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CLASSIFICATION OF NUCLEOTIDE 
SEQUENCES BY LATENT SEMANTIC 

ANALYSIS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

2 
patient, and the method comprises, for each nucleotide 
sequence in the second portion, determining whether the 
nucleotide sequence is associated with one of the known 
species of the at least one of prokaryotes, eukaryotes, or 
viruses based on the classification of the first set of nucleo­
tide sequences. 

The predetermined nucleotide segments are k-mers each 
having k nucleobases, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

This application is claims priority to U.S. provisional 
application 61/677,316, filed on Jul. 30, 2012, which is 
incorporated herein by reference in its entirety. 10 Determining a set of basis vectors comprises forming a 

k-mer-sequence matrix in which rows of the matrix repre­
sent the k-mers and colunms of the matrix represent the 
nucleotide sequences, k being a positive integer, and each 
element in the matrix represents a repetition frequency of the 

STATEMENT AS TO FEDERALLY SPONSORED 
RESEARCH 

This invention was made with govermnent support under 
grants NIHAI068151 and DOE DE-FG02-07ER86321. The 
govermnent has certain rights in the invention. 

TECHNICAL FIELD 

This subject matter is generally related to analyses of 
sequences, such as nucleotide sequences and protein 
sequences. 

BACKGROUND 

Evolutionary distance measures provide a way of identi­
fying and organizing related organisms by comparing their 
genomic sequences. Techniques that quantify the level of 
similarity between deoxyribonucleic acid (DNA) sequences 
are useful in our efforts to decipher the genetic code in which 
they are written. In some examples, the evolutionary dis­
tance separating two genomic sequences can be estimated by 
first aligning the sequences then comparing the aligned 
sequences. This preliminary aligning step may impose a 
large computational burden. 

In some examples, massively parallel DNA sequencing 
uses automated, high-throughput technologies that produce 

15 segment represented by the corresponding row within the 
sequence represented by the corresponding colunm, and 
applying a dimension reduction process to the k-mer-se­
quence matrix to determine the basis vectors. 

Applying a dimension reduction process comprises apply-
20 ing at least one of non-negative matrix factorization or 

singular value decomposition to the segment-sequence 
matrix to determine the basis vectors. 

Determining a set of basis vectors comprises forming a 
segment-sequence matrix in which rows of the matrix rep-

25 resent the nucleotide segments and colunms of the matrix 
represent the sequences, each element in the matrix repre­
senting a repetition frequency of the segment represented by 
the corresponding row within the sequence represented by 
the corresponding col=, and applying a dimension reduc-

30 tion process to the segment-sequence matrix to determine 
the basis vectors. 

Applying a dimension reduction process comprises apply­
ing at least one of non-negative matrix factorization or 
singular value decomposition to the segment-sequence 

35 matrix to determine the basis vectors. 

a large amount of sequence data. It is useful to have efficient 
techniques for classifying and orgamzmg genomic 40 

sequences such that they may be quickly identified and 
retrieved. 

Determining an approximate representation of the nucleo­
tide sequence based on a combination of the basis vectors 
comprises determining an approximate representation of the 
nucleotide sequence based on a linear combination of the 
basis vectors. 

Determining an approximate representation of the nucleo­
tide sequence comprises determining coefficients for a linear 
combination of the basis vectors that represents an approxi­
mation of the nucleotide sequence. SUMMARY 

45 The distance between the approximate representations of 
the pair of nucleotide sequences is determined according at 
least one of (i) Euclidean distance between the approximate 
representations of the pair of nucleotide sequences or (ii) 
correlation between the approximate representations of the 

50 pair of nucleotide sequences. 

In general, in one aspect, a method for analyzing nucleo­
tide sequences is provided. The method includes receiving a 
first set of nucleotide sequences, the first set having a first 
number of nucleotide sequences; determining, by a data 
processor, a set of basis vectors, the set having a second 
number of basis vectors, in which the second number is 
smaller than the first number, and each basis vector repre­
sents a specific combination of predetermined nucleotide 
segments; for each of the first set of nucleotide sequences, 
determining an approximate representation of the nucleotide 55 

sequence based on a combination of the basis vectors; for 
each pair of a plurality of pairs of nucleotide sequences, 
determining distances between the pair of nucleotide 
sequences according distances between the approximate 
representations of the pair of nucleotide sequences; and 
classifying the first set of nucleotide sequences based on the 
distances between the pairs of nucleotide sequences. 

Implementations of the method may include one or more 
of the following features. A first portion of the first set of 
nucleotide sequences belong to known species of at least one 
of prokaryotes, eukaryotes, or viruses, a second portion of 
the first set of nucleotide sequences are obtained from a 

The method comprises determining the distance between 
every pair of nucleotide sequences, and classifying the first 
set of nucleotide sequences based on the distances between 
all of the pairs of nucleotide sequences. 

A first portion of the first set of nucleotide sequences 
belong to known species, species of a second portion of the 
first set of nucleotide sequences initially being unknown, 
and the method comprises for each nucleotide sequence in 
the second portion, determining whether the nucleotide 

60 sequence belongs to one of the known species based on the 
classification of the first set of nucleotide sequences. 

In general, in another aspect, a method for analyzing 
nucleotide sequences is provided. The method includes 
receiving a first set of nucleotide sequences, the first set 

65 having a first number of nucleotide sequences; forming a 
segment-sequence matrix in which rows of the matrix rep­
resent the nucleotide segments and colunms of the matrix 
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represent the sequences, each element in the matrix repre­
senting a repetition frequency of the segment represented by 
the corresponding row within the sequence represented by 
the corresponding column; determining, by a data processor, 
a set of basis vectors that can be used to approximately 
represent the first set of nucleotide sequences, the set having 
a second number of basis vectors, in which the second 
number is smaller than the first number, and each basis 
vector represents a specific combination of predetermined 
nucleotide segments, in which the determining a set of basis 10 

vectors comprises applying at least one of non-negative 
matrix factorization or singular value decomposition to the 
segment-sequence matrix to determine the basis vectors. 

Implementations of the method may include one or more 
of the following features. The method comprises determin- 15 

ing a projection matrix based on the basis vectors, and 
projecting segment-sequence vectors into a feature space 
based on the projection matrix. 

4 
sequence is associated with one of the known species of the 
at least one of prokaryotes, eukaryotes, or viruses based on 
the classification of the first set of nucleotide sequences. 

Determining an approximate representation of the nucleo­
tide sequence based on a combination of the basis vectors 
comprises determining an approximate representation of the 
nucleotide sequence based on a linear combination of the 
basis vectors. 

Determining an approximate representation of the nucleo­
tide sequence comprises determining coefficients for a linear 
combination of the basis vectors that represents an approxi­
mation of the nucleotide sequence. 

A first portion of the first set of nucleotide sequences 
belong to known species, species of a second portion of the 
first set of nucleotide sequences initially being unknown, 
and the method comprises for each nucleotide sequence in 
the second portion, determining whether the nucleotide 
sequence belongs to one of the known species based on the 
classification of the first set of nucleotide sequences. 

The predetermined nucleotide segments are k-mers each 
having k nucleobases, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

In general, in another aspect, a method for analyzing 

The method comprises receiving a second set of nucleo­
tide sequences that includes nucleotide sequences from a 20 

host and nucleotide sequences from a plurality of species 
different from the host; projecting the second set of nucleo­
tide sequences into the feature space; clustering the pro­
jected sequences in the feature space; and identifying one or 
more clusters that are primarily associated with the host. 

The method comprises receiving a second set of nucleo­
tide sequences that includes nucleotide sequences from a 
host and nucleotide sequences from a plurality of known 
species different from the host; receiving a third set of 
nucleotide sequences that includes nucleotide sequences 30 

from either the host or other species without information on 
which nucleotide sequences in the third set belong to the 
host; projecting the second and third sets of nucleotide 
sequences into the feature space; clustering the projected 
sequences in the feature space; identifying one or more 35 

clusters that are primarily associated with the host; and 
removing sequences from the third set that are in the one or 
more clusters primarily associated with the host. 

25 nucleotide sequences is provided. The method comprises 
receiving a first set of nucleotide sequences that includes 
nucleotide sequences from a host and nucleotide sequences 
from a plurality of known species different from the host; 

The plurality of known species comprises known species 
of at least one of prokaryotes, eukaryotes, or viruses, and the 40 

third set of nucleotide sequences are obtained from the host. 
The method comprises, for each of the first set of nucleo­

tide sequences, determining an approximate representation 
of the nucleotide sequence based on a combination of the 
basis vectors; for each pair of a plurality of pairs of nucleo- 45 

tide sequences, determining distances between the pair of 
nucleotide sequences according distances between the 
approximate representations of the pair of nucleotide 
sequences; and classifying the first set of nucleotide 
sequences based on the distances between the pairs of 50 

nucleotide sequences. 
The distance between the approximate representations of 

the pair of nucleotide sequences is determined according at 
least one of (i) Euclidean distance between the approximate 
representations of the pair of nucleotide sequences or (ii) 55 

correlation between the approximate representations of the 
pair of nucleotide sequences. 

The method comprises determining the distance between 
every pair of nucleotide sequences, and classifying the first 
set of nucleotide sequences based on the distances between 60 

all of the pairs of nucleotide sequences. 
A first portion of the first set of nucleotide sequences 

belong to known species of at least one of prokaryotes, 
eukaryotes, or viruses, a second portion of the first set of 
nucleotide sequences are obtained from a patient, and the 65 

method comprises, for each nucleotide sequence in the 
second portion, determining whether the nucleotide 

receiving a second set of nucleotide sequences that includes 
nucleotide sequences from either the host or other species 
without information on which nucleotide sequences in the 
second set belong to the host; generating a segment-se­
quence vector for each of the nucleotide sequences in the 
first and second sets of nucleotide sequences, the segment­
sequence vector providing information on nucleotide seg­
ments included in the nucleotide sequence; projecting, by a 
data processor, the segment-sequence vectors for the first 
and second sets of nucleotide sequences into a feature space; 
clustering the nucleotide sequences in the feature space; 
identifying one or more clusters that are primarily associated 
with the nucleotide sequences from the host; and removing 
nucleotide sequences from the second set of nucleotide 
sequences that are in the one or more clusters primarily 
associated with the nucleotide sequences from the host. 

Implementations of the method may include one or more 
of the following features. The method comprises forming a 
segment-sequence matrix in which rows of the matrix rep­
resent the nucleotide segments and columns of the matrix 
represent known nucleotide sequences from a third set of 
nucleotide sequences, in which each element in the matrix 
represents a repetition frequency of the segment represented 
by the corresponding row within the sequence represented 
by the corresponding column, and the third set of nucleotide 
sequences includes nucleotide sequences from the host and 
nucleotide sequences from one or more of the plurality of 
known species different from the host; and determining a set 
of basis vectors that can be used to approximately represent 
the third set of nucleotide sequences, each basis vector 
representing a specific combination of predetermined 
nucleotide segments; wherein projecting the segment-se­
quence vectors for the first and second sets of nucleotide 
sequences into a feature space comprises applying a projec­
tion matrix to the segment-sequence vectors to project the 
segment-sequence vectors into the feature space, the pro­
jection matrix being determined based on the basis vectors. 

The third set of nucleotide sequences is different from the 
first set of nucleotide sequences. 
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The nucleotide sequences remaining in the second set of 
nucleotide sequences form a third set of nucleotide 
sequences, and the method comprises projecting the seg­
ment-sequence vectors for the first and third set of nucleo­
tide sequences into the feature space; clustering the nucleo­
tide sequences in the feature space; identifying one or more 
clusters that are primarily associated with the nucleotide 
sequences from the host; and removing nucleotide 
sequences from the third set of nucleotide sequences that are 
in the one or more clusters primarily associated with the 
nucleotide sequences from the host. 

In general, in another aspect, a method for analyzing 
nucleotide sequences is provided. The method comprises 
receiving a set of nucleotide sequences, the set having a first 
number of nucleotide sequences; determining, by a data 
processor, a set of basis vectors, the set having a second 
number of basis vectors, in which the second number is 
smaller than the first number, and each basis vector repre­
sents a specific combination of predetermined nucleotide 
segments; and for each of the basis vectors, determining a 
segment that is more strongly associated with the basis 
vector than the other segments. 

Implementations of the method may include one or more 
of the following features. The method comprises providing 
a microarray having probes that are selected based on the 
nucleotide segments that are more strongly associated with 
the basis vectors. 

The set of nucleotide sequences belong to known species 
of at least one of prokaryotes, eukaryotes, or viruses. 

6 
sequence based on a combination of the basis vectors; for 
each pair of a plurality of pairs of protein sequences, 
determining distances between the pair of protein sequences 
according distances between the approximate representa­
tions of the pair of protein sequences; and classifying the 
first set of protein sequences based on the distances between 
the pairs of nucleotide sequences. 

Implementations of the method may include one or more 
of the following features. A first portion of the first set of 

10 protein sequences belong to known species of at least one of 
prokaryotes, eukaryotes, or viruses, a second portion of the 
first set of protein sequences are obtained from a patient, and 
the method comprises, for each protein sequence in the 
second portion, determining whether the protein sequence is 

15 associated with one of the known species of the at least one 
of prokaryotes, eukaryotes, or viruses based on the classi­
fication of the first set of protein sequences. 

The predetermined protein segments are k-mers each 
having k amino acids, k being a positive integer, and each 

20 basis vector represents a specific combination of the k-mers. 
Determining a set of basis vectors comprises forming a 

k-mer-sequence matrix in which rows of the matrix repre­
sent the k-mers and columns of the matrix represent the 
protein sequences, and each element in the matrix represents 

25 a repetition frequency of the segment represented by the 
corresponding row within the sequence represented by the 
corresponding column, and applying a dimension reduction 
process to the k-mer-sequence matrix to determine the basis 
vectors. 

The predetermined nucleotide segments are k-mers each 30 

having k nucleobases, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

Applying a dimension reduction process comprises apply­
ing at least one of non-negative matrix factorization or 
singular value decomposition to the segment-sequence 
matrix to determine the basis vectors. Determining a set of basis vectors comprises forming a 

k-mer-sequence matrix in which rows of the matrix repre­
sent the k-mers and columns of the matrix represent the 35 

nucleotide sequences, and each element in the matrix rep­
resents a repetition frequency of the segment represented by 
the corresponding row within the sequence represented by 
the corresponding column, and applying at least one of 
non-negative matrix factorization or singular value decom- 40 

position to the k-mer-sequence matrix to determine the basis 

Determining a set of basis vectors comprises forming a 
segment-sequence matrix in which rows of the matrix rep­
resent the protein segments and columns of the matrix 
represent the sequences, each element in the matrix repre­
senting a repetition frequency of the segment represented by 
the corresponding row within the sequence represented by 
the corresponding column, and applying a dimension reduc­
tion process to the segment-sequence matrix to determine 

vectors. 
Determining a set of basis vectors comprises forming a 

segment-sequence matrix in which rows of the matrix rep­
resent the nucleotide segments and columns of the matrix 
represent the sequences, each element in the matrix repre­
senting a repetition frequency of the segment represented by 
the corresponding row within the sequence represented by 
the corresponding column, and applying at least one of 
non-negative matrix factorization or singular value decom­
position to the segment-sequence matrix to determine the 
basis vectors. 

Determining an approximate representation of the nucleo­
tide sequence based on a combination of the basis vectors 
comprises determining an approximate representation of the 
nucleotide sequence based on a linear combination of the 
basis vectors. 

In general, in another aspect, a method for analyzing 
protein sequences is provided. The method comprises 
receiving a first set of protein sequences, the first set having 
a first number of protein sequences; determining, by a data 
processor, a set of basis vectors, the set having a second 
number of basis vectors, in which the second number is 
smaller than the first number, and each basis vector repre­
sents a specific combination of predetermined protein seg­
ments; for each of the first set of protein sequences, deter­
mining an approximate representation of the protein 

the basis vectors. 
Applying a dimension reduction process comprises apply­

ing at least one of non-negative matrix factorization or 
45 singular value decomposition to the segment-sequence 

matrix to determine the basis vectors. 
Determining an approximate representation of the protein 

sequence based on a combination of the basis vectors 
comprises determining an approximate representation of the 

50 protein sequence based on a linear combination of the basis 
vectors. 

Determining an approximate representation of the protein 
sequence comprises determining coefficients for a linear 
combination of the basis vectors that represents an approxi-

55 mation of the protein sequence. 
The distance between the approximate representations of 

the pair of protein sequences is determined according at least 
one of (i) Euclidean distance between the approximate 
representations of the pair of protein sequences or (ii) 

60 correlation between the approximate representations of the 
pair of protein sequences. 

