
THE SUBSTITUENT EFFECT AND ASSIGNMENT OF THE ¹³C-NMR SPECTRA OF SOME 2-SUBSTITUTED 1,3-DIAZAZULENES

Hitoshi Takeshita* and Hiroaki Mametsuka Research Institute of Industrial Science, 86, Kyushu University, Hakozaki, Fukuoka 812, Japan

Abstract — The ¹³C-NMR spectral signals of 1,3-diazazulene derivatives were unequivocally assigned by aids of ²H and ¹⁵N labellings. Variation of the C-2 substituents caused no appreciable effect on the chemical shifts of C-5 and C-9.

The ¹³C-NMR spectrum is a powerful tool to study the fine structures of organic compounds, and a number of data on various compounds have been accumulated. But, as far as nonbenzenoid-aromatic compounds are concerned, still relatively small number of studies have been published to date. In connection with the study on the synthesis of zoathoxanthins and paragracines, we needed the NMR spectra of the 1,3-diazazulene derivatives, and we have carried out the measurements on a

series of derivatives. The 1,3-diazazulenes carry nitrogens at the most electron-rich positions of the azulene skeleton, and in fact a dipolar structure is contributed in substantially as judged on the dipole

moment measurement, μ =4.03 D.³ After a report by S. Ito et al.⁴ in 1971, no other $^{13}\text{C-NMR}$ of 1,3-diazazulenes has been recorded despite they belong to a fundamental non-alternant conjugate system until a recent paper by Mathias and Overberger⁵ which described an assignment of the $^{13}\text{C-NMR}$ spectra of two 1,3-diazazulenes. We will herein report our works to revise a part of their assignment.

The NMR spectra of 1,3-diazazulene ($\frac{1}{6}$:X=H) and some 2-substituted derivatives ($\frac{2}{6}$ - $\frac{1}{6}$) is compiled in Table 1. Most of the samples were measured in CDCl3, but some were measured in CD $_3$ SOCD $_3$. The assignment of chemical shifts is based on the mutual comparisons, the measurements on the 4,6,8-trideuterio derivatives of $\frac{1}{6}$, $\frac{1}{6}$ R (X=OMe), $\frac{1}{6}$ R (X=NMe $_2$), $\frac{1}{6}$ R (X=SMe), $\frac{1}{6}$ R (X=OH), and $\frac{1}{6}$ R (X=SH), and on

the 1,3-di-¹⁵N-derivatives of 1, 2a, 2c, and 2e. First of all, the signals of 1 appeared, from high to low field, C-5, C-4, C-6, C-9 and C-2, in the same order to the asignment by Overberger, with the figures showing a good coincidence to the papers. However, the chemical shifts of 2g appeared in an order of C-4, C-6, C-5, C-9 and C-2, showing a contradiction with Overberger's results. They have made the assimment by use of 2-¹³C-enriched derivative of 1, but the assignment of 2g seems to be deduced by an analogy. Our revised assignment is based on the following experiments.

Thus, Table 1 shows that throughout the series of compounds, the chemical shifts of C-5 and C-9 are nearly constant, while the others of the signals suffered a considerable effect due to the C-2 substituents. This must be reasonable since C-4, C-6 and C-8 are opposite terminals to C-2 in a formal conjugate system.

Table 1. The $^{13}\text{C-NMR}$ Chemical Shifts of Some 1,3-Diazazulene Derivatives (in CDCl $_3$ or CD $_3$ SOCD $_3$).

Х		C-2	C-4	C-5	C-6	C-9
į	н	168.2	136.2	133.9	139.3	162.4
2a	OMe	179.3	130.4	134.9	134.6	163.6
2b	NHMe	175.1	125.2	134.9	130.4	165.2
25 25	NMe ₂	171.8	124.8	134.7	129.6	165.5
дđ	Ph	176.7	129.4	134.2	137.4	163.9
e E	SMe	182.4	130.7	134.6	135.9	163.4
£	SCH2CH=CH2	181.4	130.8	134.5	135.9	163.4
ą	SCH ₂ C≡CH	179.9	131.4	134.6	136.5	163.4
ļħ	SCH ₂ Ph	181.6	130.9	134.5	135.9	163.5
į	SCH ₂ C ₆ H ₄ Me-p	181.7	130.8	134.5	135.9	163.5
Ę	SCH ₂ C ₆ H ₄ NO ₂ -p	180.2	131.4	134.7	136.5	163.4
ķ	SCH ₂ COOMe	179.9	131.5	134.6	136.5	163.4
m	SCH ₂ COOEt	180.0	131.4	134.6	136.4	163.4
ņ	C1 _	168.6	135.2	134.7	139.3	162.7
R.	OH*	166.0	121.3	137.9	130.9	157.4
P.	NH ₂ *	175.5	123.7	134.4	129.7	165.0
g	SH*	188.3	122.9	138.2	133.0	158.3

The solvent dependencies of the chemical shifts were then examined with 1, 2a and 2e, but except in the case of CF_3COOD , no appreciable change of chemical shifts can be observed. This might be attributable to a substantial contribution of the polarized structures for 1 and 2 even in the non-polar solvents. The 13C-NMR

spectra in CF₃COOD caused a considerable change of the chemical shifts for all the carbon atoms, but the substituent effect on the chemical shift, $\Delta \delta_{2}^{-\delta} = \delta_{1}^{-\delta} = \delta_{2}^{-\delta}$, in this solvent, of C-5 [$\Delta \delta_{2} = -2.2$, $\Delta \delta_{2} = -1.9$] and C-9 [$\Delta \delta_{2} = -1.7$, $\Delta \delta_{2} = -1.7$, $\Delta \delta_{2} = -2.1$] were again smaller than those of C-4 [$\Delta \delta_{2} = 8.3$, $\Delta \delta_{2} = 8.7$] and of C-6 [$\Delta \delta_{2} = 6.0$, $\Delta \delta_{2} = 4.9$] as calculated from the figures in Table 2. These also supported our assignment.

