ACTIVATED NITRILES IN HETEROCYCLIC SYNTHESIS: NOVEL SYNTHESIS OF THIOPYRANO [2,3-d] THIAZOLES

Sanaa O. Abd Allah, Hamed A. Ead, Nazmi A. Kassab and Nadia H. Metwali

Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt

<u>Abstract</u> - A novel synthesis of thiopyrano[2,3-d]thiazoles is reported via the reaction of arylmethylenemalononitriles with thiazolidin-2-one-4-thione and thiazolidin-2,4-dithione.

As a part of our interest for developing some new simple and efficient routes for the synthesis of fused thiazoles of probable biological activities, 1-3 we report here on the utility of the reaction of arylmethylenemalononitriles with thiazolidin-2-one-4-thione, its N-phenyl derivative and thiazolidin-2,4-dithione for the synthesis of thiopyrano [2,3-d] thiazoles. The work offers a potential new approach for the synthesis of such fused ring system.

The reaction between equimolecular amounts (20 mmol) of arylmethylenemalononitriles (1a,b) and/or thiazolidin-2-one-4-thione⁴ (2a), its 3-phenyl derivative⁵ (2b) or thiazolidin-2,4-dithione⁶ (2c), at room temperature in absolute ethanol (30 ml) in the presence of a few drops of triethylamine for 3 h, afforded colourless products (3a-f) which were crystallised from ethanol. The molecular formulae of these products correspond to addition of (1a,b) to each of (2a-c). Two alternative theoretically possible structures 3 and 4 were considered for the adducts. Structure 3 was assigned for the reaction products based on their ¹H NMR and IR spectra. The IR spectrum of 3a as a typical example for the adducts 3a-f showed the presence of \mathcal{V}_{NH} at 3220 cm⁻¹, a strong $\mathcal{V}_{C=N}$ at 2240 cm⁻¹ and a strong $\mathcal{V}_{C=0}$ at 1680 cm⁻¹. The ¹H NMR of 3a showed the signals at \mathcal{E} (ppm, GDCl₃) 9 (s,1H,NH), 8 (s,5H,Ph), 4.2 (d,1H, H-C=C=S), 3.7 (t,1H,Ar-CH-) and 2.7 (d,1H,-CH-CEN). Furthermore, the adduct 3a was found to be identical (mp and mixed mp) with the product obtained by the reaction between equimolecular amounts (20 mmol) of malononitrile and 5-benzylidenethiazol-idin-2-one-4-thione (5) in absolute ethanol in the presence of triethylamine at room

List for 5[Aryl(dicyanomethyl)methyl]-1,3-thiazolidin-2,4-dione derivatives (3a-f) and thiopyrano[2,3-d]thiazole derivatives (6a-f).

i. Ar	R	X	M.P.	Yield (%)	Compd	. Ar	R	X	M.P. (°C)	Yield (%)
с ₆ н ₅	Н	0	195	70	6a	с ₆ н ₅	Н	0	275	55
C6H4OCH3-p	H	0	199	76	6b	C6H4OCH3-P	H	0	260	50
с ₆ н ₅	^C 6 ^H 5	0	184	68		C ₆ H ₅	с ₆ н ₅	0	260	60
C6H4OCH3-p	с ₆ н ₅	0	197	75		C6H4OCH3-p	-	0	272	52
	H	S	205	65		, ,	H	\$	230	52
•	H	S	190	72	6f ~		H	s	245	55
	с ₆ н ₄ осн ₃ -р с ₆ н ₅ с ₆ н ₄ осн ₃ -р с ₆ н ₅	C ₆ H ₄ OCH ₃ -P H C ₆ H ₅ C ₆ H ₅ C ₆ H ₄ OCH ₃ -P C ₆ H ₅ C ₆ H ₅ H	C ₆ H ₄ OCH ₃ -P H O C ₆ H ₅ C ₆ H ₅ O C ₆ H ₄ OCH ₃ -P C ₆ H ₅ O C ₆ H ₅ H S	C ₆ H ₅ H 0 195 C ₆ H ₄ OCH ₃ -P H 0 199 C ₆ H ₅ C ₆ H ₅ 0 184 C ₆ H ₄ OCH ₃ -P C ₆ H ₅ 0 197 C ₆ H ₅ H S 205	C ₆ H ₅ H 0 195 70 C ₆ H ₄ OCH ₃ -p H 0 199 76 C ₆ H ₄ OCH ₃ -p C ₆ H ₅ 0 184 68 C ₆ H ₄ OCH ₃ -p C ₆ H ₅ 0 197 75 C ₆ H ₅ H S 205 65	C ₆ H ₅ H O 195 70 6a C ₆ H ₄ OCH ₃ -P H O 199 76 6b C ₆ H ₄ OCH ₃ -P C ₆ H ₅ O 184 68 6c C ₆ H ₄ OCH ₃ -P C ₆ H ₅ O 197 75 6d C ₆ H ₅ B S 205 65 6e	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*}Satisfactory elemental analyses for the newly synthesised compounds were obtained.

temperature. When the reaction between arylmethylenemalononitriles (1a,b) and the thiazolidinone derivatives (2a-c) was carried out in refluxing absolute ethanol in the presence of a few drops of triethylamine for 1h, 1:1 adducts were obtained. Structure (6a-f) or its tautomer was assigned for these adducts based on ¹H NMR and IR data. The IR spectrum of 6a as a typical example for (6a-f) showed the presence of a strong $\mathcal{V}_{\rm NH2}$ at 3420, 3320 cm⁻¹, ring $\mathcal{V}_{\rm NH}$ at 3200 cm⁻¹, strong $\mathcal{V}_{\rm C=N}$ at 2220 cm⁻¹, ring $\mathcal{V}_{\rm C=0}$ at 1650 cm⁻¹ and a strong $\mathcal{V}_{\rm C=C}$ at 1610 cm⁻¹. The ¹H NMR spectrum of 6a revealed the presence of a low field absorption for NH₂ at 5 (ppm, CDCl₃) 11.2 (b,2H,NH₂), due to the anisotropy of the C=C group, 8.1 (s,1H,NH), 7.7 (s,5H,Ph) and 3.8 (s,1H,Ar-CH-). Besides, refluxing the products (3a-f) in absolute ethanol containing a few drops of triethylamine for 1h afforded (6a-f) respectively. The formation of the adducts 6 is assumed to proceed via initial Michael addition to yield acyclic adducts 3 which when heated in refluxing ethanol in the presence of triethylamine cyclised via the attack of the mercapto group on the cyano group affording the cyclic products 6.

REFERENCES

- 1. N.A. Kassab, S.O. Abd Allah and N.A. Messeha, J. prakt. Chem., 1974, 316, 209.
- 2. N.A. Kassab, S.O. Abd Allah and H.A. Ead, Z. Naturforsch., 1975, 30b, 441.
- 3. N.A. Kassab, S.O. Abd Allah and H.A. Ead, Z. Naturforsch., 1976, 31b, 380.
- 4. A.P. Grishchuk, I.D. Komaritsa and S.N. Baranov, Khim. Geterotsikl. Soedin., 1966, 706; Chem. Abstr., 1967, 66, 75941.
- 5. N.E. Plevachuk, Farm. Zh (Kiev), 1970, 25, 28; Chem. Abstr., 1970, 73, 25344.
- 6. A.P. Grishchuk, <u>Khim. Geterotsikl. Soedin.</u>, 1966, 372; <u>Chem. Abstr.</u>, 1966, 65,

Received, 1st November, 1982