The method comprises determining the distance between 
every pair of protein sequences, and classifying the first set 
of protein sequences based on the distances between all of 

65 the pairs of protein sequences. 
A first portion of the first set of protein sequences belong 

to known species, species of a second portion of the first set 
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of protein sequences initially being unknown, and the 
method comprises for each protein sequence in the second 
portion, determining whether the protein sequence belongs 
to one of the known species based on the classification of the 
first set of protein sequences. 

In general, in another aspect, a method for analyzing 
protein sequences is provided. The method comprises 
receiving a first set of protein sequences, the first set having 

8 
The method comprises determining the distance between 

every pair of protein sequences, and classifying the first set 
of protein sequences based on the distances between all of 
the pairs of protein sequences. 

A first portion of the first set of protein sequences belong 
to known species of at least one of prokaryotes, eukaryotes, 
or viruses, a second portion of the first set of protein 
sequences are obtained from a patient, and the method 
comprises, for each protein sequence in the second portion, a first number of protein sequences; forming a segment­

sequence matrix in which rows of the matrix represent the 
protein segments and colunms of the matrix represent the 
sequences, each element in the matrix representing a rep­
etition frequency of the segment represented by the corre­
sponding row within the sequence represented by the cor­
responding column; determining, by a data processor, a set 

10 determining whether the protein sequence is associated with 
one of the known species of the at least one of prokaryotes, 
eukaryotes, or viruses based on the classification of the first 
set of protein sequences. 

Determining an approximate representation of the protein 
15 sequence based on a combination of the basis vectors 

comprises determining an approximate representation of the 
protein sequence based on a linear combination of the basis 
vectors. 

of basis vectors that can be used to approximately represent 
the first set of protein sequences, the set having a second 
number of basis vectors, in which the second number is 
smaller than the first number, and each basis vector repre­
sents a specific combination of predetermined protein seg- 20 

ments, in which the determining a set of basis vectors 
comprises applying at least one of non-negative matrix 
factorization or singular value decomposition to the seg­
ment-sequence matrix to determine the basis vectors. 

Implementations of the method may include one or more 25 

of the following features. The method comprises determin­
ing a projection matrix based on the basis vectors, and 
projecting segment-sequence vectors into a feature space 
based on the projection matrix. 

The method comprises receiving a second set of protein 30 

sequences that includes protein sequences from a host and 
protein sequences from a plurality of species different from 
the host; projecting the second set of protein sequences into 
the feature space; clustering the projected sequences in the 
feature space; and identifying one or more clusters that are 35 

primarily associated with the host. 
The method comprises receiving a second set of protein 

sequences that includes protein sequences from a host and 
protein sequences from a plurality of known species differ­
ent from the host; receiving a third set of protein sequences 40 

that includes protein sequences from either the host or other 
species without information on which protein sequences in 
the third set belong to the host; projecting the second and 
third sets of protein sequences into the feature space; clus­
tering the projected sequences in the feature space; identi- 45 

fying one or more clusters that are primarily associated with 
the host; and removing sequences from the third set that are 
in the one or more clusters primarily associated with the 
host. 

Determining an approximate representation of the protein 
sequence comprises determining coefficients for a linear 
combination of the basis vectors that represents an approxi­
mation of the protein sequence. 

A first portion of the first set of protein sequences belong 
to known species, species of a second portion of the first set 
of protein sequences initially being unknown, and the 
method comprises for each protein sequence in the second 
portion, determining whether the protein sequence belongs 
to one of the known species based on the classification of the 
first set of protein sequences. 

The predetermined protein segments are k-mers each 
having k amino acids, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

In general, in another aspect, a method for analyzing 
protein sequences is provided. The method comprises 
receiving a first set of protein sequences that includes 
protein sequences from a host and protein sequences from a 
plurality of known species different from the host; receiving 
a second set of protein sequences that includes protein 
sequences from either the host or other species without 
information on which protein sequences in the second set 
belong to the host; generating a segment-sequence vector for 
each of the protein sequences in the first and second sets of 
protein sequences, the segment-sequence vector providing 
information on protein segments included in the protein 
sequence; projecting, by a data processor, the segment­
sequence vectors for the first and second sets of protein 
sequences into a feature space; clustering the protein 
sequences in the feature space; identifying one or more 
clusters that are primarily associated with the protein 

The plurality of known species comprises known species 
of at least one of prokaryotes, eukaryotes, or viruses, and the 
third set of protein sequences are obtained from the host. 

The method comprises, for each of the first set of protein 
sequences, determining an approximate representation of the 
protein sequence based on a combination of the basis 
vectors; for each pair of a plurality of pairs of protein 
sequences, determining distances between the pair of protein 
sequences according distances between the approximate 
representations of the pair of protein sequences; and classi­
fying the first set of protein sequences based on the distances 
between the pairs of protein sequences. 

50 sequences from the host; and removing protein sequences 
from the second set of protein sequences that are in the one 
or more clusters primarily associated with the protein 
sequences from the host. 

The distance between the approximate representations of 
the pair of protein sequences is determined according at least 
one of (i) Euclidean distance between the approximate 
representations of the pair of protein sequences or (ii) 
correlation between the approximate representations of the 
pair of protein sequences. 

Implementations of the method may include one or more 
55 of the following features. The method comprises forming a 

segment-sequence matrix in which rows of the matrix rep­
resent the protein segments and columns of the matrix 
represent known protein sequences from a third set of 
protein sequences, in which each element in the matrix 

60 represents a repetition frequency of the segment represented 
by the corresponding row within the sequence represented 
by the corresponding colunm, and the third set of protein 
sequences includes protein sequences from the host and 
protein sequences from one or more of the plurality of 

65 known species different from the host; and determining a set 
of basis vectors that can be used to approximately represent 
the third set of protein sequences, each basis vector repre-
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senting a specific combination of predetermined protein 
segments; wherein projecting the segment-sequence vectors 
for the first and second sets of protein sequences into a 
feature space comprises applying a projection matrix to the 
segment-sequence vectors to project the segment-sequence 
vectors into the feature space, the projection matrix being 
determined based on the basis vectors. 

The third set of protein sequences is different from the 
first set of protein sequences. 

The protein sequences remaining in the second set of 10 

protein sequences form a third set of protein sequences, and 
the method comprises projecting the segment-sequence vec­
tors for the first and third set of protein sequences into the 
feature space; clustering the protein sequences in the feature 
space; identifying one or more clusters that are primarily 15 

associated with the protein sequences from the host; and 
removing protein sequences from the third set of protein 
sequences that are in the one or more clusters primarily 
associated with the protein sequences from the host. 

In general, in another aspect, an apparatus for analyzing 20 

nucleotide sequences comprises a memory to store data 
representing a first set of nucleotide sequences, the first set 
having a first number of nucleotide sequences; and a data 
processor configured to process the data and determine a set 
of basis vectors, the set having a second number of basis 25 

vectors, in which the second number is smaller than the first 
number, and each basis vector represents a specific combi­
nation of predetermined nucleotide segments; for each of the 
first set of nucleotide sequences, determine an approximate 
representation of the nucleotide sequence based on a com- 30 

bination of the basis vectors; for each pair of a plurality of 
pairs of nucleotide sequences, determine a distance between 
the pair of nucleotide sequences according a distance 
between the approximate representations of the pair of 
nucleotide sequences; and classify the first set of nucleotide 35 

sequences based on the distances between the pairs of 
nucleotide sequences. 

Implementations of the apparatus may include one or 
more of the following features. A first portion of the first set 
of nucleotide sequences belong to known species of at least 40 

one of prokaryotes, eukaryotes, or viruses, a second portion 
of the first set of nucleotide sequences are obtained from a 
patient, and the data processor is further configured to, for 
each nucleotide sequence in the second portion, determine 
whether the nucleotide sequence is associated with one of 45 

the known species of the at least one of prokaryotes, 
eukaryotes, or viruses based on the classification of the first 
set of nucleotide sequences. 

The predetermined nucleotide segments are k-mers each 
having k nucleobases, k being a positive integer, and each 50 

basis vector represents a specific combination of the k-mers. 
Determine a set of basis vectors comprises form a k-mer­

sequence matrix in which rows of the matrix represent the 
k-mers and columns of the matrix represent the nucleotide 
sequences, k being a positive integer, and each element in 55 

the matrix represents a repetition frequency of the segment 
represented by the corresponding row within the sequence 
represented by the corresponding column, and apply at least 
one of non-negative matrix factorization or singular value 
decomposition to the k-mer-sequence matrix to determine 60 

the basis vectors. 

10 
corresponding column, and apply at least one of non­
negative matrix factorization or singular value decomposi­
tion to the segment-sequence matrix to determine the basis 
vectors. 

Determine an approximate representation of the nucleo­
tide sequence based on a combination of the basis vectors 
comprises determine an approximate representation of the 
nucleotide sequence based on a linear combination of the 
basis vectors. 

Determine an approximate representation of the nucleo-
tide sequence comprises determine coefficients for a linear 
combination of the basis vectors that represents an approxi­
mation of the nucleotide sequence. 

The distance between the approximate representations of 
the pair of nucleotide sequences is determined according at 
least one of (i) Euclidean distance between the approximate 
representations of the pair of nucleotide sequences or (ii) 
correlation between the approximate representations of the 
pair of nucleotide sequences. 

The data processor is further configured to determine the 
distance between every pair of nucleotide sequences, and 
classify the first set of nucleotide sequences based on the 
distances between all of the pairs of nucleotide sequences. 

A first portion of the first set of nucleotide sequences 
belong to known species, species of a second portion of the 
first set of nucleotide sequences initially being unknown, 
and the data processor is further configured to for each 
nucleotide sequence in the second portion, determine 
whether the nucleotide sequence belongs to one of the 
known species based on the classification of the first set of 
nucleotide sequences. 

The apparatus comprises a graphical user interface to 
provide a graphical presentation of classification of the first 
set of nucleotide sequences. 

In general, in another aspect, an apparatus for analyzing 
nucleotide sequences comprises a data storage to store data 
representing a first set of nucleotide sequences, the first set 
having a first number of nucleotide sequences; and a data 
processor configured to process the data and form a seg­
ment-sequence matrix in which rows of the matrix represent 
the nucleotide segments and columns of the matrix represent 
the sequences, each element in the matrix representing a 
repetition frequency of the segment represented by the 
corresponding row within the sequence represented by the 
corresponding column; determine a set of basis vectors that 
can be used to approximately represent the first set of 
nucleotide sequences, the set having a second number of 
basis vectors, in which the second number is smaller than the 
first number, and each basis vector represents a specific 
combination of predetermined nucleotide segments, in 
which the determine a set of basis vectors comprises apply 
at least one of non-negative matrix factorization or singular 
value decomposition to the segment-sequence matrix to 
determine the basis vectors. 

Implementations of the apparatus may include one or 
more of the following features. The data processor is con­
figured to determine a projection matrix based on the basis 
vectors, and project segment-sequence vectors into a feature 
space based on the projection matrix. 

The data storage is configured to store a second set of 
nucleotide sequences that includes nucleotide sequences 
from a host and nucleotide sequences from a plurality of 
species different from the host; and the data processor is 
configured to project the second set of nucleotide sequences 

Determine a set of basis vectors comprises form a seg­
ment-sequence matrix in which rows of the matrix represent 
the nucleotide segments and columns of the matrix represent 
the sequences, each element in the matrix representing a 
repetition frequency of the segment represented by the 
corresponding row within the sequence represented by the 

65 into the feature space; cluster the projected sequences in the 
feature space; and identify one or more clusters that are 
primarily associated with the host. 
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The apparatus comprises a graphical user interface to 
provide a graphical presentation of clustering of the pro­
jected sequences in the feature space. 

The data storage is configured to store a second set of 
nucleotide sequences that includes nucleotide sequences 
from a host and nucleotide sequences from a plurality of 
known species different from the host; and a third set of 
nucleotide sequences that includes nucleotide sequences 
from either the host or other species without information on 
which nucleotide sequences in the third set belong to the 
host; and the data processor is configured to project the 
second and third sets of nucleotide sequences into the 
feature space; cluster the projected sequences in the feature 
space; identify one or more clusters that are primarily 
associated with the host; and remove sequences from the 
third set that are in the one or more clusters primarily 
associated with the host. 

The plurality of known species comprises known species 
of at least one of prokaryotes, eukaryotes, or viruses, and the 
third set of nucleotide sequences are obtained from the host. 

The data processor is configured to, for each of the first set 
of nucleotide sequences, determine an approximate repre­
sentation of the nucleotide sequence based on a combination 
of the basis vectors; for each pair of a plurality of pairs of 
nucleotide sequences, determine a distance between the pair 
of nucleotide sequences according a distance between the 
approximate representations of the pair of nucleotide 
sequences; and classify the first set of nucleotide sequences 
based on the distances between the pairs of nucleotide 
sequences. 

The distance between the approximate representations of 
the pair of nucleotide sequences is determined according at 
least one of (i) Euclidean distance between the approximate 
representations of the pair of nucleotide sequences or (ii) 
correlation between the approximate representations of the 
pair of nucleotide sequences. 

The data processor is configured to determine the distance 
between every pair of nucleotide sequences, and classify the 
first set of nucleotide sequences based on the distances 
between all of the pairs of nucleotide sequences. 

A first portion of the first set of nucleotide sequences 
belong to known species of at least one of prokaryotes, 
eukaryotes, or viruses, a second portion of the first set of 
nucleotide sequences are obtained from a patient, and the 
data processor is configured to, for each nucleotide sequence 
in the second portion, determine whether the nucleotide 
sequence is associated with one of the known species of the 
at least one of prokaryotes, eukaryotes, or viruses based on 
the classification of the first set of nucleotide sequences. 

Determine an approximate representation of the nucleo­
tide sequence based on a combination of the basis vectors 
comprises determine an approximate representation of the 
nucleotide sequence based on a linear combination of the 
basis vectors. 

Determine an approximate representation of the nucleo­
tide sequence comprises determine coefficients for a linear 
combination of the basis vectors that represents an approxi­
mation of the nucleotide sequence. 

12 
The predetermined nucleotide segments are k-mers each 

having k nucleobases, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

In general, in another aspect, an apparatus for analyzing 
nucleotide sequences comprises a data storage to store first 
data representing a first set of nucleotide sequences that 
includes nucleotide sequences from a host and nucleotide 
sequences from a plurality of known species different from 
the host, and second data representing a second set of 

10 nucleotide sequences that includes nucleotide sequences 
from either the host or other species without information on 
which nucleotide sequences in the second set belong to the 
host; and a data processor configured to process the data and 
generate a segment-sequence vector for each of the nucleo-

15 tide sequences in the first and second sets of nucleotide 
sequences, the segment-sequence vector providing informa­
tion on nucleotide segments included in the nucleotide 
sequence; project the segment-sequence vectors for the first 
and second sets of nucleotide sequences into a feature space; 

20 cluster the nucleotide sequences in the feature space; iden­
tify one or more clusters that are primarily associated with 
the nucleotide sequences from the host; and remove nucleo­
tide sequences from the second set of nucleotide sequences 
that are in the one or more clusters primarily associated with 

25 the nucleotide sequences from the host. 
Implementations of the apparatus may include one or 

more of the following features. The data processor is con­
figured to form a segment-sequence matrix in which rows of 
the matrix represent the nucleotide segments and colunms of 

30 the matrix represent known nucleotide sequences from a 
third set of nucleotide sequences, in which each element in 
the matrix represents a repetition frequency of the segment 
represented by the corresponding row within the sequence 
represented by the corresponding colunm, and the third set 

35 of nucleotide sequences includes nucleotide sequences from 
the host and nucleotide sequences from one or more of the 
plurality of known species different from the host; and 
determine a set of basis vectors that can be used to approxi­
mately represent the third set of nucleotide sequences, each 

40 basis vector representing a specific combination of prede­
termined nucleotide segments; wherein project the segment­
sequence vectors for the first and second sets of nucleotide 
sequences into a feature space comprises apply a projection 
matrix to the segment-sequence vectors to project the seg-

45 ment-sequence vectors into the feature space, the projection 
matrix being determined based on the basis vectors. 

The third set of nucleotide sequences is different from the 
first set of nucleotide sequences. 

The nucleotide sequences remaining in the second set of 
50 nucleotide sequences form a third set of nucleotide 

sequences, and the data processor is configured to project the 
segment-sequence vectors for the first and third set of 
nucleotide sequences into the feature space; cluster the 
nucleotide sequences in the feature space; identify one or 

55 more clusters that are primarily associated with the nucleo­
tide sequences from the host; and remove nucleotide 
sequences from the third set of nucleotide sequences that are 
in the one or more clusters primarily associated with the 
nucleotide sequences from the host. 