Table 2. The Solvent Dependence of the Chemical Shifts (δ) of Some 1,3-Diazazulene Derivatives.

		C-2	C-4	C-5	C-6	C-9
l: X=H	CC1 ₄	168.4	135.2	132.4	137.6	162.3
•	CDC13	168.2	136.2	133.9	139.3	162.4
	c ₆ D ₆	169.2	135.7	132.8	138.0	163.0
	CD ₃ COCD ₃	169.0	136.7	134.6	140.3	163.2
	C ₅ D ₅ N	169.0	136.3	134.0	139.6	163.0
	CD3OD	167.2	137.8	136.6	142.4	162.3
	CD ₃ SOCD ₃	167.8	136.1	134.3	140.1	161.8
	CF ₃ COOD	155.8	145.3	142.7	152.1	154.4
2ę:X=SMe	CC14	182.4	129.8	133.3	134.3	163.2
	CDCi ₃	182.4	130.7	134.6	135.9	163.4
	c ^e pe_	183.6	130.3	133.8	134.8	164.1
	CD3COCD3	182.7	131.6	135.6	137.2	164.2
	C ₅ D ₅ N	182.5	131.1	134.9	136.4	163.9
	CD3OD	182.3	132.3	137.0	138.7	163.8
	CD3SOCD3	180.6	130.1	135.2	137.0	162.7
	CF3COOD	173.6	136.6	144.6	147.2	156.5
2a:X=OMe	CC14	179.4	129.2	133.5	132.9	163.4
	CDC13	179.3	130.4	134.9	134.6	163.6
	C ₆ D ₆	180.6	130.0	134.1	133.5	164.3
	CD ₃ COCD ₃	180.3	130.9	135.8	135.6	164.4
	C ₅ D ₅ N	179.9	130.6	135.2	135.0	163.9
	CD3OD	179.1	131.9	137.3	137.4	163.7
	CD3SOCD3	178.6	130.3	135.3	135.3	162.8
	CF ₃ COOD	167.7	137.0	144.9	146.1	156.1

Finnaly, the assignment was assured by the isotope labellings: The $^{13}\text{C-NMR}$ spectra of 4,6,8-trideuterio derivative of 2g, illustrated in Fig. 1, clearly retained the signals at δ 138.2, 158.3 and 188.3, to which we assigned as C-5, C-9, and C-2. In addition, the observations of the $^{15}\text{N-}^{13}\text{C-couplings}$ by the $^{13}\text{C-NMR}$ measurements

on the $\text{di-}^{15}\text{N-labelled compounds}^7$ of 1, 2a, 2c, and 2c. The NMR of this enriched sample of 2c is illustrated in Fig. 2.

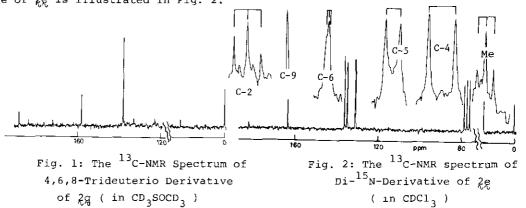


Table 3 summarized the results of ${}^{n}J({}^{15}N-{}^{13}C)$.

Table 3. The The ${}^{n}J({}^{15}N-{}^{13}C)$ of some Di- ${}^{15}N-Azazulenes$ (Hz).

n _J (С-х)	¹ J (C-2)	¹ J(С-9)	² J(C-4)	³ J(C-5)	⁴ J(C-6)	³ J(Me)
	4.0	1.5	7.5	4.0	0	
₹₹	2.6	1.2	8.1	4.4	0	2.3
35	3.2	2.0	8.5	4.4	0	1.6
रेह	4.1	0	8.1	4.4	0.5	2.4

The above evidences are consistent in each other, and the assignment deduced should be true. Detailed features of the spectra will be discussed elsewhere.

References and Notes

- L. Cariello, S. Crescenzi, G. Prota, and L. Zanetti, <u>Tetrahedron</u>, 1974, 30, 4191.
- 2. Y. Komoda, S. Kaneko, M. Yamamoto, M. Ishikawa, A. Itai, and Y. IItaka, Chem. Pharm. Bull. Japan, 1975, 23, 2464.
- 3. Y. Kurita and M. Kubo, J. Am. Chem. Soc., 1957, 79, 5460.
- J. Tsunetsugu, S. Ito, H. Ohtani, T. Nishida, and K. Kushida, 'Abstract Papers of Third International Symposium of Heterocyclic Chemistry', p 523 (Sendai, Aug., 1971).
- 5. L. J. Mathias and C. G. Overberger, <u>J. Org. Chem.</u>, 1978, 43, 3526.
- 6. The ¹³C-NMR spectra were obtained by measurements with an FX 100 Model Spectrometer (JEOL Co.) at 25 MHz with FT mode.
- 7. The $^{15}\text{N-NMR}$ of 2e in CDCl $_3$ exhibited a signal at 111.4 ppm up field from the external standard, NH $_4$ NO $_3$. An $^{15}\text{N-NMR}$ study on the 1 and 2 will be a subject of another paper.

Received, 31st January, 1979