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ABSTRACT 
A one-dimensional mathematical model is presented for predicting natural water 
temperatures throughout an entire river basin. The model contains an accumulation 
term, convective term, dispersive term, and source term. Mathematical representations 
of each term contributing to the heat flux are presented. 

This model can assume major importance in the planning and management of a 
river basin. Natural water temperature and the effects of alteration of this 
temperature regime have a large effect on the ecology of the entire river basin. 

This model is solved numerically utilizing extensive synoptic meteorological and 
flow rate data obtained for an entire river basin. This solution is compared to 
experimental data. The results indicate that calculated water temperatures can be 
obtained which typically have a daily root-mean-square deviation of less than 3°C, a 
daily amplitude ratio of ± 0.20 of 1.0, and a daily mean within 2°C of observed data. 
These results can be improved with improved measurement of incoming radiation and 
average depth. The effects of the average depth, convection, and dispersion are also 
discussed. 

INTRODUCTION 

Temperature is a significant water quality parameter. Accurate analysis of the 
temperature regime in a river or stream is of the utmost importance. Most 
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physical properties of water, including dissolved oxygen and dissolved solids 
content, depend on temperature. 

Temperature regimes in river systems can be distinguished as being natural or 
altered regimes. The natural temperature regime is that which exists or would 
exist in the absence of man-made alterations. Altered temperature regimes 
encompass the remaining situations where man has made changes which affect 
river temperature. Some of the common alterations which impact the tempera­
ture regime in a river system are channelization or siltation, impoundment, 
irrigation, vegetation removal (particularly riparian) and industrial discharges [1]. 

The difference between the altered temperature and the natural temperature 
at a point depends on the severity of the alteration. In extreme cases, it may be 
as great as 30°C. The ecology of a river system can be greatly influenced by 
these alterations. 

The prediction of natural temperature and the effects of alteration of the 
natural temperature, therefore, can assume major importance in the planning 
and management of a river basin. A model which predicts natural temperatures 
can be utilized to determine the natural temperature profiles of rivers and 
streams already altered and determining the extent of that alteration. Many 
schemes intended to control the extent of that alteration call for maintaining 
temperature within specified limits of the natural temperature. Where 
alterations already exist, a basin model is required to predict natural temperature. 

Previous models have been specific in nature and this has been dictated by 
the small amount of data available. They are specific in that they only can be 
applied to segments or reaches of a river system. The time-temperature 
relationship for the inlet to each reach must be known, and then a profile can be 
predicted at the outlet. The procedure must then be repeated for any subse­
quent reach. Some models are further restricted in that they only analyze 
monthly, seasonal, or annual variations. 

Kothandaraman has developed a model to predict daily mean temperature of 
large rivers [2]. He assumes the water temperature can be written in the form 
of a time dependent Fourier series with three fitted residual terms. He uses four 
years of mean water temperature data to calculate three series coefficients and 
four years of mean air temperature data to estimate the three residual 
coefficients. He uses the model to compute daily mean water temperatures for 
1969, one of the four years for which he had data, and gets agreement within 
(1.0°C). This model is empirical in nature and it cannot predict the resulting 
water temperature from any alteration to the basin since the coefficients must 
be determined from existing conditions. 

A model for predicting the hourly temperature of small streams has been 
developed by Brown [3]. The model assumes the time rate of change of 
temperature is given only by an energy source term. The model neglects 
convection and dispersion. Calculated results were with (0.5°C) of observed 
values on two streams. Comparison was limited to one twenty-four hour period. 
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Raphael [4] and Delay and Seaders [5] propose a general model for rivers 
and reservoirs analogous to Brown's model with the addition of accounting for 
tributary inflows. The model also assumes complete mixing, which is rarely 
encountered in reservoirs. Delay and Seaders calculated a river temperature for 
one twenty-four hour period and it was within (0.5°C) of the observed data [5]. 

Morse developed a model for predicting hourly temperatures, which has the 
same features as Brown's model and also includes a convective term [6]. The 
model is based on observations along a 14.0 km (8.77 mile) stretch of a 
tributary of the Columbia River. The calculated results are compared to observed 
results for a twenty-eight hour period and agree within (0.5°C). 