In general, in another aspect, an apparatus for analyzing 
nucleotide sequences comprises a data storage to store a set 
of nucleotide sequences, the set having a first number of 
nucleotide sequences; and a data processor configured to 
process the data and determine a set of basis vectors, the set 

A first portion of the first set of nucleotide sequences 60 

belong to known species, species of a second portion of the 
first set of nucleotide sequences initially being unknown, 
and the data processor is configured to, for each nucleotide 
sequence in the second portion, determine whether the 
nucleotide sequence belongs to one of the known species 
based on the classification of the first set of nucleotide 

65 having a second number of basis vectors, in which the 
second number is smaller than the first number, and each 
basis vector represents a specific combination of predeter-sequences. 
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mined nucleotide segments; and for each of the basis vec­
tors, determine a segment that is more strongly associated 
with the basis vector than the other segments. 

Implementations of the apparatus may include one or 
more of the following features. The data processor is con­
figured to provide information about the nucleotide seg­
ments that are more strongly associated with the basis 
vectors. 

The set of nucleotide sequences belong to known species 
of at least one of prokaryotes, eukaryotes, or viruses. 

10 
The predetermined nucleotide segments are k-mers each 

having k nucleobases, k being a positive integer, and each 
basis vector represents a specific combination of the k-mers. 

Determine a set of basis vectors comprises form a k-mer­
sequence matrix in which rows of the matrix represent the 
k-mers and colunms of the matrix represent the nucleotide 15 

sequences, and each element in the matrix represents a 
repetition frequency of the segment represented by the 
corresponding row within the sequence represented by the 
corresponding colunm, and apply at least one of non­
negative matrix factorization or singular value decomposi- 20 

tion to the k-mer-sequence matrix to determine the basis 
vectors. 

Determine a set of basis vectors comprises form a seg­
ment-sequence matrix in which rows of the matrix represent 
the nucleotide segments and colunms of the matrix represent 25 
the sequences, each element in the matrix representing a 
repetition frequency of the segment represented by the 
corresponding row within the sequence represented by the 
corresponding colunm, and apply at least one of non­
negative matrix factorization or singular value decomposi­
tion to the segment-sequence matrix to determine the basis 30 

vectors. 
Determine an approximate representation of the nucleo­

tide sequence based on a combination of the basis vectors 
comprises determine an approximate representation of the 
nucleotide sequence based on a linear combination of the 35 

basis vectors. 
In general, in another aspect, an apparatus comprises a 

microarray having probes that are configured to detect a 
plurality of nucleotide segments that are associated with a 
plurality of basis vectors, in which each of the basis vectors 40 

represents a specific combination of predetermined nucleo­
tide segments, and the basis vectors are derived from a 
plurality of nucleotide sequences by forming a segment­
sequence matrix in which rows of the matrix represent the 
nucleotide segments and colunms of the matrix represent the 45 

sequences, each element in the matrix representing a rep­
etition frequency of the segment represented by the corre­
sponding row within the sequence represented by the cor­
responding colurmi, and applying a dimension reduction 
process to the segment-sequence matrix to determine the 50 

basis vectors. 
Implementations of the apparatus may include one or 

more of the following features. Applying a dimension reduc­
tion process comprises applying at least one of non-negative 
matrix factorization or singular value decomposition to the 55 

segment-sequence matrix to determine the basis vectors. 
The details of one or more of the above aspects ad 

implementations are set forth in the accompanying drawings 
and the description below. Other features, aspects, and 
advantages will become apparent from the description, the 60 

drawings, and the claims. 

DESCRIPTION OF DRAWINGS 

FIGS. 1 and 2 are block diagrams of exemplary systems 65 

that use latent semantic analysis for analyzing DNA 
sequences. 

14 
FIG. 3 is a block diagram of an exemplary system that use 

latent semantic analysis for designing microarray probes. 
FIGS. 4-10 are graphs. 
FIG. 11 is a block diagram of an exemplary system that 

use latent semantic analysis for classifying unknown 
samples. 

FIGS. 12-17 are graphs. 
FIG. 18 is a diagram showing projection matrices. 
FIGS. 19-21 are graphs. 
FIGS. 22-24 are flow diagrams of processes. 
Like reference symbols in the various drawings indicate 

like elements. 

DETAILED DESCRIPTION 

This disclosure provides a novel approach for identifying 
similar DNA sequences using latent semantic analysis 
(LSA). FIGS. 1-3 are diagrams of systems that can analyze 
DNA sequences using latent semantic analysis. A descrip­
tion of the systems is provided, followed by a more detailed 
explanation of how latent semantic analysis is implemented 
in these systems. 

Referring to FIG. 1, in some implementations, a system 
100 that uses latent semantic analysis for analyzing DNA 
sequences includes a segment-sequence matrix generation 
module 102 that receives a set of DNA sequences 104 to be 
analyzed and generates a corresponding segment-sequence 
matrix. DNA segments are used as basic components or 
vocabulary for analyzing the DNA sequences. In some 
examples, the DNA segments are k-mers. The segment­
sequence matrix provides information on which sequences 
have which segments. A dimension reduction module 106 
applies dimension reduction to the segment-sequence matrix 
to determine a set of basis vectors or feature vectors. For 
example, the dimension reduction module 106 can use 
non-negative matrix factorization or singular value decom­
position algorithm in the process of dimension reduction. 
The number of basis vectors is less than the number of 
segments. Each basis vector represents a combination or 
collection of DNA segments, and each DNA sequence can 
be approximately represented by a combination (e.g., linear 
combination) of the basis vectors. 

Profile vectors that represent the linear combination coef­
ficients provide information on the characteristics of the 
DNA sequences. The profile vectors can be regarded as 
providing coordinates of the DNA sequences in a feature 
space having dimensions defined by the basis vectors. A 
clustering module 108 clusters the profile vectors in the 
feature space such that similar DNA sequences are clustered 
closely in the feature space, and DNA sequences that are 
different are spaced apart in the feature space. The distance 
or correlation of the profile vectors of two DNA sequences 
provide information on how similar or different the 
sequences are. A data visualization module 110 allows a user 
to visualize the clustering of the sequences. 

For example, based on the clustering, the user can deter­
mine which species are more closely related. If the input 
sequences 104 include known samples and unknown 
samples, the user can determine whether the unknown 
samples are related to one or more of the known samples. By 
changing the number of dimensions in the dimension reduc­
tion module 106, the user can change the number of clusters, 
effectively moving up or down the taxonomic hierarchy. For 
example, by choosing a smaller number of dimensions, the 
system 100 can produce a smaller number of clusters, 
allowing the user to classify the sequences according to a 
higher taxonomy level. By choosing a larger number of 
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dimensions, the system 100 can produce a larger number of 
clusters, allowing the user to classify the sequences accord­
ing to a lower taxonomy level. 

Because the dimensions of the profile vectors can be small 
(e.g., less than 10), the system 100 can determine the 
distances between DNA sequences easily by determining the 
distances between the corresponding profile vectors. The 
system 100 can analyze a large number of DNA sequences 
quickly to identify clusters of sequences, providing infor­
mation on which sequences are similar and which sequences 10 

are different. DNA sequences from known species can be 
used to establish a feature space, profile vectors correspond­
ing to DNA sequences from unknown species can be pro­
jected into the feature space, and the unknown species can 
be classified based on the projections. For example, an 15 

unknown sample of a bacterium sample can be quickly 
analyzed to determine whether it is similar to a cluster of 
benign bacteria or a cluster of high risk bacteria. 

16 
of M species. By applying latent semantic analysis, a set of 
M feature vectors can be determined in which each feature 
vector roughly corresponds to one of the species. By ana­
lyzing the level of association between a feature vector and 
all of the segments, it may be possible to determine which 
segment is more strongly associated with the feature vector. 
If an unknown DNA sequence includes a particular segment, 
there is a high likelihood that the DNA sequence is associ-
ated with a particular feature vector associated with the 
segment, and thus belongs to the species associated with the 
feature vector. The segments that have high levels of asso-
ciations with the feature vectors can be used to design the 
probes for the microarrays. 

Referring to FIG. 3, in some implementations, a system 
150 uses latent semantic analysis to design microarray 
probes for use in microarray chips intended to detect a 
predetermined set of DNA sequences. The system 150 
includes a segment-sequence matrix generation module 152 
that receives sample sequences belonging to the set of DNA 
sequences, and generates a corresponding segment-se­
quence matrix. A dimension reduction module 154 applies 
dimension reduction to the segment-sequence matrix to 
determine a set of basis vectors or feature vectors. For 
example, the dimension reduction module 104 can use 

Referring to FIG. 2, in some implementations, a system 
120 that uses latent semantic analysis can analyze samples 20 

taken from an environment, such as bacterial samples taken 
from the body of a host animal. The number of bacterial 
DNA sequence samples to be analyzed may be small com­
pared to the number of DNA sequence samples from the host 
animal. 

A segment-sequence matrix generation module 122 
receives a set of training DNA sequences 124 that includes 
sample sequences from the host animal and sample 
sequences of one or more bacteria to be analyzed, and 
generates a corresponding segment-sequence matrix. A 30 

dimension reduction module 126 applies dimension reduc­
tion to the segment-sequence matrix to determine a set of 
basis vectors or feature vectors. For example, the dimension 
reduction module 104 can use non-negative matrix factor­
ization or singular value decomposition algorithm. Using the 35 

basis vectors, a feature space and projection matrix genera­
tion module 128 defines a feature space. A projection matrix 

25 non-negative matrix factorization or singular value decom­
position algorithm. Each basis vector represents a combina­
tion or collection of DNA segments, and each DNA 
sequence can be approximately represented by a linear 
combination of the basis vectors. 

is generated to enable an unknown sample to be projected 
into the feature space. 

A clustering and projection module 130 receives infor- 40 

mation about the feature space and the projection matrix 
from the feature space and projection matrix generation 
module 128. The clustering and projection module 130 
receives a first set of known samples of mixed host and 
bacterial DNA sequences 132, and a second set of unknown 45 

samples of mixed host and bacterial DNA sequences 134. 
The clustering and projection module 130 projects the first 
set of known samples into the feature space and clusters the 
projected samples in the feature space. Some of the clusters 
are primarily associated with the host sequences, and some 50 

of the clusters are primarily associated with the bacterial 
samples. 

The clustering and projection module 130 projects the 
second set of unknown samples into the feature space and 
clusters the unknown samples along with the known 55 

samples. A filtering module 136 removes the unknown 
samples that are grouped with the clusters associated with 
the host samples from the second set. This provides a 
filtering mechanism for filtering the host DNA sequences 
such that the remaining unknown samples in the second set 60 

has a much higher percentage of bacterial samples. The filter 
process can be repeated to further reduce the amount of host 
samples. A data visualization module 138 allows a user to 
visualize the clustering of the sequences. 

Microarray probes can be designed based on the results of 65 

latent semantic analysis of DNA sequences. Suppose a 
microarray is designed to detect the DNA sequences of a set 

A feature vector and segment matching module 156 
analyzes the level of association between each feature vector 
and the segments to determine which segment is more 
strongly associated with the feature vector. For each feature 
vector, the segment that is most strongly associated with the 
feature vector is identified. The segments that are strongly 
associated with the feature vectors are output as candidates 
for microarray probes 160. 

The following describes the principles of systems 100 
(FIG. 1), 120 (FIG. 2), and 150 (FIG. 3) in more detail. 
Biology Background 

To facilitate the discussion of using latent semantic analy­
sis for comparing DNA sequences, the following provides a 
brief background on what the DNA sequences are and some 
definitions of the terms used in this description. DNA is 
regarded as a genetic code or blueprint used to construct 
living things. 

DNA is an acronym for deoxyribonucleic acid and is a 
double-stranded macromolecule that includes four basic 
structural units called nucleotides. Nucleotides are the build­
ing blocks for generating DNA sequences, and much like 
how sentences can be formed using strings of letters from 
the alphabet, a DNA sequence can be formed of a string of 
nucleotides. 

A nucleotide molecule includes three main parts: a five­
carbon sugar, a phosphate group, and a nitrogenous base or 
nucleobase. There are four different nucleotides, each dif­
fering only in the nucleobase. The four nucleobases are 
adenine (A), guanine (G), thymine (T), and cytosine (C). 
When referring to a nucleotide, we typically mean to indi­
cate the attached base, which we denote using its one letter 
abbreviation. Accordingly, this set of four letters forms the 
basis for our "DNA alphabet". 

Certain bases naturally pair or bind to one another. 
Specifically, adenine pairs with thymine (A-T), and guanine 
with cytosine (G-T). These complementary nucleotides are 
held together by hydrogen bonds that link the two mol-
ecules, forming a base pair (bp). Because DNA includes a 
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string of these pairs, we typically express the length of a 
sequence in terms of its number of base pairs. These 
chemical properties ensure that each nucleotide bonds only 
to its pair, which we refer to as its complementary base or 
simply its complement. 

The DNA macromolecule includes two, complementary 
strands of nucleotides which are held together by hydrogen 
bonds. Each strand has so-called 5' (read as "five prime") 
and 3' ends. The chemical structure of the macromolecule 
provides directionality in the way that DNA is constructed. 10 

When we talk about reading a DNA sequence, we name off 
the bases from the 5' end towards the 3' end on one of the 
strands. 

In order differentiate between the two complementary 
15 

strands of DNA, we typically label one as the forward strand 
and refer to the other as the reverse strand. Conventionally, 
for a given segment of DNA, we refer to the corresponding 
portion of the opposite strand as the reverse complement. 
For example, a segment AGT is the reverse complement of 20 

a segment ACT. Due to the opposite or antiparallel orien­
tation of the two strands of the DNA macromolecule, and the 
stacking forces between nucleobases, the DNA macromol­
ecule twists around itself, forming a double-helix structure. 

The primary function of an organism's genome (or com- 25 

plete DNA sequence) is to store the genetic code or set of 
instructions that determine how the organism is to be built. 
Portions of the genome, called genes, contain specific 
instructions for how to create proteins and can also be used 
to send signals within the cell or even control other genes. 30 

Proteins can be thought of as the machinery inside cells of 
living things. They perform various functions from convert­
ing food into energy to defending our bodies from harmful 
bacteria. The word "protein" itself comes from the Greek 

35 
word "prota" meaning "of primary importance." 

18 
Comparing DNA Sequences Using Latent Semantic Analy­
sis 

Latent semantic analysis is a collection of techniques that 
can be used to identify and partition similar text documents. 
For example, latent semantic analysis can use words in 
dictionaries to analyze the content of text documents. One 
difficulty in applying latent semantic analysis in analyzing 
DNA sequences is that DNA sequences do not have readily 
available dictionaries that include words suitable for ana­
lyzing DNA sequences. Thus, we need to generate our own 
"words" or vocabulary for analyzing the DNA sequences. 

In some implementations, latent semantic analysis 
involves four steps: 

(1) Formation of a term-document matrix. 
(2) Transformation/modified weighting of term-document 

matrix. 
(3) Dimensionality reduction. 
( 4) Clustering of documents in the reduced space. 
We first describe the use of latent semantic analysis in 

analyzing text documents, then describe how latent semantic 
analysis can be used in analyzing DNA sequences. When 
analyzing text documents, the latent semantic analysis starts 
with the formation of a term-document matrix, which uses 
a vector space model to describe the text documents based 
on the words they contain. For example, imagine for a 
moment that we have a language L, consisting of the set of 
words 

L~{"good","nice","play","The","was"}. (Equ. 1) 

We can construct a few sentences using this language, such 
as the following sentences: 

Sl="The play was good" 
S2="The play was nice" 

We can represent sentences Sl and S2 with binary vectors 
whose elements indicate the presence or absence of every 
word in the language L. This representation is known as a 
"bag-of-words model" in which a sentence or entire text 
document is characterized by an unordered collection of 
words. Using the language L, we can describe Sl with the 

40 vector 

Because of the macromolecule's double-helix structure, 
DNA sequences are in general well-protected, and the like­
lihood of a change occurring is low. When a change or 
mutation does occur, it can have a wide variety of impact on 
the organism. Often, mutations have little impact and are 
either ignored or corrected by error-checking proteins inside 
the cell. Less frequently, a mutation will significantly affect 
some function within the organism. This change could be 
advantageous, or as is the case with certain types of cancer, 45 

the mutation could be lethal. If the mutation is advantageous 
or has little to no impact on the organism, it stands a chance 
of being permanently incorporated into the organism's 
genome and being passed on to future generations. 

When a change is incorporated into a genome, particu- 50 

larly one that benefits the organism, we say that the organism 
has evolved in some capacity. These changes, however 
slowly, contribute to the level of genetic diversity between 
species. From this, assuming that all forms of life have 

55 
evolved from a common ancestor, it follows that the level of 
similarity in the genomic sequences for two species provides 
an indication of their evolutionary distance and, thus, func­
tional similarity. 

