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Abstract – We report a catalytic asymmetric oxidation of cyclic sulfides that uses 

a combination of aluminum(salalen) complex 1 as the catalyst and aqueous 

hydrogen peroxide as the oxidant. Oxidations of six-membered cyclic sulfides, 

thiochroman-4-ones, furnish the corresponding sulfoxides in high yield with high 

enantioselectivity. Five-membered 2,3-dihydrobenzo[b]thiophene and 

seven-membered dibenzo[b,e]thiepin-11(6H)-one are also good substrates for the 

aluminum-catalyzed system.

 

Optically active sulfoxides are of great importance as chiral ligands and auxiliaries in organic synthesis. 

Recently Kobayashi and co-workers disclosed its excellent catalysis as a neutral 

coordinate-organocatalyst for the asymmetric allylation of hydrazones with allylsilanes.1,2 Moreover, 

chiral sulfoxides are found in many important bioactive compounds such as omeprazole and its analogs, 

which are gastric proton-pump inhibitors for dyspepsia, peptic ulcer disease, etc. Enantioselective 

oxidation of prochiral sulfides is the most direct and effective approach to optically active sulfoxides. 

Thus, the development of highly efficient synthetic methods has attracted much attention from the 

synthetic community.3-11 While many improvements have been achieved for asymmetric sulfur oxidation 

and optically active chiral sulfoxides have a potential for pharmaceuticals and chiral ligands,12,13 there are 

still only a few catalytic systems for enantioselective oxidation of cyclic sulfides with a wide substrate 

scope.14 Enzymatic methods are also available, but the substrates are inherently limited.15,16 Moreover, we 

were intrigued with the asymmetric induction in the oxidation of cyclic sulfides. Two lone pairs on sulfur 

atom of cyclic sulfides are intrinsically different, because of a ring-conformational isomerism. Due to the 
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problem, cyclic sulfides are a difficult class of substrates for asymmetric oxidation chemistry.  

Recently, we reported an aluminum-based catalyst, Al(salalen) complex 1, that uses aqueous hydrogen 

peroxide as the stoichiometric oxidant to oxidize various sulfides into the corresponding sulfoxides.17-19 

Reactions of acyclic alkyl aryl sulfides, acyclic dialkyl sulfides and cyclic thioacetals proceeded smoothly 

to afford the corresponding mono-oxides with high to excellent enantioselectivity. Herein, we report the 

highly enantioselective oxidation of cyclic sulfides using the Al(salalen) complex 1 as the catalyst 

(Scheme 1). 
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Scheme 1. Al(salalen)-catalyzed asymmetric oxidation of cyclic sulfides. 

 

We examined the asymmetric oxidation of several cyclic sulfides in methanol as the solvent with 2 mol% 

of catalyst in the presence of phosphate buffer at 25 °C (Figure 2).20-27 In the oxidation of 

thiochroman-4-one, the corresponding sulfoxide was obtained in 64% with 97% ee (entry 1). While the 

highest ee value of 99% was achieved with the reaction of 6-methylthiochroman-4-one, the substitution 

of the methyl group by the chloro group led to diminished enantioselectivity (entries 2 and 3). The 

reaction of 4-benzyl-2H-benzo[b][1,4]thiazin-3(4H)-one was slow and the mono-oxide was yielded in 

only 18% (entry 4). Although it was suspected that the produced sulfoxide might inhibit the reaction by 

coordination to the aluminum ion, the reaction of 6-methylthiochroman-4-one proceeded smoothly, even 

in the presence of 20 mol% of the racemic sulfoxide. High enantioselectivity was also achieved in the 

oxidation of a seven-membered substrate, dibenzo[b,e]thiepin-11(6H)-one (entry 5). The oxidation of the 

five-membered 2,3-dihydrobenzo[b]thiophene furnished the mono-oxide with 99% ee (entry 6). 

Especially, it is noteworthy that the present oxidation system can efficiently differentiate two α- and 

α’-methylene carbons. A cyclic dialkyl sulfide, 2-isothiochroman-4-one, was also a good substrate for 

this oxidation system to give the sulfoxide with 90% ee (entry 7). In these oxidations, over-oxidation of 

sulfoxides was observed, and the corresponding sulfones were yielded in 5-20%.  
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Table 1. Asymmetric oxidation of cyclic sulfides catalyzed by Al(salalen) complex 1. 

Entry Substrate Product Yield/%a Ee/%b 

1 
S
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S+

O

O!

(S)

 

2 64 97 
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3 86 99 
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4 82 87 
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O
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5 18 62 

5 
S

O  
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O

!O

 

6 81 95 

6 
S

 
(S)S+

O!

 
7 83 99 

7 
S

O  

S+

O

O!

 
8 77 90 

a Isolated yield. b Determined by chiral HPLC analysis. 

 

In summary, we found that Al(salalen) complex 1 was an efficient catalyst for asymmetric oxidation of 

cyclic sulfides. High to excellent enantioselectivity was obtained in the oxidation of various cyclic 

sulfides ranging from five- to seven-membered ones.   
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