The role of folate and one-carbon metabolism in brain development and hydrocephalus: a literature review
Abstract
Folate metabolism has been known to influence the development of the nervous system, as found in the case of neural tube defects. Folates are a group of compounds involved in one-carbon metabolism, which is necessary for the formation of purine and thymidine nucleotides, as well as methionine and methyl donors. In addition to the well-documented role of folates within the pathogenesis of neural tube defects, current literature provides evidence that folate imbalances may play a significant role in the development and effects of hydrocephalus. This review considers the possibility that folate imbalances in hydrocephalic cerebrospinal fluid may be responsible for the neurological deficit seen in patients with this condition. Understanding the details of this potential imbalance may provide further insight into novel treatment options for hydrocephalus in the future.
Keywords
Full Text:
PDFReferences
Rekate HL. A Contemporary Definition and Classification of Hydrocephalus. Seminars in Pediatric Neurology. 2009;16(1):9-15.
Garne E, Loane M, Addor MC, Boyd PA, Barisic I, Dolk H. Congenital hydrocephalus--prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol. 2010;14(2):150-5.
Jeng S, Gupta N, Wrensch M, Zhao S, Wu YW. Prevalence of congenital hydrocephalus in California, 1991-2000. Pediatr Neurol. 2011;45(2):67-71.
Shim J, Sandlund J, Madsen J. VEGF: A potential target for hydrocephalus. Cell and Tissue Research. 2014;358(3):667-83.
Beni-Adani L, Biani N, Ben-Sirah L, Constantini S. The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Child's Nervous System. 2006;22(12):1543-63.
Dandy WE, Blackfan KD. INTERNAL HYDROCEPHALUS: An Experimental, Clinical and Pathological Study*†. Journal of Neurosurgery. 1914;21(7):588-635.
Rizvi R, Anjum Q. Hydrocephalus in children. J Pak Med Assoc. 2005;55(11):502-7.
Kirkpatrick M, Engleman H, Minns RA. Symptoms and signs of progressive hydrocephalus. Archives of Disease in Childhood. 1989;64(1):124-8.
Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. SYMPTOMATIC OCCULT HYDROCEPHALUS WITH "NORMAL" CEREBROSPINAL-FLUID PRESSURE.A TREATABLE SYNDROME. N Engl J Med. 1965;273:117-26.
Jernigan SC, Berry JG, Graham DA, Goumnerova L. The comparative effectiveness of ventricular shunt placement versus endoscopic third ventriculostomy for initial treatment of hydrocephalus in infants. Journal of Neurosurgery: Pediatrics. 2014;13(3):295-300.
Gallia GL, Rigamonti D, Williams MA. The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neuro. 2006;2(7):375-81.
Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1-2):121-38.
Cains S, Shepherd A, Nabiuni M, Owen-Lynch PJ, Miyan J. Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol. 2009;68(4):404-16.
Woodruff KT, Lea RW, Allcock R, Anser MN, Golash A, Myers M, et al. Folate disruption in Normal Pressure Hydrocephalus patients. Proc Physiol Soc. 2015;33(PC15).
Bailey LB, Gregory JF, 3rd. Folate metabolism and requirements. J Nutr. 1999;129(4):779-82.
Hyde JE. Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Curr Drug Targets. 2007;8(1):31-47.
Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219-25.
Stiles J, Jernigan TL. The Basics of Brain Development. Neuropsychol Rev. 2010;20(4):327-48.
Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet. 2003;4(10):784-93.
Salih MA, Murshid WR, Seidahmed MZ. Classification, clinical features, and genetics of neural tube defects. Saudi Med J. 2014;35(Suppl 1):S5-s14.
Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Quarterly Journal of Medicine. 1993;86(11):703-8.
Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, et al. Prevention of Neural-Tube Defects with Folic Acid in China. New England Journal of Medicine. 1999;341(20):1485-90.
Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J (Clin Res Ed). 1981;282(6275):1509-11.
Mrc Vitamin Study Research G. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. The Lancet. 1991;338(8760):131-7.