This disclosure provides computationally efficient tech- 60 
niques for estimating the evolutionary distance between 
DNA sequences. By clustering or grouping sequences 
together based on evolutional similarity, we are able to 
identify and investigate the similarities and differences 
between related organisms. In tum, this ability to compare 65 

sequences provides us with a way to decipher the genetic 
code in which they are written. 

Vs
1
=<good?, nice?, play?, The?, was?>=<l, 0, 1, 1, l> 

and S2 with 
Vs,=<O, 1, 1, 1, l>. 
These vectors are compiled into a matrix called a "term­

document matrix" in which the rows represent individual 
terms or words, and the columns represent our collection of 
documents. This matrix forms the starting point for the latent 
semantic analysis techniques from which we can begin 
comparing document vectors. 

In some examples, a binary weighting used to denote the 
presence or absence of individual terms may not be enough 
information to distinguish between two documents. More­
over, at least in the case of natural languages, we expect 
certain words to appear in every document. For instance, 
words like "and", "a", and "the" are statistically very likely 
to occur in every document that we are comparing. As a 
result, in order to highlight the differences between docu­
ments, frequently occurring "stop words" can be removed. 
In addition, the binary weighting scheme can be replaced 
with a more detailed measure. 

For example, an alternative to binary weighting is the 
"term frequency" (tf) weighting scheme. This weighting 
counts the number of occurrences for every term in the 
language and normalizes the term-document vector by the 
total number of words in the document. After normalization, 
each element in the vector indicates the fraction of the 
document represented by the corresponding term. 
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An extension to the tf weighting is the "term frequency­
inverse document frequency" or tf-idf measure. This weight­
ing attempts to emphasize the presence of words that occur 
infrequently and deemphasize words that appear throughout 
the corpus. To compute the inverse document frequency for 
a term t,, we define n, to be the number of documents in the 
corpus that contain t,. If the total number of documents is N, 
the inverse document frequency for t, is given by 

20 
capture the majority of the variance in the original variables, 
highlighting the primary characteristics of the data. The 
following describes a mathematical derivation for singular 
value decomposition and its application to latent semantic 
analysis. 

Using singular value decomposition, a txd matrix X is 
factorized as 

(Equ. 3) 

N 
idf; =log;;;-. 

(Equ. 2) 

By multiplying each element of a term-document vector by 
the corresponding term's inverse document frequency, we 
reduce the strength of terms that appear frequently through­
out the corpus. In doing so, we identify terms that can be 
used to differentiate our documents. A nice property of this 
technique is that, because stop words occur so frequently, 
they are essentially removed by the weighting, eliminating 
the need to manually detect and remove stop words. 

10 Here, U is a txn unitary matrix in which the columns 
represent orthonormal eigenvectors ofXXr, where nsd and 
typically d<<t. Similarly, the rows of yr are orthonormal 
eigenvectors ofXrX, forming an nxd matrix, and Eis an nxn 
diagonal matrix having entries sorted in descending order. 

15 The diagonal entries of E are called the singular values or 
principal values of X, and they represent the real, non­
negative square roots of the eigenvalues of xrx and xxr. 

The factorization is based on the notion that we can 
construct n eigenpairs p.,, vJ,~1 ... n for the matrices xrx 

20 and xxr, in which v, is an eigenvector having corresponding 
eigenvalue A.,. The eigenpair {A.,, v,} is defined such that the 
following equation holds: 

An important issue is the choice of words in latent 
semantic analysis. Multiple words may share the same 
meaning (referred to as synonymy). Consider sentences Sl 25 

and S2 in the example above. By searching for a "good 
play," a system based solely on lexical matching may return 
Sl but may leave out S2, despite its similar positive review. 
Single words can have multiple meanings, referred to as 
polysemy. In sentences Sl and S2 above, a person may 30 

interpret these sentences as describing some theatrical pro­
duction. However, it is possible that Sl is referring to a play 
in the first half of a football game, and S2 is referring to 
something completely different. 

(Equ. 4) 

By transforming or multiplying vector v, by the matrix A, 
we obtain a scalar multiple (A.,) of the vector itself. Replac­
ing A in Equation 4 with the matrix xrx, we notice the 
following property: 

(Equ. 5) 

From Equation 5, we see that for an eigenvector v, of 
xrx, x v, is an eigenvector of xxr having the same 
eigenvalue A.,. We can construct the singular value decom­
position of x by finding the eigenvectors of xrx and xxr 

To overcome problems due to synonymy and polysemy, 35 

latent semantic analysis uses dimensionality reduction tech­
niques to identify sets of correlated words that are used to 
describe a similar topic. In doing so, we achieve a way of 
comparing and retrieving documents that is less affected by 
discrepancies in word choice. 40 and arranging them into matrices U and yr such that the i-th 

column of U and i-th row of yr correspond to the same 
singular value a, in ~. For convenience, we arrange these 
matrices such that the singular values of ~ are listed in 

Dimensionality Reduction Techniques 
Latent semantic analysis involves dimensionality reduc­

tion, such as mapping term-document vectors into a lower­
dimensional space. This has two advantages. First, dimen­
sionality reduction reduces the size of data to be analyzed. 45 

A language may contain a large number of words, and it 
would be more computationally efficient if we can avoid 
vectors of this length. Dimensionality reduction provides us 
with a method of grouping correlated words into a single 
dimension. This helps us to address issues that arise out of 50 

linguistic ambiguities, or difference in word choice. 

descending order of magnitude. 
For example, some algorithms and implementations of 

singular value decomposition compute the eigenpairs by first 
reducing a matrix X to a bidiagonal matrix, which is reduced 
to a diagonal matrix containing the singular values. To 
enhance performance, QR factorization is added as a pre­
liminary step before bidiagonalization, resulting in the fol­
lowing steps for singular value decomposition: 

For example, there are two methods for dimensionality 
reduction: singular value decomposition (SYD) and non­
negative matrix factorization (NMF). To indicate which 
dimensionality reduction routine is used, we use the notation 55 

"LSA-SVD" or "LSA-NMF" to denote latent semantic 

(1) Compute QR factorization ofX. (X=QR) 
(2) Reduce R into a bidiagonal matrix using orthogonal 

transformations. (R=U1B V1) 
(3) Reduce B to a diagonal matrix ~ using an iterative 

approach. 
analysis that uses singular value decomposition or non­
negative matrix factorization, respectively. 
Singular Value Decomposition 

For example, in latent semantic analysis, we can begin 
with a txd term-document matrix X, in which t represents 
the number of terms in the language and rows in X, and d 
is the number of documents in the corpus. Using singular 
value decomposition, we can find an approximation for X 
that groups collections of correlated terms into a small 
number of dimensions. Using singular value decomposition, 
we transform the data into a new set of fewer variables that 

After computing these steps, the original matrix X is 
factorized as X=illVr. This leaves us with an encoding for 
our original set of documents that uses an orthogonal basis 

60 set to capture the majority of the variance in X. The diagonal 
matrix ~ provides us with an indication of which of these 
basis vectors correspond to dimensions having the most 
variance. These vectors correspond to the highest singular 
values in~' and by ignoring dimensions with relatively low 

65 variance, we achieve a way of dimensionality reduction that 
captures the underlying structure of the data while reducing 
the impact of correlated words. 
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Dimensionality Reduction by Singular Value Decomposi­
tion 

After performing singular value decomposition on a term­
document matrix X, the set of document vectors are approxi­
mated by linear combinations of orthogonal basis vectors or 
"pseudo-documents." Some of these basis vectors are con­
sidered to be more important than others in the sense that 
they capture more of the variance in X and are therefore 
more important in reconstructing its rows and columns. As 
a result, if we take only the k most important vectors, 10 

corresponding to the k largest singular values in ~' we are 
left with a "truncated singular value decomposition" that can 
be used to approximate X. 

(Equ. 6) 
15 

This truncated singular value decomposition forms a least 
squares approximation for X that uses k dimensions to 
describe a majority of the variance in the original matrix. 
Through this process, correlated dimensions in the original 
term-space are collapsed into a single dimension in the 20 

reduced "LSA space." As a result, we are left with the rows 

22 
"Given a non-negative matrix XERtxd and a pos1t1ve 

integer k<min { t, d} find non-negative matrices AERtxk 
and HERkxd to minimize the functional": 

. 1 2 
nunA.Yf (A, Y) = ;;:llX -AYllF• 

(Equ. 8) 

such that A, Y <: 0 

where ll•lfp is the Frobenius norm and A, Y;;,;O means that 
every element of A and Y is non-negative. The product AY 
is a k-dimensional approximation for X, and in some 
examples k<<min(t, d). The choice for k has an impact on 
the quality of the approximation, and will depend on appli­
cation and data. 

For example, algorithms for computing the non-negative 
matrix factorization of a matrix can be based on alternating 
least squares (ALS) methods. This class of algorithms 
begins by constructing a random or otherwise initialized set 
of basis vectors and continues by applying pairs of "alter­
nating" least squares steps to iteratively refine the starting 
matrix. These methods are based on the fact the optimization 

Uk forming a collection of uncorrelated, basis vectors that 
can be used to reconstruct term-vectors in the reduced space. 
Similarly, the columns of V/ form a basis set for recon­
structing document vectors. 25 

problem presented in Equation 8 is convex in either A or Y 
separately but not simultaneously. Given one matrix, these 
methods optimize the other matrix using a simple least 
squares computation in alternating fashion. 

By expressing text documents as linear combinations of 
the basis vectors, the impact of linguistic disparities, such as 
synonymy and polysemy, is greatly reduced, and nearby 
vectors in the latent semantic analysis space are related 
based on their conceptual content. An information retrieval 30 

system can be defined by projecting a query vector into this 
space and gathering or clustering nearby documents. 
Non-Negative Matrix Factorization 

The set of matrices produced by the singular value 
decomposition of a term-document matrix has an interesting 35 

property. When approximating a document vector in a latent 
semantic analysis space, the contribution of a basis vector 
(which indicates the presence of a group of one or more 
correlated terms) is allowed to take on a negative value. This 
is due to the requirements for orthogonality in the basis set. 40 

In some implementations for dimensionality reduction, 
the reconstruction of items uses only non-negative multiples 
of a set of basis vectors. In this way, vectors either possess 

The following pseudocode can be used to describe a basic 
algorithm for computing non-negative matrix factorization 
using alternating least squares. 

Algorithm 1: Basic non-negative matrix factorization algorithm 
using alternating least squares 

A~ rand(t, k) ; 
for i = 1 to numlterations do 

Solve for Y using ATAY~ ATX; 
Set negative entries ofY to zero; 
Solve for A using YY TAT~ YXT; 
Set negative entries of A to zero; 

end 

!* randomize/initialize A *I 

!* (Least squares step 1) *I 
!* (Enforce non-negativity) */ 
!* (Least squares step 2) */ 
!* (Enforce non-negativity) */ 

As can be seen in Algorithm 1 above, non-negative matrix 
factorization by alternating least squares is a simple proce­
dure. Because of their simplicity, alternating least squares 
algorithms lend themselves to fast implementations and 
have been found to outperform other non-negative matrix 
factorization techniques and even singular value decompo-

a certain quality or not. A collection of algorithms imple­
menting this type of decomposition is known as "non- 45 

negative matrix factorization." Non-negative matrix factor­
ization operates by approximating a non-negative matrix X 
(which can be a collection of term-document vectors) as the 
product of two non-negative factors A and Y, 

50 
sition. 

(Equ. 7) 

where A is a txk matrix of basis elements, and Y is a kxd 
matrix of coefficients/encodings. Here, d indicates the num­
ber of vectors being approximated, t is the size of these 
vectors, and k is the number of elements in the basis set. 
Each column in X is therefore approximated by a linear 
combination of k basis vectors, using the weights found in 
the corresponding column ofY. As indicated, non-negative 
matrix factorization imposes a non-negativity constraint on 
the matrices A and Y. The result of this constraint is that 
basis elements are not allowed to have a negative contribu­
tion in the approximation of a vector, and as a result, we are 
left with a set of "feature vectors" as our basis set. 

The approach of finding reduced rank non-negative fac­
tors to approximate the non-negative matrix X, can be stated 
generically as the non-negative matrix factorization prob­
lem: 

For information retrieval, by using non-negative matrix 
factorization on a term-document matrix, the resulting set of 
basis vectors defines a k-dimensional latent semantic space 
in which each axis signifies a particular topic. We can now 

55 represent text documents as a linear combination of a set of 
base topics, and we can identify related documents as 
neighboring vectors in the latent sematic space. 

A DNA sequence can be characterized by a statistical 
interpretation of k-mers included in the sequence. A k-mer 

60 refers to an oligonucleotide ("oligo") or polymer of length k 
that denotes a portion or subsequence of some larger 
sequence. For example, a segment gagacagt is a k-mer of 
length eight or an "8-mer." The segment gagacagt contains 
3-mers (or "trigrams") gag, aga, gac, aca, cag, and agt. 

65 Because we have four bases in the alphabet, these trigrams 
are a small subset of the 4k or, in this case, 43=64 possible 
k-mers. 
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The k-mers can be used as a basis for a distance metric for 
comparing DNA sequences. We can expect sequences hav­
ing similar composition to have a large number ofk-mers in 
common. For example, if we define the sequences 

Q ~ gagacagt, 

R ~ gagacat, 
and 

T ~ tcgctta. 

The set of3-mers contained within each sequence are denote 
using Z as follows: 

ZQ ~ gag, aga, gac, aca, cag, agt 
{ } 

ZR ~ gag, aga, gac, aca, cat 
{ 

ZT ~ tcg, cgc, get, ctt, tta 
{ 

Because the set of 3-mers in ZQ is more similar to the set of 
3-mers in ZR than that of Zn it can be inferred that Q is more 
similar to R than T. 

A sequence can be modeled as an unordered collection of 
distinct k-mers or a "bag-of-k-mers." Just as latent semantic 
analysis can use the bag-of-words model for representing 
text documents, we can treat k-mers as the words in the 
genetic language. As a result, we can replace the notion of 
term-document matrices with k-mer-sequence matrices. 

In the following, we describe the use of LSA-NMF to 
identify evolutionarily similar sequences. By using non­
negative matrix factorization to profile sequences, we antici­
pate the set of basis vectors to be indicative of some type of 
"biological signals" that can be used to differentiate organ­
isms. 

Note that other latent semantic analysis techniques, such 

24 
The collection of techniques used to embed an NxN 

dissimilarity matrix into a lower-dimensional space is called 
multidimensional scaling (MDS). These techniques attempt 
to map high-dimensional data to a low-dimensional repre­
sentation while preserving pairwise distances as best as 
possible. A multidimensional scaling technique called prin­
cipal component analysis (PCA) attempts to reduce the 
dimensionality of a dataset consisting of a large number of 
interrelated variables by transforming the data to a new set 

10 of uncorrelated variables called principal components. Prin­
cipal components are ordered or ranked such that the first 
few variables capture most of the variation present in the 
original set of attributes. Dimensionality reduction is typi-

15 cally accomplished using the assumption that these first few 
components convey the majority of the information con­
tained in the original data, and, thus, the remaining compo­
nents can be ignored. 

Another multidimensional scaling algorithm is relational 
20 perspective mapping (RPM), which arranges objects on a 

closed surface in accordance with their pairwise similarity 
measures. The algorithm treats each item in the dissimilarity 
matrix as an object in a force-directed, multi-particle system 
with mutual repulsive forces between each pair of objects. 

25 Items with larger relational distances between them exhibit 
larger repulsive forces, which propel the two objects away 
from each other on the surface of a torus. Once the objects 
have reached a stable configuration, the torus is unwrapped 
to create a two-dimensional relationship mapping. Because 

30 this model assigns repulsive forces between every pair of 
objects in the dataset, the resulting visualization incorpo­
rates information from all of the original N dimensions. 

The following describes nSpect, an exploratory visual­
ization tool which uses a repulsive force-driven system to 

35 visualize high-dimensional proximity data in three dimen­
sions. The nSpect tool treats each element in the visualiza­
tion as a particle in a three-dimensional free space. The 
resulting visualization allows users to view and interact with 

as LSA-SVD, can also be used to analyze DNA sequences 40 

to differentiate organisms. 

the 3D model as it progresses in real-time. 
The nSpect tool receives as input a dissimilarity matrix in 

the standard, PHYLogeny Inference Package (PHYLIP) 
format. This matrix serves as a table of values indicating the 
distances between every pair of objects in the visualization. 
An entry, t,J, denotes the relative, ideal distance separating 

In the experiments described below, we will project 
k-mer-sequence vectors into high-dimensional latent seman-
tic spaces (referred to as "feature spaces"). In some imple­
mentations, in order to evaluate the closeness of sequences 
in the feature spaces, we visualize the high-dimensional data 
in fewer dimensions, such as in a three-dimensional space. 
In some implementations, a graphical user interface, such as 
nSpect tool described below, can be used as a visualization 
tool for analyzing and inspecting high-dimensional data in 
three dimensions. 
Visualizing High-Dimensional Datasets 

45 the ith and jth elements. The value of t,J ranges from 0.0 to 
1.0, in which 1.0 indicates maximum dissimilarity, and 0.0 
suggests equivalency. 

