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Our understanding of phosphate metabolism 
has moved fast for the past few years. The 
big step was finding that FGF23 is a 
phosphatonin, a secreted messenger that 
directs the kidney to spill phosphate and 
inhibit synthesis of 1,25(OH)2D. Two years 
ago we learned that the klotho protein is a 
coreceptor for FGF23. Klotho binding 
converts certain FGF receptors to high-
affinity FGF23 receptors (FGFRs), but which 
ones? Ablation of FGFR3 or FGFR4 does 
not impair FGF23 action (1), supporting the 
view that FGFR1c is the principal FGF23 
receptor, but more work on this point will be 
necessary.  
 
Klotho was described as an aging gene but 
in the mouse, loss of FGF23 and loss of 
Klotho produce similar phenotypes, which 
seem to be attributable to impaired FGF23 
signaling, as the phenotype is greatly 
ameliorated by blocking the resultant 
hyperphosphatemia or the increase in 
1,25(OH)2D. We now learn that the human 
disorder tumoral calcinosis, which was 
previously associated with mutations in 
either FGF23 itself or in the 
galacosyltransferase GALNT3 that 
processes FGF23, can also be caused by 
mutations that disable Klotho (2;3). The 
affected individual had all the manifestations 
of tumoral calcinosis but did not have 
evidence of premature aging. The role of 
Klotho in aging remains muddy; although 
many of the “aging” phenotypes seem to be 
attributable to disordered mineral 
metabolism, a recent paper suggests that 
Klotho causes cellular senescence through 
effects on Wnt signaling (4).  

Klotho is expressed at only a few locations, 
making them prime candidates as sites for 
FGF23 action. One of these is the 
parathyroid. FGF23 inhibits the secretion of 
PTH from isolated bovine parathyroid cells, 
as subsequently reported by two groups (5-
7). Unfortunately we don’t know much about 
the relation of this effect to calcium signaling 
for PTH release. It’s also curious that Klotho 
itself is reported to stimulate PTH secretion 
in the absence of FGF23 (8).  
 
The principal renal phosphate transporter is 
NaPi2a. Removal of NaPi2a prevents 
phosphate reabsorption, and hypophos-
phatemia results. Crosses of hypo-
phosphatemic NaPi2a null mice and 
hyperphosphatemic FGF23 nulls have 
hypophosphatemia (9), hence NaPi2a is the 
main renal target of FGF23 and therefore 
the NaPi2a null phenotype is dominant. In 
bone, rib nodules, increased mineralization 
of the primary spongiosa and increased 
osteoid characterize the FGF23 null mouse; 
these phenotypes are also observed in 
double knockout mice, which are hypophos-
phatemic, thus making the important point 
that some actions of FGF23 in bone are 
independent of serum phosphate.   
 
Mutations in the NaPi2c transporter gene 
cause human hypophosphatemic rickets 
with hypercalciuria (HHRH) (5). Expression 
of both alleles from a compound 
heterozygotic HHRH patient showed that 
one is nonfunctional but the other is 
hypomorphic, apparently because of an 
inward-directed sodium leak (10). In the 
mouse, however, removal of the NaPi2c 

 
 Copyright 2007 International Bone and Mineral Society 
 



BoneKEy-Osteovision. 2007 December;4(12):342-345 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;4/12/342 
DOI: 10.1138/20070287 
 

  343 

gene does not produce rickets, but rather 
hypercalcemia and an increase in 
1,25(OH)2D levels, with no change in serum 
phosphate or TmP/GFR (11). FGF23 levels 
are reduced in NaPi2c null mice, which 
develop marked hypophosphatemia when 
treated with FGF23 (12). Relationships 
between renal phosphate handling, vitamin 
D activation and FGF23 levels are complex: 
loss of NaPi2c resets the level of vitamin D 
synthesis and FGF23 without any net 
change in phosphate excretion. 
 
Extracellular phosphate levels in cartilage 
rise as chondrocytes mineralize their matrix, 
and eventually phosphate induces apoptosis 
of chondrocytes, ending their life cycle. 
Phosphate induces several pro-apoptotic 
molecules in ATDC5 cells (13). One of these 
is Bnip3. Silencing of Bnip3 by RNAi 
suppressed phosphate-induced apoptosis, 
and conversely expression of Bnip3 
attenuated the antiapoptotic effect of Bcl-xL. 
Removal of Bcl-xL from chondrocytes with 
Cre-loxP produced dwarfism due to massive 
chondrocyte apoptosis. These abnormalities 
were largely rescued by a low-phosphate 
diet, which upregulated Bnip3 in 
chondrocytes. Another presentation reported 
that Hyp chondrocytes have reduced 
phosphate uptake via the Type III 
transporter Pit-1 (14). Overexpression of Pit-
1 increases phosphate uptake, ATP levels, 
caspase-9 and -3 activation and apoptosis. 
Phosphate can also signal in renal tubule 
cells, possibly via NaPi2 (15) and 
overexpression of Pit-1 produces 
hyperphosphatemia without abnormalities in 
vitamin D activation (16). 
 
One of the biggest pieces of news at last 
year’s ASBMR meeting was that mutations 
in the SIBLING protein dentin matrix protein 
1 (DMP-1) cause renal phosphate wasting 
and osteomalacia. The business end of 
DMP-1 is the carboxyl terminal domain (17). 
Mutations in DMP-1 that cause 
hypophosphatemic rickets impair processing 
of the molecule (18). DMP-1 expression 
patterns in bone are correlated with the 
pattern of strain (19). The sister SIBLING 
protein MEPE has a tantalizing but poorly 
understood relation to phosphate disorders. 
MEPE levels are high in tumors from 
patients with tumor-induced osteomalacia 

but MEPE null mice do not have a 
demonstrable phosphate disorder, 
establishing that MEPE is not a potent 
phosphatonin. MEPE overexpression, in 
fact, produces hyperphosphatemia and 
increased levels of 1,25(OH)2D (20). Bones 
from these animals have reduced mass, 
mildly impaired mineralization, and low 
turnover (21). 
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