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Abstract 
 
     The cytokine-like hormone leptin has emerged as a major factor linking food intake with bone 
metabolism. Leptin can regulate bone formation through both central (hypothalamic) and peripheral (direct) 
pathways, and leptin deficiency, in the form of either caloric restriction or a congenital absence of leptin, is 
associated with low bone mass. Leptin resistance does, however, increase with age in both humans and 
laboratory animals. The problem of leptin resistance suggests that the potential utility of leptin as a treatment 
for bone loss is limited to states of energy deprivation and leptin deficiency, such as exercise-induced 
hypothalamic amenorrhea, anorexia nervosa, and weight loss. BoneKEy-Osteovision. 2007 March;4(3):99-
107. 
©2007 International Bone and Mineral Society 
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Introduction 
 
The cytokine-like hormone leptin was first 
described by Jeffrey Friedman’s group at 
Rockefeller University in 1994 (1) and is now 
known to be a powerful regulator of appetite 
and energy balance. Leptin was initially 
observed to reduce food intake and induce 
weight loss in obese mice (1), and since its 
original discovery the biology of leptin has 
received considerable attention. In just over 
10 years there have been literally thousands 
of papers published on the biology of leptin, 
and hundreds that have investigated the 
relationship between leptin and bone. The 
purpose of this brief Perspective is to 
highlight some of the general themes to 
emerge from these studies, with particular 
attention to a) the molecular mechanisms of 
leptin action in bone and cartilage, b) the 
skeletal phenotype of animal models in 
which leptin signaling is altered, and c) the 
evidence from human studies demonstrating 
a role (or lack thereof) for leptin in mediating 
age-related bone loss.                                      
 
Leptin Signaling in Brain and Bone 
 
Fat cells, or adipocytes, are the primary 
source of leptin in the body and as such lep-       

 
 
 
tin plays an important role as a measure or 
signal of energy status. Leptin produced by 
peripheral fat depots enters the circulation 
and crosses the blood-brain barrier to reach 
its primary target, leptin receptors located in 
the hypothalamus. There are several 
isoforms of the leptin receptor, but the long 
form (Ob-Rb) is most abundant in the 
hypothalamus, where leptin binding 
activates the Jak/Stat signaling pathway (2). 
Leptin binding in the hypothalamus induces 
the expression of neuropeptides such as 
cocaine-amphetamine related transcript 
(CART) and alpha-melanocyte-stimulating 
hormone (α-MSH), and suppresses the 
activity of genes such as those encoding 
neuropeptide Y (NPY) and agouti-related 
peptide (AgRP) that are involved in 
regulating food intake and energy 
expenditure (3). Leptin also regulates 
sympathetic outflows and functions as a β-
adrenergic agonist (4). As discussed in more 
detail below, the central effects of leptin on 
β-adrenergic and NPY pathways have 
significant implications for the regulation of 
bone mass, since NPY is a powerful inhibitor 
of cortical bone formation and mice lacking 
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β1- and β2-adrenergic receptors have low 
bone mass (5;6).  
 

 
 

 
Figure 1. Leptin can affect bone metabolism not only via central, hypothalamic pathways (e.g., by 
regulating NPY expression) but also by directly binding to the leptin receptor (Ob-R) in bone 
marrow stromal (stem) cells (BMSCs) and inducing the expression of osteogenic genes (7;8;10).  
Leptin inhibits the differentiation of adipocytes from BMSCs in vivo and in vitro (8;10). Leptin also 
stimulates the production of osteoprotegerin (OPG) and inhibits the secretion of RANK ligand 
(RANKL) in BMSCs, inhibiting osteoclast differentiation from bone marrow monocytes (BMM) (14; 
15).
 
