) in adaptations to dietary 
phosphate have not been explored.  Clearly, 
further studies examining the influence of 
dietary and serum phosphate on serum FGF 
23, sFRP-4, MEPE, and FGF-7 
concentration and the renal handling of 
phosphate need to be performed to 
precisely determine the role of 
phosphatonins in human phosphate 
physiology.
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