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Abstract – Methyl insertion reactions of tetrahydropyrans having a 

C1’-mesyloxy group on the C2-side chain, mediated by trimethylaluminum, were 

investigated. Removal of the mesyloxy group, 1,2-hydride shift and/or 

ring-expansion, and methyl insertion took place concertedly, depending on the 

stereostructure of the substrate, to give 2-methylated tetrahydropyran and/or 2- or 

3-methylated oxepane. 

Since brevetoxin B was isolated as a red tide toxin, many marine polycyclic ethers have been reported.1 

They have a unique trans-fused polycyclic ether ring system and exhibit potent biological activities, such 

as neurotoxicity, cytotoxicity, and antiviral and antifungal activities. The marine natural products often 

contain cyclic ethers having a C2-methyl group as an angular methyl group, such as 

2-methyl-tetrahydropyran. In connection with synthetic studies on marine polycyclic ethers, we have 

recently developed a new synthetic method for 2,3-trans-2-methyl-tetrahydropyran-3-ol and oxepan-3-ol 

derivatives through a unique methyl insertion reaction of cyclic ethers (1) having mesylate on the C2-side 

chain.2,3 Thus, upon treatment of cyclic ethers (1) having a C1’-mesyloxy (OMs) group with 

trimethylaluminum (Me3Al), methyl insertion took place to give the C2-methylated compound (2) as the 

sole product (Figure 1). The present reaction is considered to take place concertedly via removal of the 

mesyloxy group, 1,2-hydride shift, and methyl insertion into the resulting oxonium ion.  

We now report further studies on the present reaction using the four possible stereoisomers of 

2-(1’-mesyloxy)ethyl-5-hexyl-tetrahydropyrans (3–6) (Figure 2).4,5   

HETEROCYCLES, Vol. 80, No. 2, 2010 805



 

 

 

 

 

Figure 1.  Methyl insertion reaction of 1 with Me3Al. 

 

 

 

 

 

 

Figure 2.  Four possible stereoisomers (3–6). 

 

First, the reactions of two stereoisomers (3 and 4) having 1’,2-syn-configuration with Me3Al were 

examined in n-hexane at 0 °C (Scheme 1).6 Upon treatment of 1’,2-syn-2,6-syn-tetrahydropyran (3) with 

1.1 equiv of Me3Al for 20 min, methyl insertion took place stereoselectively to give 

2,6-syn-2-methyl-tetrahydropyran7 (7) in 71% yield (Scheme 1). The same reaction using 1.5 equiv of 

Me3Al afforded 7 in 73% yield within 10 min. On the other hand, reaction of the 1’,2-syn-2,6-anti-isomer 

(4) with 1.1 equiv of Me3Al also stereoselectively afforded the same product (7) in 57% yield, along with 

recovered starting material (4, 22%). The reaction of 4 using 1.5 equiv of Me3Al increased the yield to 

give 7 as the sole product in 84% yield.  
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The present methyl insertion reactions of 3 and 4 with Me3Al can be explained as follows (Figure 3). 

Treatment of 3 and 4 with Me3Al concertedly effected removal of the mesyloxy group and 1,2-hydride 

shift through the conformers (3-i and 4-i),8 respectively, which have an antiperiplanar relationship 

between C2-H and C1’-OMs, to produce the same oxonium ion intermediate (A).  Then, the methyl 

group would attack from the -axial side into this oxonium ion (A) to take a chair-form transition state, 

giving 2,6-syn-2- methyl-tetrahydropyran (7).  

 

 

 

 

 

 

 

 

Figure 3.  Plausible mechanisms for reaction of 3 and 4 with Me3Al. 

 

Next, the reactions of the other stereoisomers (5 and 6), having 1’,2-anti-configuration, were examined 

(Scheme 2). Reaction of 1’,2-anti-2,6-syn-5 with 1.1 equiv of Me3Al for 20 min resulted only in recovery 

of the starting material (5) in 92% yield. But, treatment with 1.5 equiv of Me3Al for 4 h afforded 

2,6-syn-2-methyl-tetrahydropyran (7) (65%) and ring-expanded 2,7-anti-2,3-trans-2,3-dimethyl-oxepane9 

(8) (29%). Furthermore, the reaction using 2.0 equiv of Me3Al afforded 7 (80%) and 8 (13%). Reaction of 

1’,2-anti-2,6-anti-6 with 1.1 equiv of Me3Al for 20 min also resulted in recovery of the starting material   
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(6) in 87% yield. The reaction using 1.5 equiv of Me3Al gave three products, i.e., 2,6-syn-2-methyl- 

tetrahydropyran (7) (18%), 2,7-syn-2,3-trans-2,3-dimethyl-oxepane10,11 (9) (11%), and 2,7-anti-2,3-cis- 

2,3- dimethyl-oxepane10,11 (10) (13%), along with recovered 6 (35%). Use of 4.0 equiv of Me3Al resulted 

in completion of the reaction within 10 min to give 7 (33%), 9 (19%), and 10 (21%).  