Using these distances, nSpect computes repulsive forces 
between the collection of objects such that the movement 

50 produced by the forces results in a new, more appropriate 
configuration at the next time instance. In order to compute 
the force between two objects, nSpect first evaluates the 
error in actual displacement versus a scalar multiple of the Visualization provides valuable insight into the overall 

structure and defining characteristics of a system by reor­
ganizing and mapping data to a visual reference. In order to 55 

represent high-dimensional data, we reduce the dimension­
ality of the dataset such that as much information as possible 
can be represented graphically, using two or three dimen­
s10ns. 

ideal distance, t,J, separating the pair. 

(Equ. 9) 

Here, the scalar S has been empirically chosen to produce an 
appropriate size for the visualization. Using this equation, 

60 
we see that the error indicates the quality of the current 
arrangement of objects. We define the repulsive force sepa­
rating two items with the following equation. 

The following describes visualization of data that can be 
described using a dissimilarity matrix (proximity data). A 
dissimilarity matrix (or distance matrix) is a square, sym­
metric matrix containing scores which indicate the similarity 
of each pair of objects in a collection. Because most appli­
cations typically involve more than two or three items, in 65 

order to visualize the dissimilarity matrix, we will use some 
form of dimensionality reduction. 

(Equ. 10) 

Using the error as a weighting, the force vector f,,1 acts to 
repel the ith and jth elements along the three-dimensional 
direction vector x,J which separates the two objects. A force 
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equal in magnitude and opposite in direction is applied in the 
second element. Finally, the net force acting upon the ith 
element is computed as 

(Equ. 11) 

This force vector is calculated for each object in the visu­
alization and is used to determine an appropriate direction 
and velocity with which to move the particle during the next 
time instance. The velocity of an object is calculated by 

(Equ. 12) 

Here, the superscripts denote the time iteration in the visu­
alization. As is shown, the velocity vector at the next time 
instance v,Cn+l) is determined by the object's current velocity 
plus some additional amount induced by its force vector. 

(Equ. 13) 

The object's new location I,Cn+l) is determined using its 
current location and computed velocity vector v,Cn+1l. In the 
equations above, the constant a introduces a drag force or 
decay in velocity. If chosen to be too strong, the drag force 
could keep objects from escaping local minima, and if too 
weak, the system is slow to converge. The parameter ~ is 
similarly chosen to calculate an appropriate velocity for an 
object given the amount of force applied to it. If chosen to 
be too strong, the system will not reach a stable condition. 
If too weak, the rate of convergence suffers considerably. 
Finally, y represents a default step size, which determines 
how far an object should move. If the step size is chosen to 

26 
structing functional statistical characterizations. Another 
attractive property of this particular sequence is that there 
are methods of sequencing it directly and therefore quickly 
and relatively inexpensively. This short and informative 
sequence is easy to obtain and inexpensive to store. For 
these reasons, the 16S sequences are very popular for 
constructing phylogenies and taxonomic databases. Ribo­
somal sequence databases, such as Ribosomal Database 
Project (RDP), are among the largest collections available 

10 for comparing related organisms. 
In this example, we will apply LSA-NMF to a set of 16S 

sequences from a collection that includes 268 sequences 
taken from species belonging to 5 genera: Bulkholderia, 
Chryseobacterium, Desulfovibrio, Nocardioides, and 

15 Shewanella. We begin with the formation of a k-mer­
sequence matrix, X. In some implementations, a k-mer size 
of 7 is used. This provides a good trade-off between speci­
ficity and profile size for this dataset. Lowering the k-mer 
size may reduce the amount of information being used to 

20 compare sequences, effectively lowering the resolution. 
Going higher than 7 may provide additional resolution, but 
it may also require increased memory and computation 
power. In this example, we use k-mers of 7 bases long. The 
k-mer-sequence vectors are 47=16,384 elements long, and X 

25 is a 16,384x268 matrix. After obtaining k-mer frequency 
counts for each of the 268 sequences, tf-idf weighting was 
applied to the matrix X in order to deemphasize any simi­
larities and highlight any differences between the k-mer 
counts. 

be too large, the system will not be able to reach a stable 30 

condition. If too small, the system will be slow to converge. 
These constants were experimentally determined to provide 

In some examples, dimensionality reduction can be 
applied by using the NMF MATLAB Toolbox by Li and 
Ngom. This toolbox provides a collection of standard non­
negative matrix factorization routines. In this example, we 
use the routine based on an alternating non-negative least 
squares algorithm. Other techniques for non-negative fac­
torization can also be used. 

a good tradeoff between the rate of convergence and jitter. 
As the visualization progresses and objects move into a 

stable arrangement, one must consider the possibility of 35 

objects settling in local minima. To address this issue, 
objects are randomly displaced by a series of perturbations 
occurring when the average velocity of the system falls 
below a threshold. These perturbations diminish in intensity 
until their effect is negligible. 

In this example, because we already know the number of 
distinct groups in our dataset-there are five genera, we can 
start by approximating the matrix X using 5 basis vectors. 

40 Using the standard, least squares-based algorithm, we obtain 
the factorization The nSpect tool can provide a graphical user interface that 

allows a user to visualize the three-dimensional feature 
space. Using various controls, the user can explore the 
feature space by rotating, panning, and zooming in or out. 

(Equ. 14) 

Because the objects in the visualization are given ran- 45 

domized starting locations and perturbations, the orientation 

in which A is a set of basis vectors compiled into a matrix 
of size 16,384x5, and Y is a 5x268 matrix of encodings (or 
coefficients) from which we can reconstruct the original 

of the final arrangement is also non-deterministic. Acknowl­
edging this fact, the user has the ability to restart the 
visualization by ')umbling" or randomizing the starting 
locations of the objects. In addition, the user can manually 50 

issue perturbations or shakes to the collection of items. 
Using nSpect, high-dimensional proximity data can be visu­
ally approximated in a simulated, three-dimensional free 

k-mer-sequence vectors using the basis set A. 
The encodings in the matrix Y are short profiles that 

represent the original set of vectors and can be used as a 
basis for comparing them. As a result, we can form a 
distance measure by computing the Euclidean distance or 
correlation coefficient for each pair of vectors in the matrix 
Y. This can be used as the LSA-NMF-based distance metric. 
Distance matrices were constructed by computing the space. 

Clustering of 16s Ribosomal Genes 
The following describes an example of using LSA-NMF 

to partition a collection of 16S ribosomal genes. The term 
"16S sequence" (or, more formally, a "16S rDNA 
sequence") refers to a specific gene associated with a struc­
tural element of prokaryotic ribosomes. Ribosomes are 
responsible for assembling proteins. The genes used to 
produce ribosomes are universal (present in all species), 
highly conserved, and similar across species, and any dif­
ferences in these genes can be used as a way of differenti­
ating between the species. 

The 16S gene itself is fairly small at around 1,500 bases 
in length. Although short, this length is sufficient for con-

55 Euclidean distance and correlation coefficient of each pair of 
sequences, i.e., computing the Euclidean distance and cor­
relation coefficient of each pair of vectors in the matrix Y. 

Referring to FIG. 4, a graph 170 produced using the 
nSpect tool shows approximately how the profiles cluster in 

60 high-dimensional space. In graph 170, the distance matrix 
was constructed by computing the Euclidean distance of 
each pair of sequences. Referring to FIG. 5, a graph 180 
produced using the nSpect tools shows another example of 
approximately how the profiles cluster in high-dimensional 

65 space. In graph 180, the distance matrix was constructed by 
computing the correlation coefficient of each pair of 
sequences. The original graphs 170 and 180 generated by the 
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nSpect tool are rendered in color, though the graphs are 
shown in gray scale in the figures. The colors of the objects 
in the figures indicate the genus to which each sequence 
belongs. For example, red=Burkholderia, blue=Chryseo­
bacterium, green=Desulfovibrio, yellow=Nocardioides, and 
violet=Shewanella. In each of the graphs 170 and 180, there 
is considerable separation of the clusters in the 5-dimen­
sional feature space. 

28 
Burkholderia samples (shown in red) that were deemed 
similar in less-detailed feature spaces have now been sepa­
rated by this new set of basis vectors. 

Referring to FIG. 9, a graph 220 shows an enlarged 
version of the cluster shown in red for the Burkholderia 
samples. There appears to be three distinct clusters (labeled 
A, B, and C) within this genus. Inspecting the three clusters, 
we find that these groupings are consistent with an earlier 
study that constructed a phylogenetic tree for the entire In FIGS. 4 and 5, the clusters are well-defined. The 

dimensionality reduction stage in the latent semantic analy­
sis procedure attempts to identify basis vectors that capture 
the majority of the variance in the genetic data. As a result, 
vectors that are heavily correlated, such as ones representing 
organisms from the same genus, appear to be very similar 
when projected into the feature space. 

10 Burkholderia genus using the Jukes-Cantor model to mea­
sure variations in the recA gene. The results of FIGS. 7-9 
show that the latent semantic analysis based method works 
well in differentiating between organisms at varying levels 
of evolutional similarity, especially when there is a rough 

In the field of information retrieval, dimensionality reduc­
tion allowed us to recognize related documents in spite of 
large differences in word choice due to the authors' vocabu­
lary and writing style. Here, this same effect provides a level 

15 estimate of how many groups into which to partition the 
data. This approach can be used to construct a phylogenetic 

of "noise-reduction" that makes the technique described 20 

here less sensitive to small differences between genomic 
sequences. In the examples shown in FIGS. 4 and 5, 
non-negative matrix factorization can identify a set of basis 
vectors that correspond to the centroid of each of the five 
genera. These basis vectors represent sets of k-mers whose 25 

presence denotes a feature in the projected space. The 
features may indicate the genus of the organism. 

FIG. 6 is a graph 190 showing a sample of elements from 
the encoding matrix, Y. Each colunm in the graph 190 
presents a grayscale rendering of a colunm in the matrix Y. 30 

White indicates a maximum level of contribution for the 
feature vector, and black indicates a minimum level of 
contribution. The graph 190 shows that most sequences from 
a particular genus associate strongly with just one feature 
vector. On the other hand, a few colunms from the genus 35 

Nocardioides are not well-defined by any single feature. 
These colunms correspond to outliers that may have been 
misclassified or mislabeled. 

In the examples used to generate graphs 170 and 180 in 
FIGS. 4 and 5, we know how many genera are present in the 40 

dataset. When the number of feature vectors is modified, the 
number of clusters may also change. 

Referring to FIG. 7, for example, if we lower the number 
of feature vectors to k=3, a graph 200 shows that there will 
be three clusters. Using this new set of three basis vectors, 45 

we see that our genera have been divided into three rela­
tively distinct groups that correspond to the phyla to which 
they belong. The largest of these three groups contains the 
three genera Burkholderia (red), Desulfovibrio (green), and 
Shewanella (violet), while the other two genera Chryseo- 50 

bacterium (blue) and Nocardioides (yellow) appear to cor­
respond to their own feature vectors. 

Upon inspection, the genera Burkholderia, Desulfovibrio, 
and Shewanella are all Gram-negative genera in the phylum 

tree. 
Referring to FIG. 10, a graph 230 shows a phylogenetic 

tree 232 constructed for the set of Burkholderia species that 
were analyzed in FIG. 5 by correlating the encoding vectors 
used to represent sequences in an LSA-NMF feature space. 
In general, the latent semantic analysis based method per­
forms well and has captured the overall structure of the 
genus. The tree was constructed using 5 feature vectors. The 
lower portion of the tree 232 shows that species such as 
Burkholderia cepacia and Burkholderia vietnamiensis 
appear misleadingly similar despite the fact that they can be 
separated. This issue may be resolved by constructing the 
tree using a larger number of feature vectors. 

Consider that the genus of Burkholderia contains a large 
number of pathogenic species, many of which are antibiotic 
resistant and are considered to be especially dangerous. 
Some of the more hazardous species are feared as potential 
biological warfare agents and must be handled with extreme 
caution. The lists of species within clusters A and C from 
FIG. 9 indicate that some clusters correspond to species 
associated with high risk factors, while some clusters cor­
respond to species associated with low risk factors. 

Table 1 below shows the risk factor associated with each 
of the species found in Burkholderia cluster A of FIG. 9. 
Table 2 below shows the risk factor associated with each of 
the species found in Burkholderia cluster C of FIG. 9. These 
risk factors are taken from the Technical Rules for Biologi­
cal Agents (TRBA) from the German Federal Institute for 
Occupational Safety and Health (BAuA), and the levels 
indicate the risk of infection for an extensive list of species. 
On the BAuA' s scale, a risk factor of 1 denotes an agent with 
a relatively low risk of infection, whereas agents having risk 
factors of 2 or higher are particularly virulent. Tables 1 and 
2 show that cluster C is, in general, more dangerous than 
cluster A. 

TABLE 1 

of Proteobacteria. On the other hand, Chryseobacterium 55 _____ ___;B.!.!u!!.rk!!!h~o~ld!±e!.!ri!!.a.-"c~!u""st~erLA~w!.lith~r"'is""k-"s"'co""r"'es,__ ____ _ 

and Nocardioides, the remaining genera, belong to the phyla 
of Bacteroidetes and Actinobacteria, respectively. Thus, it 
appears that our new set of feature vectors loosely corre­
spond to three taxa at the phylum level. 

If the number of feature vectors in the basis set is 60 

increased, the clusters that corresponded to individual gen­
era may be split into smaller subgroups. 

Referring to FIG. 8, a graph 210 shows the clustering of 
the samples that is achieved by generating a set of feature 
vectors with k=7 elements in the basis set. As shown in the 65 

graph 210, by increasing the number of feature vectors, we 
further divide the collection of sequences. For instance, 

Genus 

Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 
Burkholderia 

Species Risk Score 

Burkholderia bryophila 
Burkholderia caledonica 
Burkholderia caribensis 
Burkholderia ferrariae 
Burkholderia fungorum 
Burkholderia ginsengisoli 
Burkholderia graminis 
Burkholderia heleia 
Burkholderia hospita 
Burkholderia kururiensis 
Burkholderia megapolitana 
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TABLE I-continued 

Burkholderia cluster A with risk scores 

Genus Species Risk Score 

Burkholderia Burkholderia mimosarum 
Burkholderia Burkholderia nodosa 
Burkholderia Burkholderia phenazinium 
Burkholderia Burkholderia phenoliruptrix 
Burkholderia Burkholderia phymatum 
Burkholderia Burkholderia phytofirmans 
Burkholderia Burkholderia sabiae 
Burkholderia Burkholderia sacchari 
Burkholderia Burkholderia sartisoli 
Burkholderia Burkholderia sediminicola 
Burkholderia Burkholderia silvatlantica 
Burkholderia Burkholderia terrae 
Burkholderia Burkholderia terricola 
Burkholderia Burkholderia tropica 
Burkholderia Burkholderia tuberum 
Burkholderia Burkholderia unamae 
Burkholderia Burkholderia xenovorans 

TABLE 2 

Burkholderia cluster C with risk scores 

Genus Species Risk Score 

Burkholderia Burkholderia ambifaria 2 
Burkholderia Burkholderia arboris 2 
Burkholderia Burkholderia cenocepacia 2 
Burkholderia Burkholderia cepacia 2 
Burkholderia Burkholderia cocovenenans 
Burkholderia Burkholderia diffusa 2 
Burkholderia Burkholderia gladioli 
Burkholderia Burkholderia glumae 
Burkholderia Burkholderia lata 
Burkholderia Burkholderia latens 2 
Burkholderia Burkholderia mallei 
Burkholderia Burkholderia metallica 2 
Burkholderia Burkholderia multivorans 2 
Burkholderia Burkholderia oklahomensis 2 
Burkholderia Burkholderia plantarii 
Burkholderia Burkholderia pseudomallei 
Burkholderia Burkholderia pyrrocinia 
Burkholderia Burkholderia seminalis 2 
Burkholderia Burkholderia stabilis 2 
Burkholderia Burkholderia thailandensis 
Burkholderia Burkholderia ubonensis 
Burkholderia Burkholderia vandii 
Burkholderia Burkholderia vietnamiensis 2 

Referring to FIG. 11, a system 240 can be used to classify 
an unknown sample and estimate the unknown sample's risk 

30 
and projection module 250 projects the first set of known 
samples into the feature space and clusters the projected 
samples in the feature space. Some of the clusters are 
primarily associated with the bacteria having low risk fac­
tors, and some of the clusters are primarily associated with 
the bacteria having high risk factors. 