Circulating leptin also regulates bone mass 
directly by binding to leptin receptors on 
bone marrow stromal (stem) cells (BMSCs), 
osteoblasts, and osteoclasts (Fig. 1; 7;8). 
Leptin binding to its receptor on stromal cells 
can activate the MAP-kinase signaling 
pathway in BMSCs (9), increasing the 
expression of osteogenic genes and 
directing BMSCs to the osteogenic rather 
than the adipogenic pathway (Fig. 1; 7;8;10). 
Interestingly, BMSCs isolated from 
osteoporotic donors show lower leptin 
binding capacity than BMSCs from donors 
with normal bone mass, and leptin is able to  

 
effectively inhibit adipogenic differentiation in 
BMSCs from healthy donors but not in 
BMSCs from osteoporotic donors (8). Leptin 
treatment also directly increases osteoblast 
proliferation and mineralization in vitro and 
in vivo (11-13), and osteoblasts and bone 
marrow adipocytes themselves secrete 
leptin (7), raising the possibility that leptin 
may play a role in autocrine or paracine 
signaling within the bone marrow 
microenvironment. It has been shown that 
leptin can also regulate osteoclast 
differentiation by increasing osteoprotegerin 
expression and decreasing RANK ligand 
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secretion by BMSCs (Fig. 1; 14). Leptin 
treatment decreases osteoclastogenesis 
and bone resorption in vitro and in vivo (14), 
which is consistent with studies 
demonstrating that leptin treatment can 
prevent bone loss associated with 
ovariectomy (15) and disuse (hindlimb 
unloading) (16). Finally, leptin receptors are 
detected in chondrocytes (17), and leptin 
treatment increases chondrocyte 
proliferation and expression of the IGF-1 
receptor (IGF-1R) in cartilage of the growth 
plate and mandibular condyle (17-19). 
 
The Skeletal Phenotype of Leptin-
Deficient Rodents 
 
The mechanistic studies described above 
reveal that leptin can affect multiple cell 
types in the skeleton through both indirect 
(hypothalamic) and direct pathways. Animal 
models with altered leptin signaling have 
therefore proven invaluable for revealing the 
phenotypic effects of leptin on skeletal 
growth, development and aging. Two of the 
most well-known animal models with altered 
leptin signaling are mice lacking a functional 
leptin peptide, the leptin-deficient ob/ob 
mouse, and mice lacking a functional long 
form of the leptin-receptor, the db/db mouse 
(20). These mouse mutants show a 20-25% 
decrease in total bone mass measured as 
total body bone mineral content (BMC), a 
20-25% decrease in cortical area of the 
femur, and a 30-40% decrease in 
mineralizing surface of the femur compared 
to normal mice (13;21-23). These data 
indicate that the primary effect of leptin 
deficiency on the skeleton is a reduction in 
cortical bone formation. Since approximately 
80% of skeletal mass is accounted for by 
cortical bone, leptin deficiency results in a 
net loss of total bone mass compared to the 
wild-type condition. Leptin treatment 
increases bone formation in the 
appendicular skeleton and also decreases 
the population of bone marrow adipocytes in 
ob/ob mice, consistent with a role for leptin 
in regulating the differentiation of bone 
marrow stem cells (13;24-25).  
 
The effects of leptin on cortical bone appear 
to be regulated by central, hypothalamic 
signals. Neuropeptide Y is an inhibitor of 
cortical bone formation, and leptin binding to 

leptin receptors in the hypothalamus 
suppresses NPY expression. Mice lacking 
the Y2-receptor show a 15-20% increase in 
femur mass and cortical thickness compared 
to normal mice (5), suggesting that 
suppression of NPY expression by leptin is 
required for the normal acquisition of cortical 
bone in the limb skeleton. As noted earlier, 
leptin binding in the ventromedial 
hypothalamus can increase sympathetic 
tone, and leptin functions as a β-adrenergic 
agonist. Mice lacking the β1- and β2- 
adrenergic receptors show a 20-25% 
decrease in femur mass and cortical 
thickness compared to normal mice, 
demonstrating that normal β-adrenergic 
signaling is necessary for cortical bone 
formation (6). One of the more exciting 
findings in this regard is the recent 
observation that serum IGF-1 levels are 
significantly reduced in mice lacking β-
adrenergic signaling, indicating that some of 
leptin’s effects on bone involving the 
sympathetic nervous system may be 
mediated by IGF-1 signaling (26). This is 
also indicated by the fact, noted above, that 
leptin treatment can increase IGF-1R 
expression in chondrocytes. 
 