Edinger has developed models for predicting hourly temperatures based on 
the concept of an equilibrium temperature [7]. This is the temperature the 
system would ultimately reach if allowed to go to steady-state with constant 
meteorological conditions. The purpose of this model is to linearize the water 
temperature dependence of the surface heat exchange terms. The surface heat 
exchange terms are approximated by the product of a coefficient based on 
meteorological variables and the difference between the actual and the 
equilibrium temperature. Therefore, the coefficient and the equilibrium 
temperature become parameters which must be evaluated at each computational 
step. The model neglects convective and dispersive effects. 

Chen theoretically derives a basin model for hourly temperature prediction 
which accounts for tributary inflows [8]. The model contains spatial variation 
of temperature due to convection and dispersion and the heat exchange terms 
are approximated by heat transfer coefficients and linear temperature 
differences. No verification of the model using experimental data was attempted. 

Jobson and Yotsukura developed a reach model for hourly temperature 
prediction which contains spatial variation in temperature due to convection 
and dispersion [9]. They employ a non-linear heat exchange term. Comparison 
of calculated results with observed data at five different sites for a twenty-four 
hour period yields results with the maximum deviation being (0.5°C). 

DESCRIPTION OF THE GOVERNING 
DIFFERENTIAL EQUATION 

Equation 1 is the one-dimensional thermal energy equation which describes 
the spatial and temporal water temperature variation in response to time 
dependent meteorological conditions. This equation has been derived elsewhere 
[9]· 

3t v 9 x 9 χ2 pCpd u ' 

where T = temperature, t = time, x = longitudinal space coordinate, D = axial 
dispersion coefficient, H = net heat flux at the water surface, p = density of 
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water, Cp = isobaric heat capacity of water, d = depth of the river or stream, v = 
axial stream velocity. 

The net heat flux at the water surface H is composed of many terms. The 
net non-radiative heat flux, HN R , at the water-air interface is written as 

H N R = " HE - Hc - HA. (2) 

The net radiative heat flux, HR , is written as 

HR = H[ - HB R (3) 

where Hj = total incoming heat flux which passes through the water surface, 
HBR is the long-wave radiation emitted by the water surface, HE is the heat flux 
due to evaporation, Hc is the heat loss due to conduction, and HA is the heat 
flux due to water movement across the air-water interface. The net heat flux H 
is written as 

H = H N R + HR. (4) 

HIT is the total incoming radiation flux above the river. A portion of this is 
reflected at the surface and additionally, some portion may be blocked due to 
shading. The total incoming radiation flux, H IT, consists of directional and 
diffuse short-wave solar radiation H s w and long-wave atmospheric radiation HLW-
(Thus H[T

 = Hsw + HLW·) A certain amount of both the short-wave and long­
wave components will be reflected at the air-water interface. In the Lake Hefner 
studies it was found that the empirical relation 

R = a 0 b (5) 

was satisfactory to describe the reflectivity R of HSw as a function of the solar 
attitude above the horizon Θ and two constants a and b [10]. For clear skies, 
the values are a = 1.18 and b =-0.77 for 1O°<0<8O°. 

The Lake Hefner studies found that the reflectivity of a water surface to 
long-wave radiation is 0.03 and independent of temperature over the range 
0°-30°C [10]. Utilizing Kirchoffs low and the fact that the absorptivity equals 
one minus the reflectivity, they stated that the absorptivity of a water surface is 
0.97. Therefore, 

Hi = S x (1.0-R) H s w + 0.97 HLW (6) 

where S = the fraction of short-wave radiation not blocked by vegetation or land 
features. 

In deriving Equation 1, the point temperature has been averaged with respect 
to vertical and transverse coordinates. As such, the model assumes that the net 
energy flux at the air-water interface is mixed uniformly in the vertical direction. 
Thus H appears as a source form in the differential equation rather than as a 
boundary condition. 
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The heat loss due to evaporation, HE, is estimated by 

HE = (A+BU)(VP S R -VP A I R )pX (7) 

which is the Dalton form of the evaporation equation and the most widely used 
is practice [11]. A and B are constants, U the wind velocity, p is the density of 
water, λ the latent heat of vaporization for water, VPSR the saturated vapor 
pressure of water at the river temperature and VPAiR the actual vapor pressure 
of water in air. 