The clustering and projection module 250 projects the 
second set of unknown samples into the feature space and 
clusters the unknown samples along with the known 

10 samples. A data visualization module 256 highlights the 
unknown samples that are grouped with the clusters asso­
ciated with bacteria having high risk factors. 

The system 240 identifies a set of basis vectors that have 
been trained to recognize a set of features that are indicative 

15 of harmful agents. The system 240 queries or projects profile 
vectors of new sequences into a predetermined feature space 
and avoids recalculating the non-negative matrix factoriza­
tion for every test. 
Identification and Removal of Host DNA Fragments from 

20 Metagenomics Datasets 
The following describes the principles of the system 120 

in FIG. 2 in more detail. LSA-NMF can be used to construct 
high-dimensional feature spaces in which the dimensions 
indicate the presence of specific biological "feature" present 

25 in a genomic sequence. Predefined feature spaces can be 
used to filter out unwanted samples of DNA. 

An example where such a "DNA filter" can be useful is in 
the field of metagenomics. Metagenomics is an area of study 
that focuses on sequencing genetic material that has been 

30 
taken from environment samples. In some examples, 
sequencing an organism begins with the isolation and ampli­
fication of the organism's cells. However, for a large number 
of organisms, the cells cannot be cultured in isolation. 
Metagenomic studies do not attempt to remove an organism 
from its natural environment, but instead, sequence it 

35 directly along with anything else that is in the set of samples 
collected from the environment. Thus, metagenomic studies 
may involve identifying and assembling genomic sequences 
from a microbial community containing a diverse mixture of 

40 

organisms. 
A common problem in metagenomic studies is that many 

of the microbial cells to be analyzed are found inside other 
living organisms. When a sample is taken from, for example, 
the gut of an animal or a human, the sample will also contain 
DNA from the host organism. The host may have a large and 

45 complex genome that when sequenced may contain portions 
that look similar to the bacterial samples to be analyzed. A 
large percentage of the sequenced data may belong to the 
host. 

as an infectious agent. The system 240 includes a segment­
sequence matrix generation module 242 that receives a set of 50 

training DNA sequences 244 that includes sample sequences 
from the various bacteria having known risk factors. The 
module 242 generates a corresponding segment-sequence 
matrix. A dimension reduction module 246 applies dimen­
sion reduction to the segment-sequence matrix to determine 

55 
a set of basis vectors or feature vectors. For example, the 
dimension reduction module 246 can use non-negative 
matrix factorization or singular value decomposition algo­
rithm. Using the basis vectors, a feature space and projection 
matrix generation module 248 defines a feature space. A 
projection matrix is generated to enable an unknown sample 60 

to be projected into the feature space. 

It is useful to be able to remove at least a portion of the 
host DNA from a sequenced metagenomic sample. We can 
filter out unwanted DNA fragments by constructing feature 
spaces that have been trained to distinguish the host DNA 
from the bacterial samples that we wish to keep. 

We can generate a metagenomic dataset synthetically. The 
following describes an example in which the results of 
sequencing a gut sample from Mus musculus, the common 
house mouse, is simulated. The bacteria in this example are 
divided into three primary phyla: Bacteroidetes, Firmicutes, 
and Proteobacteria. In the experiment, the two most domi-
nant genera from each phylum were included in the mixture. 
These genera are Alistipes and Bacteroides from Bacte-
roidetes; Bacillus and Clostridium from Firmicutes; and 
Acinetobacter and Enterobacter from Proteobacteria. 

A clustering and projection module 250 receives infor­
mation about the feature space and the projection matrix 
from the feature space and projection matrix generation 
module 248. The clustering and projection module 250 65 

receives a first set of known bacterial samples 252, and a 
second set of unknown bacteria samples 254. The clustering 

The complete genomes for each of these bacteria and all 
chromosomes from Mus musculus were collected and ran­
domly sampled to generate 1 kbp fragments, simulating 
shotgun sequencing. The fragments from each organism 
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were combined to form a collection of nearly 10,000 frag­
ments, made up of approximately 90% mouse DNA and 
10% bacterial DNA. The number of samples taken from 
each group of bacteria was chosen based on their average 
relative abundance amounts. For the mouse, an equal num­
ber of samples were taken from each chromosome. 

32 
In anticipation of a diverse set of samples in the mixture, 

we chose to use k=25 basis vectors for the factorization. The 
matrix AK includes the set of basis vectors which define a 
high-dimensional feature space, and the matrix Y K is a 
collection of encodings that can be used to reconstruct the 
original set of vectors using this basis set. The following 
describes a method of projecting new samples into a feature 
space that has been obtained through non-negative matrix 
factorization. A user can project new samples into the feature 

Table 3 lists the amount of samples from each major 
group of organisms. Table 4 lists the amount of samples 
from various bacterial genera. 

TABLE 3 

10 space and determine whether or not the new samples appear 
to be from the mouse genome. 

Amount of samples from each major group of organisms 

Group Sample Count % of Total 

Host (Mus musculus) 8,771 89.74% 
Bacteroidetes 693 7.09% 
Firmicutes 260 2.66% 
Proteobacteria 50 0.51% 

15 

Given an unknown sample x, its approximation in the 
feature space defined by the set of basis vectors A can be 
written as 

x=Ay, (Equ. 16) 

in which y is the encoding used to reconstruct x using the 
elements of A. The vector y is a k-dimensional profile (a 
"feature profile") that characterizes x, so it is useful to have 

20 a way to transform x into y. Solving for y in Equation 16, we 
obtain the projection matrix B as follows: 

Phylum 

Bacteroidetes 
Bacteroidetes 
Firmicutes 
Firmicutes 
Proteobacteria 
Proteobacteria 

TABLE 4 

Amount of samples from bacterial genus 

Genus Sample Count % of Bacteria Total 25 

Alistipes 
Bacteroides 
Bacillus 
Clostridium 
Acinetobacter 
Enterobacter 

343 
350 

65 
195 
25 
25 

34.20% 
34.90% 

6.48% 
19.44% 

2.49% 
2.49% 

30 

x=Ay 

(Equ. 17) 

Now, given an unknown sample x, we can perform a 
simple matrix multiplication to project x's k-mer-sequence 
vector into a predetermined feature space. For example, we 
can project an item into the feature space defined by AK 

After the synthetic dataset is assembled, we can design a 
filter. We assume that, whether in whole or in part, we have 
access to the host organism's genome. We also assume that 
we know of and have access to genomic sequences for at 
least one of the bacteria in the microbiome. These sequences 
will be used to construct the feature spaces for determining 
which fragments to keep and which to discard. 

35 using the projection matrix 

As described above, sequences can be clustered in feature 40 

spaces that are obtained by performing non-negative matrix 
factorization on the entire collection of sequence profiles. 
Because a metagenomic dataset may contain millions of 
sequences, it is preferable to avoid this computation-inten­
sive step. A set of training data can be used to define a feature 45 

space, and a projection matrix can be used to map k-mer­
sequence vectors into this space. 

We define a feature space that can be used to differentiate 
between host fragments and samples that belong to the 
microbial cell. We perform non-negative matrix factoriza- 50 

tion on a small set of known samples taken from the host's 
DNA and the bacteria that is assumed to be the mixture. In 
this example, we trained an initial feature space using a 
collection of just under 1,000 sequences, half of which were 
taken from Mus musculus. The other half were obtained by 55 

randomly sampling Bacteroides fragilis, which is an organ­
ism from the most dominant genus in the mouse's gut 
microbiome. 

These sequences were profiled ask-mer frequency vectors 
using a k-mer size of 7, and the results were compiled into 60 

a k-mer-sequence matrix, XD representing the profiles of the 
known set. We apply tf-idfweighting followed by the same 
standard, non-negative least squares implementation of non­
negative matrix factorization on XK to obtain the approxi-

Once samples are in the feature space, similar objects can be 
identified, including determining whether or not a sequence 
appears to have been taken from the host's genome. Having 
known sequences from both the host and the microbial 
colony, there are a number of ways in which the feature 
space can be partitioned in order to identify samples that 
should be removed. One approach is to project and cluster 
known fragments along with the set of unknown samples. 
By noting how the known sequences cluster, it is possible to 
determine which groups of sequences should be filtered out. 
In some examples, the system 120 uses k-means clustering 
to group elements in the feature space. Other ways of 
clustering the elements can also be used. A process for 
filtering a host's DNA from a sequenced metagenomic 
sample can include the following steps: 

(1) Construct a projection matrix Busing known samples. 
(2) Project known and unknown samples into the feature 

space using projection matrix B. 
(3) Cluster the feature profiles. 
( 4) Eliminate groups containing known-host samples. 
(5) Repeat steps 1-4 as needed, using same or different 

known samples. 
The system 120 was used to construct a k-mer-sequence 

matrix using a set of roughly 1,000 known fragments 
randomly chosen from the host's genome and the microbial 
community. The matrix was used to train an initial feature 
space with corresponding projection matrix B0 . A collection 

mation 

(Equ. 15) 

65 of 200 known-host fragments, 200 known-bacterial frag­
ments, and the entire set of approximately 10,000 unknown 
samples were projected into the feature space defined by B0 . 
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In this example, the 200 known-host and known-bacterial 
fragments were different than those used to train B0 . 

Once in the feature space, the projected samples were 
clustered into 20 groups using k-means clustering to identify 
sequences having similar feature profiles. The compositions 
of these clusters are presented in Table 5, which shows round 

34 
this example, some clusters have 0 known host and bacterial 
samples. It is possible that by using a larger set of known 
samples, additional clusters may be determined to be asso­
ciated with the host, and thus more samples may be 
removed. If the maximum number of known bacterial 
samples is increased, it may be possible to eliminated 
additional host DNA. For example, if cluster 13 is consid­
ered to be associated with the host, and the unknown 
samples grouped with cluster 13 are removed, that will result 
in leaving 98 samples or 1.1 % of the host DNA while 
retaining 85% of the bacterial samples. 

After the first round of clustering and filtering, there are 
three options: (1) decide that this is good enough and stop; 
(2) repeat the same set of steps, but using a different 

1 clustering of mouse metagenomic data. There are columns 
denoting the clustering of known and unknown samples. The 
"Known" columns provide information on which clusters 
are primarily associated with host sequences, and which 10 

clusters are primarily associated with bacteria sequences. 
This information can be used to determine whether or not to 
remove the cluster. For example, clusters 1-3, 5-9, 11, 12, 
and 14-17 are primarily associated with host sequences. This 
means that among the unknown samples, the samples that 
are grouped with clusters 1-3, 5-9, 11, 12, and 14-17 can be 
removed because they are likely sequences from the host. 

15 projection matrix; or (3) place everything that remains along 
with the known samples back into the feature space and 
repeat the clustering and removal process. In this example, 
choosing option (3) and repeating the clustering with the 
same set of known samples, the results of round 2 filtering 

A set of predetermined criteria may be set for the removal 
of host samples. For example, a cluster can be considered to 
be associated with the host if the cluster includes a large 
majority of known-host samples, in which the percentage is 
greater than a preset value. In addition, a cluster can be a 
target for removal ifthe known bacteria samples is not more 
than a preset maximum number. For example, a cluster can 

20 are presented in Table 6. 

be considered to be associated with the host ifthe number of 
the known host samples is more than four-times the number 25 

of the known bacteria samples, and the cluster has not more 
than 10 known bacteria samples. 

For example, in clusters 1-3, 5-9, 11, 12, and 14-17, the 
number of known host samples is greater than 4 times the 
number of known bacteria samples, and the number of 30 

known bacteria samples is not more than 10. Thus, clusters 
1-3, 5-9, 11, 12, and 14-17 are considered to be associated 
with the host. Unknown samples grouped in clusters 1-3, 
5-9, 11, 12, and 14-17 are predicted to be associated with the 
host and can be removed. The removal predictions are 35 

shown in the right-most column. 

Cluster 

2 

4 

TABLE 5 

Round 1 clustering of mouse metagenomic data. 

Known Samples 

Host 

45 
2 

12 
0 

14 

Bacteria 

0 
0 
0 

99 

Unknown Samples 

Host 

2060 
15 

537 

Bacteria 

0 
0 
0 

40 

Remove? 

45 

Cluster 

2 

4 

7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

TABLE 6 

Round 2 clustering of mouse metagenomics data 

Known Samples 

Host 

78 

7 
0 

10 
16 
0 
0 

0 

9 
0 

10 
0 

33 
4 

10 
17 

Bacteria 

0 
0 
0 
0 
4 

34 
84 
54 

0 
0 
4 

7 
2 

0 
0 
0 

Unknown Samples 

Host 

0 
0 

29 
0 

75 
0 
9 
2 

63 
0 

32 
294 

0 
273 

0 
470 

24 
0 
4 

Bacteria 

0 
0 
0 

135 
0 
0 

226 
34 

203 
0 
0 

94 
2 

141 
43 

117 
7 
0 
0 
0 

Remove? 

y 
y 
y 

N 
y 
y 

N 
N 
N 
N 
N 
N 
y 

N 
N 
N 
y 
y 
y 
y 

In the second round, another 902 host fragments have 
been eliminated, with the loss of 9 bacterial fragments. After 
round 2, there are 378 samples or 4% of the original amount 
of host DNA, and over 99% of the original 1,003 bacterial 

7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

7 
10 
2 
0 

31 

0 
0 
0 
0 

68 
0 
0 

17 
0 
0 
0 
9 

553 
111 
257 
192 
78 

2 
54 

280 
1182 
273 
209 
152 

280 
0 
0 
0 
0 
0 

243 
0 
0 

145 
0 
0 
0 
0 

y 
y 
y 

N 
y 
y 
y 
y 
y 

N 
y 
y 

N 
y 
y 
y 
y 

N 
N 
N 

50 samples remaining. Continuing to filter the samples in this 
manner for a few more rounds, the results are shown in Table 
7. In this table, a"*" next to the round number indicates that 
a projection matrix, trained on a new group of host and 
bacterial samples was computed prior to this stage. With 

55 each of these rounds, a new set of known samples was 
chosen to be clustered in this and subsequent rounds. 

51 
0 
0 
0 

0 
0 

2720 
22 

64 

168 
167 

0 60 

Table 5 shows the number of unknown samples that are 
removed in this round of filtering. In the first round of 
clustering and filtering, 7,491 of the unknown mouse frag­
ments were removed without removing any unknown bac- 65 

terial samples. In just one pass of the filter, over 85 percent 
of the host DNA was removed, leaving 1,280 samples. In 

Round 

(Start) 
1* 
2 

TABLE 7 

Several rounds of filtering mouse metagenomics data 

Remaining 
Host Samples 

8771 
1280 

378 
235 

Remaining Remaining Remaining 
Host % Bacterial Samples Bacterial % 

100.0 1003 100 
14.59 1003 100 
4.30 994 99.1 
2.68 985 98.2 
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Round 

4* 
5 

35 
TABLE 7-continued 

Several rollilds of filtering mouse metagenomics data 

Remaining 
Host Samples 

68 
65 

Remaining 
Host% 

0.775 
0.741 

Remaining 
Bacterial Samples 

974 
973 

Remaining 
Bacterial% 

97.1 
97.0 

FIG. 12 is a graph 260 that shows the number of host and 
bacterial samples remaining after each round of filtering. If 
the filtering process is stopping after either round 4 or 5, the 
final percentage of host samples remaining is less than one 
percent of its starting amount, while preserving about 
ninety-seven percent of the original unclassified bacterial 
samples. In addition, throughout this process, the composi­
tion of the mixture went from 90% host DNA down to about 
6% in the final set. 

A process for filtering host DNA from a sequenced 
metagenomics dataset has been described. The amount of 
host DNA in the mixture can be reduced significantly. If the 
criteria is selected such that sacrificing a larger number of 
bacterial samples is allowed, it may be possible to eliminate 
more host fragments. 

There are a number of ways to partition a feature space in 
order to recognize and eliminate fragments which appear to 
be very similar to the host's DNA. In some examples, 
k-means clustering can be used to accomplish this partition­
ing, but other clustering methods can also be used. 

Under LSA-NMF, a sample either exhibits a particular 
feature or not. In some examples, the strength with which a 
sample associates with a given feature vector can be used in 
the clustering process. A crude method of clustering can be 
achieved by noting the feature vector with the greatest 
contribution for a collection of samples, and clustering items 
by their strongest feature. However, this method may be too 
crude for many applications. This process can be modified as 
follows. By observing the contributions of each feature 
vector in the reconstruction of a sequence, it appears that a 
few dimensions have very large components, and the rest die 
off rather quickly. 