Leptin does, however, appear to affect 
trabecular bone differently than cortical 
bone. Ducy and colleagues (27;28) originally 
described the leptin-deficient ob/ob mouse 
as having a “high bone mass” phenotype, 
based on their analysis of trabecular bone 
density in the spine of ob/ob animals. It was 
subsequently shown (5;13;22;24) that total 
bone mass is actually lower in ob/ob mice 
than normal mice, but that trabecular bone 
volume fraction (BV/TV) is increased with 
leptin deficiency in rodents. Why would 
leptin produce contrasting phenotypes in 
trabecular versus cortical bone? Sundeep 
Khosla (29) has suggested that a sparing of 
trabecular bone in the spine with leptin 
deficiency may be an adaptive mechanism 
to preserve mineral stores for calcium 
homeostasis during periods of food 
restriction. This adaptive explanation is 
supported by a later study demonstrating 
that caloric restriction in mice reduces total 
bone mass and femur mass but actually 
increases bone mass in the spine (30). It is 
likely, though, that the contrasting effects of 
leptin deficiency observed in the spine 
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versus the femur may be specific to rodents, 
since humans with very low leptin levels 
(e.g., patients with anorexia) show low bone 
mass and density throughout the skeleton 
(see below). The case of leptin’s varying 
effects throughout the mouse skeleton also 
provides a powerful example of why it is 
critical to examine all aspects of the skeletal 
phenotype in mouse mutant, knockout, and 
transgenic models. Technologies such as 
µCT provide such an accurate and rapid 
assessment of trabecular structure that 
other parameters, such as bone strength 
measurements and cortical bone 
dimensions, are frequently overlooked (31). 
Given that 80% of the mass of the skeleton 
is represented by cortical bone, 
measurements of trabecular bone alone 
may provide little insight into changes in 
“bone mass” resulting from a particular 
treatment or genetic manipulation. 
 
Role of Leptin in Age-Related Bone Loss 
 
Evidence from the animal models described 
above suggests that in human studies we 
might expect serum leptin levels to be 
positively correlated with bone mass in the 
limb skeleton but inversely correlated with 
bone mass in the spine. However, a large 
meta-analysis examining the effects of leptin 
on BMD in 5803 postmenopausal women 
found that leptin levels explained less than 
1% of the variation in BMD (32). Serum 
leptin showed no significant correlation with 
either femoral neck BMD (r = -0.04) or 
lumbar spine BMD (r = -0.03), and the 
correlation between serum leptin and whole 
body BMD was weak (r = 0.13). These 
findings are reminiscent of the data showing 
that leptin has no significant effect on weight 
loss in humans, despite the fact that leptin 
induces significant weight loss in lab animals 
(33). The human bone and weight loss 
findings are both explained by the same 
phenomenon, leptin resistance. That is, with 
aging and with increases in endogenous, 
circulating leptin arising from greater food 
intake, leptin receptors are downregulated 
and leptin sensitivity is decreased (Fig. 2; 
34-36). Moreover, leptin resistance in 
postmenopausal women may be further 
exacerbated by estrogen deficiency (37). 
The average serum leptin concentration for 
humans on a normal feeding schedule is 

approximately 5-15 ng/ml (38), whereas in 
obese humans serum levels reach 40 ng/ml 
(39). Compared with an average serum 
leptin concentration of 1 ng/ml for primates 
in the wild (38), the average leptin 
concentration of most human populations is 
extremely high, suggesting that the 
overwhelming majority of people are 
relatively insensitive to leptin (Fig. 2). 
Because leptin resistance increases with 
age and estrogen deficiency, it is not 
surprising that meta-analyses do not detect 
significant correlations between leptin and 
BMD in postmenopausal women. 
 