The saturated vapor pressure of water was calculated from the empirical 
relation 

VPSR = 5 4 . 7 2 1 - ^ Ρ ^ - 5 . 0 0 1 6 In T (8) 

where the vapor pressure is in millibars and the temperature T is in K [9]. 
The actual vapor pressure of water in air VPA I R is calculated by first 

obtaining the saturated vapor pressure of water at the wet-bulb air temperature 
using Equation 8 and then using the following psychometric equation [12] : 

VPA I R = VPSWB - 6.6 x 10~4 x P x (TD B - TWB) x 

(1.0+1.15 x l O ~ 3 x T W B ) (9) 

where P = atmospheric pressure (mb), T Q B = dry-bulb temperature (°C), T\yB
 = 

wet-bulb temperature (°C), VPS W B = saturated vapor pressure of water at wet-
bulb temp. (mb). 

The flux describing the conduction of heat between the air and water Hc is 
calculated from HE and Bowen's ratio [13] as 

H c ^ ( w T ' T w } iH* (10) 

where 

7 = 0 . 6 1 ^ 3 - (Π) 

Here, the pressure P is in millibars. 
The advected energy flux HA is usually very small and can be neglected 

except during rainfall. 
As noted previously, the long-wave emissivity of a water surface is estimated 

to be 0.97. Emission of long-wave radiation from the water surface follows the 
Stefan-Boltzmann relation 

HB R = 0 .97aT4 . (12) 

Because of the "cold-skin" effect at the surface, the outgoing long-wave 
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radiation may be over-estimated by using the bulk-averaged temperature in 
Equation 12. With the "cold-skin" effect, the actual surface temperature may be 
as much as 2-3°C lower than the bulk temperature due to high evaporation and 
conduction losses. Since the error in HB R is on the order of 2-3 per cent, this is 
considered acceptable. 

The boundary conditions in the axial direction are as follows. 
1. The temperature of the water entering the headwaters of the river is the 

groundwater temperature. 

T(o,t) = Tg. (13) 

This temperature is constant on a daily basis but can vary slightly on a 
seasonal basis. 

2. Near the mouth of the river, the temperature is not a function of 
longitudinal position 

^ = 0. (14) 
ox 

where L = river length. 
This implies that the effect of tributary inflows at this point is very small and 

identical meterological conditions prevail over the final reach. If convective 
effects are large with respect to dispersive effects, this would not be valid. 

The initial condition required is a complete axial temperature profile at the 
initial time. For this study we chose to approximate the initial axial profile 
using measured temperatures and linearizing interpolation between measured 
points. When initial temperature profile data is not available, one can assume 
that the entire river is initially at the groundwater temperature. When using this 
condition, one must be careful to utilize only that part of the solution at time t 
which is upstream of the point which a particle moving from the source at the 
average stream velocity has reached by time t. 

To account for tributary inflows, an energy balance at the intersection of the 
tributary and main stream yields 

QuTu + QTTT = (Qu + Q T ) T R E (15) 

where Qu = volumetric flowrate of the upstream reach, Tu = water temperature 
just upstream of the tributary inflow, QT = volumetric flowrate of the tributary, 
TT = water temperature of the tributary, TRg = water temperature at reach 
entrance. 

The solution of Equation 1 must be accomplished on a reach by reach basis. 
The predicted temperature at the end of a reach (point of tributary inflow) 
must be employed in Equation 15 together with the tributary inflow 
temperature to calculate the upstream boundary condition for the next reach. 
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METHOD OF SOLUTION 
Equation 1 cannot be solved analytically due to the nonlinearity of H and, 

therefore, an approximate solution scheme must be developed. Numerical 
dispersion can be accounted for by utilizing a numerical dispersion coefficient 
Dp reported by Bella and Dobbins [14]. For regular geometry and constant 
parameters 

Dp = | ( A x - VAt) (16) 

Referring to Equation 16, Dp is substracted from the actual dispersion co­
efficient in the solution to negate the numerical dispersion effect. It is 
important to note that this holds only for Ax > V At. 