FIG. 13 is a graph 270 that shows the average level of 
contribution for a collection of 500 feature profiles of length 

36 
In some examples, DNA microarrays can be used for gene 

expression profiling. When a gene is transcribed or copied 
by the enzymes inside a cell, a piece of messenger RNA 
(mRNA) is created. The mRNA includes a set of instructions 
that directs the cell to perform some function. By conven­
tion, when a gene is transcribed into mRNA, the gene is said 
to be expressed. If a particular gene is used to perform a 
routine task, it may be expressed very frequently or in large 
amounts. If the gene is used only under special conditions, 

10 it may have a relatively low rate of expression. 
A set of probes can be designed for use in a DNA 

microarray to measure the expression of an entire collection 
of genes simultaneously. By noting when and how many 

15 
genes are expressed, an organism's "gene expression pro­
file" can be observed. This profile differs between individu­
als and even in different parts of the body. By comparing a 
set of expression profiles, it may be possible to obtain 
information that can be used for a variety of purposes, such 

20 as predicting a gene's function or evaluating the status of a 
disease. 

In addition to gene expression profiling, DNA microar­
rays are also frequently used to detect pathogenic species in 
an environmental sample. By designing a set of probes that 

25 indicate the presence of certain organisms, microarrays can 
be used to diagnose infectious diseases or monitor the safety 
of food, water, and air. The role that microarray probes play 
in each of these applications is similar to the use of feature 
vectors to identify and differentiate between organisms. The 

30 following describes a novel method for designing microar­
ray probes by reverse engineering the feature vectors in an 
LSA-NMF space. 

The feature vectors or dimensions of an LSA-NMF space 
can be regarded as corresponding to biological features that 

35 are exhibited by a genomic sequence. In the examples shown 
in FIGS. 4-10, the features are indicators of the genus or 
some other taxonomic group to which the organism 
belonged. The presence of a feature is signaled by the 
presence of a set of one or more k-mers in a k-mer-sequence 

40 vector. By investigating which k-mers are found in these 
sets, it is possible to identify a collection of distinct k-mers 
that together can be used to indicate a biological feature. 

25 that have been sorted by their magnitude. The graph 270 
shows that a large percentage of the sequences are almost 45 

completely characterized by five or fewer components. An 
efficient way of clustering samples is to express sequences 

A process for determining which k-mers are mapped to 
each feature vector is described below. Individual k-mers 
can be projected into a predetermined space, and the strength 
to which the k-mers associate with a particular feature can 
be recorded. In an information retrieval system, this method 
is the equivalent of querying a semantic space with indi­
vidual words and noting how strongly they indicate a 

as a combination of features. Similar to the way that a 
semantic topic may be a combination of multiple subtopics 
in the realm of information retrieval, a sequence can be 50 

expressed as a combination of a set of biological features. As 
a result, feature profiles can serve as a type of hyper-spectral 
coloring that can be used to distinguish between highly 
similar sequences with low computational overhead. 

semantic group. In effect, this process identifies potential 
keywords or distinct k-mers whose presence is indicative of 
a semantic group or biological feature. 

By varying the choice of k-mer size and the number of 
dimensions in the factorizations, it may be possible to devise 

Using LSA-NMF to Design Microarray Probes 55 a method for establishing collections of variable-length 
oligonucleotides that can be used to design efficient sets of 
microarray probes. Using a feature space of lower dimen­
sions results in a less-specific partitioning of the collection 

In some implementations, latent semantic analysis by 
non-negative matrix factorization can be used to design 
microarray probes. As described above, LSA-NMF can be 
used to construct high-dimensional feature spaces in which 
genomic sequences are classified into various clusters. The 60 

feature vectors can be useful in the design of DNA microar­
ray probes. 

A DNA microarray uses a large collection of short DNA 
probes to detect the presence of specific sequences in a 
mixture. The probes are short pieces of complementary 65 

DNA that bind or hybridize to a matching sequence if it is 
found in the mixture. 

of elements. In detecting the presence of a distinct organism, 
a series of feature spaces can be used to search for a species 
at varying levels of precision. 

The 5-genus dataset described above is used to evaluate 
the process for designing microarray probes. Ametagenomic 
dataset can contain a more diverse mixture of species. By 
training a feature space of five dimensions on this collection 
of sequences, the elements in the resulting basis set roughly 
correspond to the five genera found in the mixture. 
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Referring to FIG. 14, a graph 280 shows the amount of 
contribution for each of the five feature vectors in recon­
structing each sequence in the collection. A value of 1.0 in 
this figure means that a sample is best approximated using 
only one of the elements from the basis set. For example, 
lines 282, 284, 286, 288, and 290 represent the amount of 
contribution for feature vectors 1, 2, 3, 4, and 5, respectively 
in reconstructing each sequence in the collection. 

FIG. 14 shows that the set of feature vectors can be used 

38 
ber of true positives (TP) indicates the number of the 47 
possible Nocardioides species that contain the k-mer in 
question and thus should hybridize to the probe. The number 
of false positives (FP) indicates the number of species 
outside of Nocardioides that also contained the oligo. Table 
8 shows that this collection of probes works well in detecting 
only the target sequences. 

to predict the genus of a sample. When a basis vector is used 
in the reconstruction or approximation of a sample, it 
indicates that the sample's DNA sequence contains some 
distinct collection of k-mers. As a result, by determining 
which k-mers are in the collections, the k-mers can be used 
to construct a set of microarray probes that can detect this 
same set of features. 

When constructing the k-mer-sequence vectors, the fact 
that DNA contains two complementary strands is taken into 

10 account by counting k-mers and their reverse complements 
when profiling the sequence. In Table 8, the 4-th probe 
cgttgct is the reverse complement of the probe that is useful. 
By using the probe's complement in row 4*, a much better 

15 
performance is obtained, and the results are consistent with 
the rest of the table. 

To determine which oligos best represent a particular 
feature (considered to be "keywords"), individual k-mers 
can be projected into the feature space, and how well they 
associate with the corresponding basis vector can be 20 

recorded. This is equivalent to observing the colunms of the 
projection matrix B=(Ar Ar1 Ar for a basis set A. In this 
matrix, the magnitude of each element B,J provides an 
indication of the strength with which the j'h k-mer implies 
the i'h feature. 25 

FIG. 15A is a graph 300 that shows the relative levels of 
association for the k-mer ctgtta with each of the five basis 
vectors in FIG. 14. FIG. 15B is a graph 310 that shows the 
relative levels of association for the k-mer tgggtc with each 
of the five basis vectors in FIG. 14. In FIGS. 15A and 15B, 30 

the "relative level of association" indicates the amount that 
each feature vector contributes in the approximation of the 
k-mer, relative to the average contribution amount (the mean 
of B). This measure can be used as an indication of the 
k-mer's association with each feature. The graph 300 of FIG. 35 

15A shows that the segment ctgttat is a weak indicator of 
features 1, 3, and 4. The graph 310 of FIG. 15B shows that 
the segment tggggtc appears to be a clear indication of 
feature vector 5 and, thus, the genus Nocardioides. 

Referring to FIG. 16, a graph 320 shows the levels of 40 

association for feature vector 5 over a range of the 16,384 
possible 7-mers. Shown in the right, index number 13,663 
corresponds to the k-mer tggggtc, which as described above 
is a strong representative of the feature vector 5. The 
examples in FIGS. 15A, 15B, and 16 indicates that it is 45 

possible construct a set of microarray probes by finding the 
collection of k-mers with the highest levels of association 
for each of the features that corresponds to the genetic 
sequence to be detected. For example, a set of candidate 
microarray probes for Nocardioides is selected by sorting 50 

the list ofk-mers by their level of association and picking the 
top five. 

TABLE 8 

To detect sequences other than double-stranded genetic 
material, such as using RNA probes, profile sequences can 
be used without counting reverse complements as the 
sequence is profiled. Table 9 below shows results for ana­
lyzing the same k-mers using this method of profiling. 

TABLE 9 

Candidate probe oligos found by using 
alternative profiling method (without counting 

reverse complements in k-mer profile) 

Rank k-mer Level of Assoc. TP FP TN FN 

1 cgcagat 35 47 1 220 0 

2 cagcaac 34 47 3 218 0 

3 ttgggcg 34 47 3 218 0 

4 agcaacg 34 47 3 218 0 

5 cgtcacg 33 46 0 221 1 

Table 9 shows that this approach yields similar results but 
with slightly higher levels of association. This may be due 
to not counting reverse complements in the profile, so there 
is a lower chance of two unrelated sequences containing the 
same k-mer. Despite using a different profiling scheme, both 
approaches produce similar sets of candidate oligos, with 
agcaacg being found in the top five for both. 

The results from the two examples shown in Tables 8 and 
9 enables identification of a unique set of k-mers that 
reliably detect the presence of the target collection of 
Nocardioides samples. By using a microarray that contains 
a combination of these probes, a high level of detection can 
be maintained while further reducing the small number of 
false positives. 

The following describes an example in which the process 
of identifying microarray probes is applied to a larger dataset 
that contains a total of 750 16s sequences, in which 75 

Candidate probe oligos (* indicates the previous round was repeated 
with the reverse complement of the k-mer.) 

Rank k-mer Level of Assoc. TP FP TN FN 

55 sequences are taken from each of the following, randomly 
selected genera: Bacillus, Burkholderia, Corynebacterium, 
Enterococcus, Halomonas, Nocardia, Pseudomonas, Strep­
tococcus, and Vibrio. The process begins by training a 

gacccca 25 47 0 221 0 
2 tggggtc 25 47 220 0 

agcaacg 22 47 218 0 
4 cgttgct 22 0 221 44 
4* agcaacg 22 47 218 0 
5 gcatgcg 21 46 0 221 

Table 8 above shows the results of searching for each 
candidate oligo in the collection of 268 samples. The num-

60 

65 

projection matrix for this collection of sequences, using 10 
feature vectors to define the LSA-NMF space. 

Referring to FIG. 17, a graph 330 shows which feature 
vectors are used in the approximation of each sample in the 
collection. The graph 330 shows that the feature vectors 
roughly correspond to the ten genera, though the correspon­
dence is not perfect. The encodings corresponding to genera 
Bacillus and Pseudomonas are unpredictable and do not 
seem to associate well with any one particular feature vector. 
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This is consistent with biological research that indicates a 
high level of diversity in the 16S sequences for Bacillus and 
Pseudomonas. A number of species from Psuedomonas have 
even been relocated into other genera, such as Burkholderia. 

The graph 330 in FIG. 17 indicates that it is possible select 
the oligos for the microarray probes by using feature vectors 
that best indicate each of the 20 species. Table 10 shows 
candidate probe oligos for Streptococcus. 

TABLE 10 

Candidate probe oliqos for Streptococcus 

Rank k-mer Level of Assoc. TP FP TN FN 

1 ctgaagt 37 64 1 674 11 

2 taggtcc 35 73 1 674 2 

3 tcggtga 35 68 86 589 7 

4 aagggac 33 74 1 674 1 

5 aggtccc 33 73 0 675 2 

gtgctag 33 75 1 674 0 

7 aggtgtt 33 74 2 673 1 

8 gttgtat 33 71 0 675 4 

9 gtaggtc 33 74 2 673 1 

10 ctttccg 32 71 0 675 4 

40 
in the basis set provides a short profile that can be used to 
identify groups of sequences with similar biological fea­
tures. By computing the distance or correlation coefficient 
between pairs of these profiles, a new form of evolutionary 
distance measure can be used to construct phylogenetic 
trees, cluster 16S ribosomal genes, and remove unwanted 
host DNA fragments from a metagenomic sample. The 
feature vectors themselves can provide a collection of bio­
logical keywords, or sets of oligonucleotides whose collec-

10 tive presence is indicative of some biological feature. 
Each of the applications described above relies on linear 

algebra techniques to rotate, scale, or otherwise transform 
elements in a vector space. The elements are sparse, so the 
techniques described above can be implemented using 

15 simple yet highly efficient methods. Many practical appli­
cations can be designed around pre-computed projection 
matrices to further minimize their level of computational 
burden. 

Latent semantic analysis provides a collection of tech-
20 niques that can be greatly beneficial in dividing and orga­

nizing large amounts of biological information. Latent 
semantic analysis based techniques provide efficient meth­
ods for retrieving and interpreting data in ways that enhance 

25 

30 

efforts for decoding the genetic language. 
LSA-NMF may be used to construct high-dimensional 

feature spaces capable of distinguishing between relatively 
short (about 1 kbp) genomic sequences. This approach can 
be extended to allow for the classification oflonger and even 
whole-genome sequences. 

In the examples above, a k-mer size of 7 bp was chosen, 
resulting in k-mer-sequence profiles of 16,384 elements. 

Table 10 shows the ten oligos having the highest levels of 
association for the Streptococcus feature vector. This set of 
probes reliably detects the presence of the target samples, 
while producing a low number of false positives. By requir- 35 

ing a combination of these k-mers, the likelihood of false 
positives can be further reduced. 

When comparing sequences that are several billion bases in 
length, in order to effectively distinguish between longer 
sequences, larger k-mer sizes can be used. 

LSA-NMF can be used to classify short sequences, it may 
be possible to use a sliding window approach to sample a 
whole genome, classify each windowed region, and use a list 
of the classified elements as a profile to characterize the 
sequence. For example, consider that certain genes such as 

The process for selecting candidate oligos for the probes 
uses a k-mer's "relative level of association" with each 
feature vector. The subset of oligos with the highest levels of 
association is chosen. A weighting can be applied to deem­
phasize k-mers that are highly associated with multiple 
features. 

In a large, diverse dataset, it is possible that no oligo is 
highly representative of a feature. By increasing the k-mer 
size, the number of possible keywords that can be used to 
define a feature can be increased. By keeping track of the 
relative levels of association for a dataset, it is possible to 
determine whether or not the k-mer size should be increased. 
While 7-mers are used in the above example, larger probe 
sizes can be used to keep false positive rates low. By 
increasing the length of the probes, higher specificity can be 
achieved. By doing so only when and where necessary, it is 
possible to design an efficient set of microarray probes of 
minimal length. 

Latent semantic analysis is a useful collection of tech­
niques for differentiating and classifying genomic sequences 
by modeling them as unordered sets of distinct, fixed-length 
words. Dimensionality reduction can be performed using 
non-negative matrix factorization to identify sets of basis 
vectors to approximate sequences in high-dimensional LSA­
NMF spaces. The basis vectors, due to the non-negativity 
constraints of non-negative matrix factorization, represent 
collections of oligonucleotides whose collective presence 
indicates latent biological features. 

By projecting sequences into the high-dimensional fea­
ture spaces, the encodings or contributions of each element 

40 the 16S ribosomal sequences are similar across species, a set 
of feature vectors can be trained to detect such genes. 
Sequences can be classified not by unordered collections of 
k-mers but by unordered collections of genes. 

Classifying sequences by unordered collection of genes 
45 can be applied to the construction of phylogenetic trees. The 

16S ribosomal gene alone may not be enough to perfectly 
reconstruct phylogenies. If other genes that carry phyloge­
netic signals (such as the recA gene that was used to 
differentiate between species of Burkholderia) can be 

50 detected and extracted, samples can be characterized using 
a combination of several genes in order to construct more 
accurate phylogenies. Such a system can classify an 
unknown sample using each gene separately and combine 

55 

the results to identify the species. 
Thus, a series of classifications or clusterings may be used 

to profile a genomic sequence. When projecting a sample 
into an LSA-NMF space, due to the non-negativity con­
straints, a crude form of clustering may be achieved by 
recording the feature vector (or subset of feature vectors) 

60 having the largest contribution in the reconstruction. A series 
of classifications may be achieved by pre-computing a 
collection of projection matrices. 

LSA-NMF can be applied in a series of projection matri­
ces to partition and search large collections of sequences. 

65 For example, given an unknown sample, it is useful to find 
the most similar item in a large database of known organ­
isms. Using the method described above, a collection of 
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projection matrices can be constructed to classify a sequence 
at various levels of taxonomic specificity, providing a hash­
ing function into the database. 

Referring to FIG. 18, a diagram 330 shows how an 
incoming sample can be profiled using several projection 
matrices. For example, an incoming sample nucleotide 
sequence can be converted to a k-mer-sequence profile 
vector. The profile vector is projected into an initial feature 
space using a projection matrix B0 , which has been designed 
to differentiate organisms at, e.g., the phylum level. Suppose 10 

the sample is identified as belonging to phylum m, and the 
corresponding projection matrix B1 m breaks this phylum 
into smaller subgroups, corresponding to one or more 
classes within the phylum. The profile vector is projected 
into the feature space using the projection matrix B1 m to 15 

determine which subgroup the sample belongs to. 
0

This 
process is repeated for as many steps are necessary to 
classify the sample, providing a divide and conquer strategy 
for searching large sequence collections. 

