
HETEROCYCLES, Vol. 42, No. 2,1996 475 

ASYMMETRIC DIALKYLATION OF CHIRAL 
2-BENZAZEPINE FORMAMIDINES~ 

A. I. Meyers' and Richard Hutchings 

Department of Chemistry, Colorado State University, Fort Collins. Cobrado, 80523 
U.S.A. 

Abstract - Repeated metallation and alkylation of an (S)-(+)+eft- 

leucinol derived 2,3,4,5-tetrahydro-1H-2-benzazepine formamidine 

leads to the corresponding 1 , 1  -dialkyl-2-benzaepines in good yields 

and with excellent enantioselectivities. 

Previously, we reported that metallation and alkylation of chiral 2.3,4,5-tetrahydro-2-benzazepine 

formamidines (5) provided the corresponding monoalkylated 2-benzazepines (6) in good yield 

and with high enantioselectivities (84-96% ee).' At that time, the absolute stereochemistry of the 

major isomer resulting from these alkylations was tentatively assigned the Sconfiguration.2 This 

assignment has subsequently been confirmed by anomolous dispersion single crystal X-ray 

analysis3 and was found to be in agreement with the predicted assignment (as shown for 6). Our 

continued studies in this area have now been extended to a synthesis of the related quaternary 

substituted compounds (7). 

It was earlier shown4 that treatment of the tert-leucine methyl ether isoquinoline formamidine (1) 

with n-butyllithium in THF at -78 "C provides a 3' a-amino anion which can be alkylated with a 

variety of simple electrophiles. Suprisingly, an attempt to alkylate the benzazepine formamidine 

(2) under similar conditions failed to provide the corresponding 1,l-dimethylbenzazepine (3). 

This suggested that, a) either 2 was not deprotonated under these conditions; or b) that approach 

of the electrophile (Mel) was severely hindered in this system. 

t Dedicated to the memory of Professor Yoshii Ban whose important contributions to organic chemistry will not be 
forgotten. 
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It was subsequently confirmed by a deuterium quenching study, that 2 was, indeed, not 

deprotonated by n-butyllithium at -78 OC (Table 1). Additionally, it was found that both t- 

butyllithium and sec-butyllithium failed to deprotonate this compound at -78 OC, although the 

reaction with secbutyllithiurn provided partial deuterium incorporation after 1 h (-10% by 1~ nmr). 

It was found after some experimentation, that treatment of 2 with secbutyllithium (-78 OC) and then 

warming to -40 OC (1 h) provided 4 with > 95 % deuterium incorporation ( l H  nmr analysis). 

~ a b l ' e  1. Various conditions for deprotonation of 2. 

Entry Base (RLi) Temp (Time) % Deuterium 

1 n-BuLi -78 OC ( I  .O h) 0 

2 t-BuLi -78 'C (1.0 h) 0 

3 secBuLi -78 "C (1 .O h) -10 

4 seoBuLi -78 "C + -40 OC (1 .O h) >95 
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Having now developed suitable conditions to effect a second deprotonation of the monoalkylated 

benzazepine formamidine (2), a series of enantiomerically enriched 1 ,I-dialkyl-2,3,4,5-tetrahydro- 

2-benzazepines (7) were prepared from the chiral benzazepine formamidine (5) (Table 2). Thus, 

metallation (n-BuLi, THF, -78 "C) and alkylation (-90 "C, RIX) of (5) provided the crude 

monoalkylated formamidines (6) which were filtered through a short column of silica gel 

(hexaneslethyl acetateIEtsN 50:45:5) and immediately subjected to a second metalation-alkylation 

sequence (seeBuLi, THF, -40 OC, 1 h; -90 OC, R2X).5 Thereafter, methanol quench (-90 OC) and 

removal of the chiral auxiliary (E~OH/NH~NH~~H~O/HOAC (17:2:t), 60 OC, 6 h) provided the 

dialkylated amines (7) in good yields and with moderate to excellent enantioselectivities. 

Table 2. Asymmetric dialkylation of t-leucinol benzazepine formamidine (5). 

Entry R ~ X  R ~ X  Yield 7 (%) Ratio of 7 (S:R)a 

1 Me l Mel 53 -- -- - -- 

2 Me1 . n-PrBr 84 25:75b 

3 n-PrBr Mel 80 >99:l b 

4 Mel BnBr 56 65:35C 

5 BnBr Mel 60 >99:1C 

6 I(CH2)30TBS Mel 76 >99:ld 

7 n-PrBr MeOCH2CI 84 2:98e 

8' n-PrBr MeOCH2CI 70 6:94e 
a) Unless otherwise indicated ratios were determined by Chiral hplc using a Diacel Industries 
Chiracel OD column. b) Analvsis of mnethoxvbenzamide (Chiracel OJI. H ~ x ~ ~ ~ / ~ s o D ~ o D ~ ~ o I  
(96~4). Flow = 0.75 mllmin. c) ~nabsis of pmeihoxybenzamide. ~exanell&~ro~anol (95:5): FIO& 
= 0.55 mumin. d) Analps of pmethoxybenzamide. Hexanellsopropanol (98:2). Flow = 0.60 
mumin. e) Analysis of naphthamide, HexanellEthanol (98:2). Fbw = 0.75 mumin. 11 alkvlation of . . . . 
(Spaline methyl ether binzazepine formamidine. 
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As indicated above, alkylation of the intermediate monoalkylated formamidines (6) occurred 

predominately from the a-face with net retention of configuration.6~' This sense of addition is 

consistent with earlier studies involving the isoquinoline formamidines.2 The enantiomeric 

excesses for the 2-benzazepine alkylations, however, were significantly higher (10-20%) than in 

the corresponding isoquinoline system (Entries 3, 5-8). Moreover, it was found that the extent of 

asymmetric induction in the 2-benzazepines was significantly attenuated by the nature of the R- 

group at C-1. Thus, when R ~ X  was iodomethane (Entries 2 and 4), the second alkylation occurred 

with greatly decreased levels of diastereoselection, indicating a previously unobserved steric 

effect. On the other hand, introduction of iodomethane in the second alkylation step gave 

excellent stereoselectivity (Entries 3, 5. 6). A change from the tert-leucinol derived formamidine to 

the valinol derived formamidine (Entries 7, 8) showed only a negligible effect on the overall level 

of diastereoselection and this represents a significant deviation from the previously studied 

isoquinoline system, which experienced an additional 10% drop in selectivity under these 

conditions.2 Finally, these data appear to indicate that conformational "flexibility" in the 7- 

membered benzazepine ring plays an important role in determining the level of diastereoselection 

for the dialkylation process. Additional studies of this system are in progress. 
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