Using a finite difference technique, with the subscript i referring to spatial 
position and j referring to time, Equation 1 becomes, after rearrangement 

Ti j + i 
(D-Dp)At 

(Δχ) 2 
+ V, At 

Ax Ti - i j 1.0- V, Al 
Ax' 

2(D-Dp) 

T (D-Dp) At 
(Ax)2 

T i+ 1J Vpd· 

At 
(Ax)2J 

(17) 

A computational procedure is required to deal with tributary inflow. For 
any time step j , let i+1 be the first spatial node point downstream of a major 
tributary inflow. Let T T j be the temperature of the tributary, QT be the 
volumetric flow rate of the tributary, and Q; the flow rate of the river at node 
point i immediately upstream of the tributary. Assuming the mixing process to 
be rapid and complete, one can write a thermal energy balance between node 
points i and i+1 and solve for T i+;j 

T i + 1 J = T i J + QT 

Qi + Q- (TT,J - Ty). (18) 

Heat flux terms which contain the river temperature may be evaluated 
explicitly using the river temperature calculated at that node point for the 
previous time interval. 

The meterological data was collected on an hourly basis. A linear relation­
ship was assumed between hourly points and a weighted average was used such 
that each meteorological data point at time period j was the average over the 
time fromj-1 to j . 

Experimentally observed values of flow rate Q, average velocity V, and 
dispersion coefficient D were fitted to an equation of the form 

Q = Ee~FJ 

where J = Julian date, E and F are constants and 197 < J < 240. 

(19) 
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This form was utilized since the flows tended to diminish slowly with time 
during this time period and this is better expressed as an exponential decay than 
a linear one. E and F were determined from a linear regression of In Q vs. J. 

The average reach depth d can be defined by 

Qt t d =^r (20] 

where As is the surface area of the reach and tt is the time of travel for the 
reach. This equation works well for a well-defined channel where As can be 
evaluated fairly accurately and Q and tt are constant throughout the reach. This 
is usually the case for large rivers. 

Where possible, average reach depths were computed using Equation 20. 
Since this was not possible for the upstream two reaches were time-of-travel 
data was unavailable, an alternative method for evaluating depth was employed. 
In addition to problems evaluating d for some reaches, it was not possible to 
calculate S, the fraction of solar radiation not blocked by vegetation or land 
features, for any reach. Therefore both d and S were calculated for each reach 
by fitting values which gave the best prediction of observed river temperature 
during a three day period. 

The values of d and S are calculated for the furthest upstream reach first and 
then for each reach, in turn, as one moves downstream. This is done since the 
water temperature in an upstream reach can affect the calculated value in a 
downstream reach through convective and dispersive effects. 

In calculating d and S for each reach, Equation 17 with boundary conditions 
and initial condition specified previously is solved from the upstream end of the 
river to a preselected downstream end point. 

This preselected endpoint is the point immediately downstream of the down­
stream tributary boundary of the reach if there is a temperature monitoring 
station there. This can be used because Equation 18 relates the water 
temperature downstream of a tributary to the water temperature above that 
tributary, which is in the reach under consideration. Where this is not possible, 
the endpoint is selected as the point immediately upstream of the downstream 
tributary of the reach under consideration. 

The water temperature calculated at night is a function of d, but not S since 
Qsw = o. Therefore, the value of the temperature change during this period is a 
function of d alone. 

An initial value of d (dj) is chosen (based on an estimate from Equation 20 
where possible). The solution is then propagated for the three-day period. The 
actual value of the change in water temperature during the night AT is recorded 

AT 
as is the calculated value CT. The value of — is then averaged over the three-
day period. 
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AT _ (maximum observed T - minimum observed T) night 
CT (maximum calculated T - minimum calculated T) night (21) 

& 1er)- (ΊΊΛ 
m = Ö · (22) 

The value of d used is 

di 
d = - . (23) 

m 
Using the above value of d in Equation 17, the value of S is then calculated in 
the following manner. S is varied by 0.01 and for each S, the following 
equation is calculated for each day of the three-day period 

24 

0= AITICI2
 (24) 

where 0 = root-mean-square error in calculating T for that day, TO = hourly 
observed water temperature, and TC = hourly calculated water temperature at a 
given point in the interval under consideration. The three daily values of 0 are 
then averaged. This procedure is repeated for different values of S until a 
minimum value of the average 0 is calculated. The value of S which corresponds 
to this minimum value of 0 is chosen. 