Leptin insensitivity due to aging or high 
levels of endogenous leptin can, however, 
be reversed with food restriction (40). In 
spite of the numerous benefits of caloric 
restriction (CR), it has been shown to reduce 
skeletal growth in young animals and cause 
bone loss in older animals (41-43). Severe 
CR, such as that which occurs in anorexia 
nervosa, is associated with markedly 
reduced leptin levels and osteoporosis (44-
46). Even less severe, voluntary, weight loss 
is associated with increased rates of bone 
loss in adults (47;48). Systemic 
administration of leptin in rodents has been 
shown to reduce bone fragility (11), increase 
bone formation (49), and reverse the 
negative effects of CR on longitudinal bone 
growth (50;51). In food-restricted rats and 
mice, leptin treatment increases serum 
osteocalcin, serum testosterone, and serum 
growth hormone (49;52). Consistent with 
these animal studies, leptin treatment 
appears to have significant potential for 
reversing bone loss associated with 
hypothalamic amenorrhea in women (53). 
Leptin treatment (0.08 μg/kg body weight) 
for three months increased serum IGF-1 and 
serum osteocalcin in women with exercise-
induced hypothalamic amenorrhea (53). 
These women had serum leptin 
concentrations of approximately 3 ng/ml 
prior to treatment, which increased to 
approximately 6 ng/ml after three months of 
treatment. These findings underscore the 
point that, in leptin-sensitive individuals, 
leptin therapy increases markers of bone 
formation and bone growth; however, this 
also means that the utility of leptin as a 
potential treatment for bone loss may be 
limited to cases of energy deprivation, such 
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Figure 2. Leptin resistance increases with age and with body mass index (BMI). Serum leptin 
concentrations are closely correlated with BMI, so that a BMI of 40 is estimated to have a serum 
leptin concentration approaching 30-40 ng/ml, whereas a BMI of 20 is predicted to have a serum 
leptin concentration closer to 3-4 ng/ml (39;53). Leptin resistance also increases significantly with 
age. The problem of leptin resistance means that although leptin may stimulate bone formation at 
younger ages and in individuals with very low BMI (and low circulating leptin, <5 ng/ml), leptin 
levels will be poorly correlated with bone mass in older individuals or people with higher BMI and 
higher leptin levels (>5 ng/ml). 
 
as food restriction, hypothalamic 
amenorrhea, and weight loss. 
 
Summary 
 
Although reports of leptin’s effects on bone 
appear in some cases to be inconsistent or 
even contradictory, the bulk of the literature 
on leptin and bone points to some basic 
conclusions that provide important insights 
into the relationship between nutrition and 

bone metabolism (54). First, leptin 
deficiency, in the form of caloric restriction or 
a congenital absence of leptin, is associated 
with low total bone mass due primarily to 
decreased cortical bone formation. 
Trabecular bone mass may be increased 
with leptin deficiency in mice, but because 
trabecular bone comprises a relatively small 
portion (approximately 20%) of the total 
mass of the skeleton, this increase does not 
offset the decline in whole-body bone mass 
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resulting from the decrease in cortical bone. 
Second, leptin resistance increases with 
age, estrogen deficiency, and with increases 
in endogenous leptin. Hence, the majority of 
postmenopausal women with normal food 
intake are relatively insensitive to leptin 
treatment or to variations in circulating leptin 
levels. Finally, the problem of leptin 
resistance indicates that the potential utility 
of leptin as a therapy for bone loss is 
greatest in conditions of leptin deficiency 
and energy deprivation, such as food 
restriction, exercise-induced hypothalamic 
amenorrhea, anorexia nervosa, and perhaps 
weight loss.  
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