In order to examine the reaction mechanism for 5 and 6, we employed C1’-deuterated compounds (d-5 

and d-6), which were prepared from the corresponding alcohols by oxidation with TPAP-NMO, followed 

by NaBD4 reduction. Reaction of the C1’-deuterated 1’,2-anti-2,6-syn-tetrahyropyran (d-5) with Me3Al 

afforded C1’-deuterated 2,6-syn-2-methyl-tetrahydropyran (d-7) and C3-deuterated 2,7-anti-2,3-trans- 

2,3-dimethyl-oxepane (d-8). Thus, the reaction would proceed as shown in Figure 4. The C1’-deuterated 

2-methyl-tetrahydropyran (d-7) would be produced through the conformer (d-5-i) via methyl insertion 

into the resulting oxonium ion (d-A). From the conformer (d-5-ii), removal of the mesyloxy group, 

antiperiplanar C2-C3 bond migration, and methyl insertion into the oxonium ion (d-B) would take place 

from the -side to give the C3-deuterated 2-methylated oxepane (d-8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Plausible mechanisms for reaction of 5 and 6 with Me3Al using C1’-deuterated substrates. 
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Next, reaction of the C1’-deuterated 2,6-anti-1’,2-anti-tetrahydropyran (d-6) with Me3Al produced 

C1’-deuterated 2-methyl-tetrahydropyran (d-7), C2-deuterated 2,7-syn-2,3-trans-2,3-dimethyl-oxepane 

(d-9a), and C3-deuterated 2,7-syn-2,3-trans- and 2,7-anti-2,3-cis-2,3-dimethyl-oxepanes (d-9b and d-10). 

The ratio of d-9a and d-9b was ca. 91:9. The 2-methylated tetrahydropyran (d-7) would also be produced 

via methyl insertion into the oxonium ion (d-A) through the conformer (d-6-i).12 Ring-expanded 

C2-deuterated 3-methylated oxepane (d-9a) should be produced through the conformer (d-6-ii), which 

has an antiperiplanar relationship between the C1’-MsO group and C2-O bond, via methyl insertion at the 

C3-position into the oxonium ion (d-C). The other C3-deuterated 2-methylated products (d-9b and d-10) 

would be produced through the conformer (d-6-iii) via methyl insertion at the C2-position into the 

oxonium ion (d-D) from the -side and -side, respectively. Thus, it was found that 

2,7-syn-2,3-trans-oxepane (9) in Scheme 2 was produced via two routes through transition states 

corresponding to d-C and d-D. 

In conclusion, the reactions of 2-(1’-mesyloxy)ethyl-5-hexyl-tetrahydropyrans with Me3Al proceed via 

removal of the mesyloxy group, 1,2-hydride shift and/or ring-expansion, and methyl insertion, depending 

on the stereostructure of the substrate, to give 2-methylated tetrahydropyran and/or 2- or 3-methylated 

oxepane. 
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NaHCO3 solution and extracted with EtOAc. The organic layer was dried over MgSO4 and 

concentrated in vacuo. The residue was purified by flash column chromatography (Silica gel 60N, 

n-hexane:EtOAc= 100:1) to give 7 (37.8 mg; 71 % yield) as a colorless oil. 

7. Data for 7: 1H NMR (400 MHz, CDCl3)  3.46 (m, 1H), 1.67-1.60 (m, 2H), 1.57–1.49 (m, 2H), 

1.47-1.25 (m, 13H), 1.11 (s, 3H), 1.10–1.00 (m, 1H), 0.89 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 6.8 Hz, 

3H); 13C NMR (100 MHz, CDCl3)  73.3, 69.9, 37.4, 37.0, 34.4, 31.94, 31.89, 29.4, 25.5, 22.6, 20.0, 

19.2, 14.1, 7.6. HRMS (EI) calcd for C14H28ONa [M+Na+] 212.2140, found 212.2144. 

8. The coupling constants (J2,3-syn = 3.3 Hz and J2,3-anti = 9.9 Hz) and ROE observation between C2-H and 

methylene protons of the C6-hexyl group in 4 suggested that 4 would mainly take the conformation 

having an equatorial C2-side chain, although 4 is a mixture of ring-flipped conformers.4 

9. Data for 8: 1H NMR (400 MHz, CDCl3)  3.53 (m, 1H), 3.35 (dq, J = 9.1, 6.3 Hz, 1H), 1.78–1.67 (m, 

2H), 1.57–1.54 (m, 2H), 1.49–1.34 (m, 6H), 1.32–1.24 (m, 7H), 1.15 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 

7.0 Hz, H), 0.85 (t, J = 6.6 Hz, 3H). 13C NMR (100 MHz, )  76.3, 73.5. 42.3, 36.8, 36.23, 36.15, 

31.9, 29.4, 27.4, 26.4, 22.6, 20.4, 19.9, 14.1. HRMS (EI) calcd for C14H28ONa [M+Na+] 212.2140, 

found 212.2144. 

10. Yields of 9 and 10 were calculated from the 1H NMR analysis, because the products could not be 

isolated. 

11. Selected 1H-NMR data (600 MHz, CDCl3): for 9 d 3.37 (m, 1H), 3.04 (dq, J = 9.5, 6.4 Hz, 1H), 1.10 

(d, J = 6.4 Hz, 3H), 0. 84 (d, J = 6.8 Hz, 3H); for 10  3.80 (dd, J = 6.8, 6.4 Hz, 1H), 3.60 (m, 1H), 

1.20 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). HRMS (EI) calcd for C14H28ONa [M+Na+] 

212.2140, found 212.2137. 

12. The observed ROEs between the C1’- and C6-H2, and C2-H and methylene protons of the C6-hexyl 

group in 6 support the presence of ring-flipped conformers.4 
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