The data utilized in this study were obtained in the Mattole River basin in 
northern California for a period July 16, 1975 to August 31, 1975. Figure 1 
shows the major features of the river basin as well as the location of water 
temperature and meteorological monitoring stations within the basin. All data 
collected in this study is available elsewhere [15]. 

DISCUSSION OF RESULTS 
The results of model calculations will be analyzed by comparison with the 

observed water temperature. The three quantities utilized for this analysis are 
the daily root-mean-square residual as calculated by Equation 24, the daily mean 
temperature defined as 

24 
Σ T 

and the daily amplitude ratio defined as 
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Punta Gorda 

EXPLANATION 
▲ TEMPERATURE-MONITORING STATION 
■ WEATHER-MONITORING STATION 

DRAINAGE BASIN BOUNDARY 

»Whitehorn 
s HUMBOLDT CO 
M.ENDOCINO CO 

10 15 KILOMETERS 

Figure 1. Mattole River basin. 

AR; maximum calculated T = minimum calculated T 
maximum observed T = minimum observed T 

(26) 

It is desirable for a model to have a small root-mean-square error. The 
magnitude of this value can be affected by timing errors in the temperature 
monitoring system which would offset the observed temperature curve. Timing 
errors were generally small but some periods may have errors large enough to 
significantly contribute to the RMS error. 

It is also desirable to have the model produce an amplitude ratio very close to 
1.0. An underestimation of the average depth will cause an overestimation of 
the calculated amplitude and an amplitude ratio greater than 1.0. An over-
estimation of the average depth will have the opposite effect. Overestimating 
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Figure 2. Temperature variation vs. time, Monitoring Station 1. 

the total incoming radiation will cause the amplitude ratio to be greater than 
1.0 and vice-versa. Also, small errors in the observed temperature will affect the 
amplitude ratio. If the observed amplitude is overestimated by 0.5°C, it will 
cause the amplitude ratio to be underestimated by 12 per cent for a 4.0°C 
observed amplitude and 6 per cent for an 8.0°C observed amplitude. 

The model should have the calculated daily mean temperature reproduce the 
observed mean temperature. Overestimation of the source term will cause the 
calculated mean to be larger than the observed mean. This can be due to 
overestimating the total incoming radiation, overestimating S, and to a lesser 
degree, underestimating the average depth. 

It is necessary to use all three parameters to evaluate the performance of the 
model. Figure 2 represents a good overall fit. Figure 3 represents an over-
estimation of the mean by 5°-6°C while the amplitude ratio is ± 0.1 of 1.0. 
Figure 4 represents an overestimation of the amplitude ratio by approximately 
0.60 even though the RMS value was less-than 2°C. Figure 5 represents an RMS 
value of approximately 1.5°C which is considered good, but the amplitude ratio 
is as high as 1.43 and the mean is overestimated by as much as 1.0°C. 
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DEPTH, CONVECTION AND DISPERSION 

Table 1 tabulates the three factors for each station for a one week period 
along the main channel on a daily basis for each model listed below plus the 
actual daily mean temperature. 

Models 

Model 1 -fitted average depth, convection and dispersion~\n this model, the 
average depth was fitted using Equation 23. Both this quantity and S were fitted 
using data from the three-day period August 6, 1975 to August 8, 1975. 

Model 2-variable average depth, convection and dispersion included-ln this 
model, the average depth is a variable calculated from Equation 20. The values 
of S used were the same as those used for Model 1 since the values obtained for 
Model 1 and 2 were approximately equal. 

Model 3-fitted depth, convection included and dispersion neglected'-This 
model is included to ascertain the significance of including dispersion in the 
solution. 
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Table 1. Daily Values of Root-Mean-Square Deviation (0), 
Amplitude Ratio (AR), and Mean Temperature (TM) 