Steegers-Theunissen RP, Boers GH, Trijbels FJ, Eskes TK. Neural-tube defects and derangement of homocysteine metabolism. N Engl J Med. 1991;324(3):199-200.
Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet. 1995;345(8943):149-51.
Gos M, Sliwerska E, Szpecht-Potocka A. Mutation incidence in folate metabolism genes and regulatory genes in Polish families with neural tube defects. J Appl Genet. 2004;45(3):363-8.
Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111-3.
Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. Jama. 2001;285(23):2981-6.
Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate: case far from closed. Nat Rev Neurosci. 2006;7(9):724-31.
Craciunescu CN, Brown EC, Mar MH, Albright CD, Nadeau MR, Zeisel SH. Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. J Nutr. 2004;134(1):162-6.
Ramaekers VT, Blau N. Cerebral folate deficiency. Dev Med Child Neurol. 2004;46(12):843-51.
Molero-Luis M, Serrano M, O'Callaghan MM, Sierra C, Perez-Duenas B, Garcia-Cazorla A, et al. Clinical, etiological and therapeutic aspects of cerebral folate deficiency. Expert Rev Neurother. 2015;15(7):793-802.
Dziegielewska KM, Ek J, Habgood MD, Saunders NR. Development of the choroid plexus. Microsc Res Tech. 2001;52(1):5-20.
Kappers JA. Structural and Functional Changes in the Telencephalic Choroid Plexus During Human Ontogenesis. Ciba Foundation Symposium - The Cerebrospinal Fluid: Production, Circulation and Absorption: John Wiley & Sons, Ltd.; 1958. p. 3-31.
Keep RF, Jones HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Developmental Brain Research. 1990;56(1):47-53.
Lun MP, Monuki ES, Lehtinen MK. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci. 2015;16(8):445-57.
Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases. 2011;128(6):309-16.
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.
Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9.
Bass NH, Lundborg P. Postnatal development of bulk flow in the cerebrospinal fluid system of the albino rat: Clearance of carboxyl-[14C]inulin after intrathecal infusion. Brain Research. 1973;52:323-32.
Masseguin C, LePanse S, Corman B, Verbavatz JM, Gabrion J. Aging affects choroidal proteins involved in CSF production in Sprague-Dawley rats. Neurobiol Aging. 2005;26(6):917-27.
Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microscopy Research and Technique. 2001;52(1):31-7.
May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990;40(3 Pt 1):500-3.
Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology. 2001;57(10):1763-6.
Czosnyka M, Czosnyka Z, Momjian S, Pickard JD. Cerebrospinal fluid dynamics. Physiological Measurement. 2004;25(5):R51.
Quigley MF, Iskandar B, Quigley MA, Nicosia M, Haughton V. Cerebrospinal Fluid Flow in Foramen Magnum: Temporal and Spatial Patterns at MR Imaging in Volunteers and in Patients with Chiari I Malformation. Radiology. 2004;232(1):229-36.
Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2015.
Kahle KT, Kulkarni AV, Limbrick Jr DD, Warf BC. Hydrocephalus in children. The Lancet. 2015.
Gupta N, Jeanna Park, Cynthia Solomon, Dory A. Kranz, Margaret Wrensch, Yvonne W. Wu. Long-term outcomes in patients with treated childhood hydrocephalus. Journal of Neurosurgery: Pediatrics. 2007;106(5):334-9.
Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neuroscience. 1999;95(2):577-92.
Gato Á, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 2005;284A(1):475-84.
Mashayekhi F, Draper CE, Bannister CM, Pourghasem M, Owen-Lynch PJ, Miyan JA. Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. Brain. 2002;125(Pt 8):1859-74.
Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA. Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain. 2003;126(Pt 3):623-31.
Wood GS, Wu J. Methotrexate and Pralatrexate. Dermatol Clin. 2015;33(4):747-55.
Oleinik NV, Krupenko SA. Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells induces G1 cell cycle arrest and apoptosis. Mol Cancer Res. 2003;1(8):577-88.
Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244.
DOI: http://dx.doi.org/10.7227/MMJ.0018
Copyright (c) 2017 Zak Shehata
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.