Date 

8/6 

8/7 

8/8 

8/9 

8/10 

8/11 

8/12 

8/6 

Location 

1 

1 

1 

1 

1 

1 

1 

3 

Model 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

0 

1.24 
1.77 
1.24 
1.24 

0.71 
1.56 
0.71 
0.71 

0.35 
0.73 
0.35 
0.35 

0.33 
0.68 
0.33 
0.33 

0.45 
0.74 
0.45 
0.45 

0.38 
0.59 
0.38 
0.38 

0.41 
0.46 
0.41 
0.42 

1.25 
1.32 
1.25 
1.26 

AR 

1.20 
0.78 
1.20 
1.20 

0.84 
0.55 
0.84 
0.84 

1.02 
0.68 
1.04 
1.02 

1.05 
0.71 
1.06 
1.05 

0.92 
0.63 
0.93 
0.92 

1.07 
0.74 
1.06 
1.07 

1.15 
0.79 
1.13 
1.15 

1.36 
1.01 
1.36 
1.36 

TM 

18.9 
20.0 
20.6 
20.0 
20.0 
18.3 
18.7 
19.5 
18.7 
18.7 

19.0 
18.9 
19.3 
18.9 
18.9 
19.4 
19.2 
19.4 
19.2 
19.2 

19.6 
19.4 
19.5 
19.4 
19.4 

19.8 
19.6 
19.6 
19.6 
19.6 
19.4 
19.7 
19.8 
19.7 
19.7 

18.8 
19.5 
19.9 
19.5 
19.5 
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Table 1. (Cont'd.) 

Date Location Model 0 AR TM 

8/11 

8/12 

8/6 13 

8/7 13 

8/8 13 

8/9 13 

8/10 13 

8/11 13 

3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1.32 
1.21 

1.44 
1.47 
1.46 
1.37 

1.48 
1.51 
1.48 
1.41 

0.86 
1.52 
0.89 
0.74 

0.50 
1.21 
0.46 
0.92 

0.45 
1.07 
0.40 
1.15 

0.37 
1.03 
0.36 
0.84 

0.52 
1.11 
0.49 
1.16 

0.48 
1.13 
0.47 
0.93 

0.74 
0.78 

0.74 
0.70 
0.73 
0.76 

0.71 
0.68 
0.72 
0.74 

1.03 
1.91 
1.07 
1.05 

0.81 
1.49 
0.82 
0.84 

0.91 
1.50 
0.92 
0.91 

0.87 
1.49 
0.88 
0.88 

0.84 
1.42 
0.86 
0.83 

0.91 
1.52 
0.93 
0.90 

22.2 
22.2 

22.1 
22.4 
22.4 
22.4 
22.4 

21.2 
21.9 
21.9 
21.9 
21.9 

21.6 
22.4 
21.8 
22.4 
22.0 

21.3 
21.4 
21.0 
21.4 
20.8 
22.2 
21.9 
22.3 
22.0 
21.3 
22.1 
22.3 
22.4 
22.4 
21.6 
22.4 
22.4 
22.3 
22.4 
21.7 
22.4 
22.5 
22.6 
22.6 
21.9 
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Table 1. (Cont'd.) 

Date 

8/12 

8/6 

8/7 

8/8 

8/9 

8/10 

8/11 

8/12 

Location 

13 

14 

14 

14 

14 

14 

14 

14 

Model 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

0 

0.62 
0.84 
0.62 
0.78 

1.62 
1.42 
1.65 
1.38 

1.40 
1.36 
1.43 
1.06 

1.09 
1.25 
1.12 
0.80 

1.21 
1.56 
1.21 
0.83 

1.59 
1.58 
1.60 
1.15 

1.90 
2.22 
1.90 
1.51 

2.12 
1.77 
2.13 
1.74 

AR 

0.86 
1.45 
0.90 
0.83 

0.90 
1.72 
0.89 
0.91 

0.84 
1.57 
0.82 
0.84 

0.81 
1.46 
0.79 
0.83 

0.89 
1.60 
0.86 
0.91 

0.77 
1.45 
0.75 
0.82 

1.06 
1.97 
1.02 
1.12 

0.87 
1.70 
0.86 
0.94 

TM 

21.7 
22.1 
21.7 
22.1 
21.5 
20.7 
22.2 
21.2 
22.2 
22.0 
20.1 
21.1 
20.4 
21.1 
20.8 
21.2 
21.7 
21.7 
21.7 
21.3 
21.1 
22.0 
21.8 
22.0 
21.6 
20.9 
22.1 
21.8 
22.1 
21.7 
20.6 
22.3 
22.1 
22.3 
21.9 

19.0 
21.9 
21.2 
21.9 
21.5 
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Model 4—fitted depth, convection and dispersion neglected-The purpose of 
this model is to determine the importance of the convective term by comparing 
this model with Model 1 and 3. 

By analyzing the information in Table 1, the first result which becomes 
apparent is that Model 1 and 3 are virtually identical for all stations. This 
indicates that axial dispersion can be neglected without any loss in accuracy. 

Model 4 can then be compared with Model 1 to determine the validity of 
neglecting the convective term. The results generally show that Model 4 is 
inferior to Model 1. The convective effect becomes more dominant as you 
proceed downstream, so the results for the two models deviate as you move 
downstream. This result indicates that the convective term should not be 
neglected. 

Comparison of Model 1 and 2 would demonstrate if Equation 23 can be used 
to empirically determine the average depth if data is not available. Model 1 
compares very favorably with Model 2 in the prediction of daily mean tempera­
ture and gives a better estimation of the amplitude ratio. 

SUMMARY AND CONCLUSIONS 
Using an initial temperature distribution, and a groundwater temperature in 

the headwaters region, it is possible to obtain good temperature estimates 
throughout an entire river basin using the one dimensions model presented here. 
It must be recognized that such model results will not be as accurate as those 
obtained using similar models on individual short reaches where RMS errors of 
less than 1°C can be expected. RMS errors of 2-3°C appear to be more repre­
sentative of the results when modeling an entire basin. 

Tributary mixing need only be incorporated for major tributaries. As a rule 
of thumb, a tributary with a discharge less than 5 per cent of the discharge of 
the mainstem at the point of confluence can be ignored. 

The meteorological data required is wet-bulb and dry-bulb air temperature, 
wind velocity, incoming short-wave radiation, and atmospheric long-wave 
radiation. Very special care should be taken to obtain radiation measurements 
as accurately as possible since they are the major contributors to the net heat 
exchange term. This is especially difficult during periods with varying amounts 
of cloud cover. An integrator greatly simplifies the analysis of data during 
cloudy periods. 

Estimation of the average depth by Equation 20 is crucial to obtaining 
accurate results since this quantity affects the entire source term. This requires 
obtaining accurate flow rate, time of travel, and surface area data repeatedly 
throughout the period one wishes to investigate. Equation 20 is superior to 
Equation 23 since it allows the average depth to vary continuously with time. 

If this is not possible, then a fitted average depth should be estimated on a 
monthly basis. This will prove satisfactory during stable flow conditions but 
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will be highly inaccurate during rain storm activity since the depth changes 
rapidly during this period. 

The fraction of short-wave radiation actually passing through the water 
surface S will vary on a seasonal basis. Therefore, S should be estimated on a 
monthly basis to obtain an estimation of the seasonal variation. 

Dispersion has been shown to be insignificant during this study, but one 
should not neglect it a priori. Since time of travel data is required for measuring 
the average depth, one can easily obtain dispersion coefficients from this data 
and then calculate a Peclet Number to ascertain if dispersion can be neglected. 

Convective effects cannot in general be neglected. Again, accurate estimation 
of the time of travel for calculating the average depth will also insure accurate 
velocity measurements. 

The results for Model 2, which contains just one fitted parameter S, show 
that one can obtain solutions where the root-mean-square deviation will be less 
than 3°C, the amplitude ratio will be ± 0.20 of 1.0, and the calculated mean will 
be within 2°C of observed data. This can be improved by improved estimation 
of the average depth. 

The results for Model 1, which contains two fitted parameters d and S, will 
yield comparable results during steady flow conditions but will produce larger 
errors during rain storm activity since the actual average depth will very 
considerably. 

Model 2 is superior to Model 1 in two respects. There is one less parameter to 
evaluate and Model 1 allows the average depth to vary continuously with time. 
which Model 2 does not do. Model 1 has the benefit of giving results comparable 
to Model 2 during steady flow conditions. This is especially useful if there is 
insufficient data to calculate the average depth by Equation 20. 

In some cases temperature data may not be available for a major tributary. 
By estimating d and S and approximating or neglecting convection and dispersion 
(e.g., utilizing Model 4), one can solve Equation 17 using available meteorolog­
ical data and obtain an estimate of the water temperature of the tributary. If 
velocity data is available, it can be incorporated to obtain a better fit. 
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