Each of the techniques described above can use, e.g., 20 

linear algebra methods for factorizing and multiplying 
matrices. These operations, such as the LSA-NMF based 
operations, can be implemented efficiently using parallel 
computing platforms. 
Characterization of Protein Sequences Using Latent Seman- 25 

tic Analysis 
The following describes the use oflatent semantic analy­

sis in the characterization of protein sequences. 
A protein sequence can be expressed as a sequence of 

amino acids. The techniques for analyzing DNA sequences 30 

can also be applied to analyzing protein sequences, in which 
the nucleobases are replaced by amino acids. In this set of 
analyses, non-negative matrix factorization approach is used 
as described above. A matrix <I>(X) having nonnegative 
entries can be factorized to two matrices having nonnegative 35 

entries: 

<l>(X),A, faO. (Equ. 18) 
40 

In latent semantic analysis terminology, each colunm of 
<I>(X) is decomposed by the dictionary atoms represented by 
each column of the matrix A and codes represented by each 
colunm of the matrix Y. 

Here, each colunm of <I>(X) is assumed to be a vector 45 

representing a protein sequence having an implicit math­
ematical characterization in a high dimensional metric 
space. The inner product of any two implicit protein vectors 
gives the similarity of those two corresponding protein 
sequences. Therefore, 50 

(Equ. 19) 

Combining Equations 18 and 19 results in the following: 

S=<l>(Xl<t>(X) 

=<l>(Xl AY, 

=AKY 

(Equ. 20) 

55 

42 
sufficient. The resulting decomposition is referred to as 
kernel non-negative matrix factorization (KNMF). 

To compute the similarity matrix S of a set of protein 
sequences, the relative complexity measure is used. After 
kernel non-negative matrix factorization is applied, each 
protein is represented as a numeric vector that is the dic­
tionary coding provided in the matrix Y. These codes can be 
used in visualization and classification tasks. The nSpect 
tool and heatmaps are used for visualizing the data. The 
classification algorithms that are used include nearest neigh­
bor (INN), support vector machines (SVM), artificial neural 
networks (ANN), and random forest (RF) algorithms. 

Three categories of protein sequence data are retrieved 
from the Protein Classification Benchmark collection for 
machine learning: 

1. Classification of 3-phosphoglycerate kinase (3PGK) 
protein sequences into domains of life (Archaea, Bac­
teria, Eukaryota) based on phyla: 117 3PGK proteins 
from 10 phyla are provided from the 3 domains. 

2. Functional annotation of unicellular eukaryotic and 
prokaryotic protein sequences in the COG database: 
17973 unicellular eukaryotic and prokaryotic protein 
sequences from 117 different functional annotation 
groups are provided. 

3. Classification of protein domain sequences and struc­
tures into homology (H) groups, based on similarity (S) 
groups (CATH95 v.3.0.0): 11373 protein sequences 
from 165 homology groups are provided. All sequences 
are selected from Protein sequences and structures from 
CATH (>95% sequence identity) database. 

The following describes results of classification of 
3-phosphoglycerate kinase (3PGK) protein sequences into 
domains of life (Archaea, Bacteria, Eukaryota) based on 
phyla. 

The proteins are decomposed into 20-element-codes 
using kernel non-negative matrix factorization. As one-vs­
all classifiers trained to observe the characterization power 
of the latent semantic analysis representation, perfect sepa­
ration in 20-D space is obtained (see Table 11 below). The 
classification accuracy may be worse when the entire simi­
larity matrix is used for classification. 

TABLE 11 

Classification accuracy of dataset 1 into phyla. The entire data 
(i.e. similarity matrix) is used to classify using four different 
algorithms for the column labeled "Entire data." The column 

labeled "KNMF" represents the classification after latent 
semantic analysis characterization into 20 dictionary elements. 

INN 
SVM 
ANN 
RF 

Entire data 

0.86 
0.95 
0.96 
0.88 

KNMF 

Referring to FIG. 19, a graph 340 shows 3D projection of 
latent semantic analysis coded 3PGK proteins. In FIG. 19, 

The non-negative matrix factorization in Equation 20 
results in the identical coding matrix with Equation 18. This 
provides the property that in order to decompose protein 
sequences into dictionary codings, it is not necessary to 
know the implicit characterization, but a similarity matrix is 

60 the red cubes represent the associated phylum, and the white 
cubes represent the rest of the data. In the figure, the labels 
"R" are placed next to the red cubes and the labels "W" are 
placed next to the white cubes. The graph 340 shows each 
one of the 10 phyla represented in 3D space using the nSpect 

65 tool. The graph 340 indicates that clear separation of 3PGK 
proteins into taxonomic groups is visible in lower dimen­
sions (e.g., 3 dimensions in this visualization). 
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The following describes functional annotation of unicel­
lular eukaryotic and prokaryotic protein sequences in the 
COG database 

The proteins were latent semantic analysis coded using 
kernel non-negative matrix factorization into 20 dictionar­
ies. As one-vs-all classifiers trained to observe the charac­
terization power of the latent semantic analysis representa­
tion, good separation in 20-D space is obtained (see Table 
12). 

TABLE 12 

Classification accuracy of dataset 2 into functional groups. The 
entire data (i.e., similarity matrix) is used to classify using 
3 different algorithms for the column labeled "Entire data." 
The column labeled "KNMF" represents the classification 

after latent semantic analysis characterization into 20 dictionary elements. 

INN 
SVM 
RF 

Entire data 

0.99 

KNMF 

Referring to FIGS. 20A to 20C, graphs 350, 360, and 370 
show functional groups represented in 3D space using the 
nSpect tool, in which various groups are represented with 
different colors from 3 different camera angles. The clusters 
formed by latent semantic analysis can be observed in 3 
dimensional projections. In FIG. 20A, the graph 350 shows 
the 3D projection oflatent semantic analysis coded proteins 
from a first camera angle. Each color represents a functional 
group. There are 12 groups, labeled from 1 to 12 in the 
figure. FIGS. 20B and 20C show the same information in the 
3D space from second and third camera angles. 

The following describes classification of protein domain 
sequences and structures into homology (H) groups, based 
on similarity (S) groups (CATH95 v.3.0.0) 

The proteins were latent semantic analysis coded using 
kernel non-negative matrix factorization into 40 dictionar­
ies. As one-vs-all classifiers trained to observe the charac­
terization power of the latent semantic analysis representa­
tion, good separation in 40-D space is obtained (see Table 
13). 

TABLE 13 

Classification accuracy of dataset 2 into homology groups. The 
entire data (i.e. similarity matrix) is used to classify using 

2 different algorithms for the column labeled "Entire data". The 
column labeled "KNMF" represents the classification after 

latent semantic analysis characterization into 40 dictionary elements. 

INN 
SVM 

Entire data 

0.97 

KNMF 

Referring to FIG. 21, a heat map 380 represents the 
relation of homology groups. Homologous proteins are 
sorted adjacently and the homology groups are shown in 
black boundaries along the diagonal. Warm colors represent 
greater similarity, and cold colors represent greater dissimi­
larity. The heat map 380 shows latent semantic analysis 
coded proteins. The heat map 380 allows a user to visualize 
the characterization ability of latent semantic analysis for 
homology. 

Latent semantic analysis representation of protein 
sequences derived from relative complexity measurement 
provides a strong characterization. The examples above 

44 
based on taxonomic information, functional annotation, and 
homology groups show that latent semantic analysis codings 
contain phylogenetic, functional, and homology signals. 

Latent semantic analysis of protein sequences can serve 
several purposes. It provides a concise summary about 
several properties of a protein that can be employed large 
scale machine learning tasks. The compact representation 
provided by latent semantic analysis can label proteins in 
large databases efficiently. This enables low complexity 

IO engine-searches for various features (e.g. homology, func­
tional annotation.) 

Referring to FIG. 22, a process 390 for analyzing nucleo­
tide sequences using latent semantic analysis is provided. 
For example, the process 390 can be implemented by the 

I5 system 100 of FIG. 1. The process 390 includes receiving a 
first set of nucleotide sequences, the first set having a first 
number of nucleotide sequences (392). The process 390 
includes determining a set of basis vectors, the set having a 
second number of basis vectors, in which the second number 

20 is smaller than the first number, and each basis vector 
represents a specific combination of predetermined nucleo­
tide segments (394). The process 390 includes for each of 
the first set of nucleotide sequences, determining an approxi­
mate representation of the nucleotide sequence based on a 

25 combination of the basis vectors (396). The process 390 
includes for each pair of a plurality of pairs of nucleotide 
sequences, determining distances between the pair of 
nucleotide sequences according distances between the 
approximate representations of the pair of nucleotide 

30 sequences (398). The process 390 includes classifying the 
first set of nucleotide sequences based on the distances 
between the pairs of nucleotide sequences (400). 

Referring to FIG. 23, a process 410 for analyzing nucleo­
tide sequences taken from an environment using latent 

35 semantic analysis is provided. For example, the process 410 
can be implemented by the system 120 of FIG. 2. The 
process 410 includes receiving a first set of nucleotide 
sequences that includes nucleotide sequences from a host 
and nucleotide sequences from a plurality of known species 

40 different from the host (412). The process 410 includes 
receiving a second set of nucleotide sequences that includes 
nucleotide sequences from either the host or other species 
without information on which nucleotide sequences in the 
second set belong to the host (414). The process 410 

45 includes generating a segment-sequence vector for each of 
the nucleotide sequences in the first and second sets of 
nucleotide sequences, the segment-sequence vector provid­
ing information on nucleotide segments included in the 
nucleotide sequence (416). The process 410 includes pro-

50 jecting the segment-sequence vectors for the first and second 
sets of nucleotide sequences into a feature space (418); 
clustering the nucleotide sequences in the feature space 
(420); identifying one or more clusters that are primarily 
associated with the nucleotide sequences from the host 

55 (422); and removing nucleotide sequences from the second 
set of nucleotide sequences that are in the one or more 
clusters primarily associated with the nucleotide sequences 
from the host (424). 

Referring to FIG. 24, a process 430 for designing microar-
60 ray probes using latent semantic analysis is provided. For 

example, the process 430 can be implemented by the system 
150 of FIG. 3. The process 430 includes receiving a set of 
nucleotide sequences, the set having a first number of 
nucleotide sequences (432); determining a set of basis 

65 vectors, the set having a second number of basis vectors, in 
which the second number is smaller than the first number, 
and each basis vector represents a specific combination of 
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predetermined nucleotide segments (434); and for each of 
the basis vectors, determining a segment that is more 
strongly associated with the basis vector than the other 
segments (436). The process 430 includes providing a 
microarray having probes that are selected based on the 
nucleotide segments that are more strongly associated with 
the basis vectors ( 438). 

The modules in the systems 100, 120, and 150 can be 
implemented by hardware or a combination of hardware and 
software. For example, the systems 100, 120, and 150 may 
include one or more processors and one or more computer­
readable mediums (e.g., RAM, ROM, SDRAM, hard disk, 
optical disk, and flash memory). The one or more processors 
can execute instructions to implement the functions per­
formed by the modules of systems 100, 120, and 150, such 
as segment-sequence matrix generation, dimension reduc­
tion, clustering, data visualization, feature space and pro­
jection matrix generation, clustering and projection, filter­
ing, and feature vector and segment matching. The modules 
can also be implemented using application-specific inte­
grated circuits (ASICs). The term "computer-readable 
medium" refers to a medium that participates in providing 
instructions to a processor for execution, including without 
limitation, non-volatile media (e.g., optical or magnetic 
disks), and volatile media (e.g., memory) and transmission 
media. Transmission media includes, without limitation, 
coaxial cables, copper wire and fiber optics. 

The features described above can be implemented advan­
tageously in one or more computer programs that are 
executable on a programmable system including at least one 
programmable processor coupled to receive data and 
instructions from, and to transmit data and instructions to, a 
data storage system, at least one input device, and at least 
one output device. A computer program is a set of instruc­
tions that can be used, directly or indirectly, in a computer 
to perform a certain activity or bring about a certain result. 
A computer program can be written in any form of pro­
gramming language (e.g., C, Java), including compiled or 
interpreted languages, and it can be deployed in any form, 
including as a stand-alone program or as a module, compo­
nent, subroutine, a browser-based web application, or other 
unit suitable for use in a computing environment. 

46 
claimed, but rather as descriptions of features specific to 
particular embodiments of particular inventions. Certain 
features that are described in this specification in the context 
of separate embodiments can also be implemented in com­
bination in a single embodiment. Conversely, various fea­
tures that are described in the context of a single embodi­
ment can also be implemented in multiple embodiments 
separately or in any suitable subcombination. 

Similarly, while operations are depicted in the drawings in 
10 a particular order, this should not be understood as requiring 

that such operations be performed in the particular order 
shown or in sequential order, or that all illustrated operations 
be performed, to achieve desirable results. In certain cir­
cumstances, multitasking and parallel processing may be 

15 advantageous. Moreover, the separation of various system 
components in the embodiments described above should not 
be understood as requiring such separation in all embodi­
ments, and it should be understood that the described 
program components and systems can generally be inte-

20 grated together in a single software product or packaged into 
multiple software products. 

Thus, particular embodiments of the subject matter have 
been described. Other embodiments are within the scope of 
the following claims. In some cases, the actions recited in 

25 the claims can be performed in a different order and still 
achieve desirable results. In addition, the processes depicted 
in the accompanying figures do not necessarily require the 
particular order shown, or sequential order, to achieve 
desirable results. In certain implementations, multitasking 

30 and parallel processing may be advantageous. 
Although some examples have been discussed above, 

other implementations and applications are also within the 
scope of the following claims. For example, instead of using 
k-mers as the words in the genetic language, where k is 

35 constant, we can use k-mers as the words in the genetic 
language, where k is variable. For example, a combination 
of7-mers and 8-mers can be used as the words in the genetic 
language, and the k-mer-sequence matrix M can be replaced 
with a segment-sequence matrix, in which the segments 

40 refer to k-mers, k having two or more values. The systems 
100, 120, and 150, and various processes described above 
can be used to analyzed nucleotide sequences, regardless of 
whether the sequences include genes or not. Suitable processors for the execution of a program of 

instructions include, e.g., both general and special purpose 
microprocessors, digital signal processors, and the sole 45 

processor or one of multiple processors or cores, of any kind 

What is claimed is: 
1. A method comprising: 
receiving a first set of nucleotide sequences, the first set 

having a first number of nucleotide sequences, the first 
set of nucleotide sequences including a first portion and 
a second portion, the first portion including nucleotide 

of computer. Generally, a processor will receive instructions 
and data from a read-only memory or a random access 
memory or both. The essential elements of a computer are a 
processor for executing instructions and one or more memo- 50 

ries for storing instructions and data. Generally, a computer 
will also include, or be operatively coupled to communicate 
with, one or more mass storage devices for storing data files; 
such devices include magnetic disks, such as internal hard 
disks and removable disks; magneto-optical disks; and opti- 55 

cal disks. Storage devices suitable for tangibly embodying 
computer program instructions and data include all forms of 
non-volatile memory, including by way of example semi­
conductor memory devices, such as EPROM, EEPROM, 
and flash memory devices; magnetic disks such as internal 60 

hard disks and removable disks; magneto-optical disks; and 
CD-ROM and DVD-ROM disks. The processor and the 
memory can be supplemented by, or incorporated in, ASICs 
(application-specific integrated circuits). 

While this specification contains many specific imple- 65 

mentation details, these should not be construed as limita­
tions on the scope of any inventions or of what may be 

sequences that belong to known species; 
determining, by a data processor, a set of basis vectors, the 

set having a second number of basis vectors, in which 
the second number is smaller than the first number, the 
second number is equal to or larger than two, and each 
basis vector represents a specific combination of pre­
determined nucleotide segments; 

for each of the first set of nucleotide sequences, deter­
mining an approximate representation of the nucleotide 
sequence based on a combination of the basis vectors; 

for each pair of a plurality of pairs of nucleotide 
sequences, determining distances between the pair of 
nucleotide sequences according to distances between 
the approximate representations of the pair of nucleo­
tide sequences; 

classifying the first set of nucleotide sequences based on 
the distances between the pairs of nucleotide 
sequences; 
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for each nucleotide sequence in the second portion, deter­
mining whether the nucleotide sequence is associated 
with one of the known species based on the classifica­
tion of the first set of nucleotide sequences; and 

generating, by the data processor, an output having infor­
mation about, for each of those nucleotide sequences in 
the second portion that are associated with known 
species, which one of the known species is associated 
with the nucleotide sequence. 

2. The method of claim 1 in which the first portion of the 10 

first set of nucleotide sequences belong to known species of 

48 
10. The method of claim 1 in which determining an 

approximate representation of the nucleotide sequence com­
prises determining coefficients for a linear combination of 
the basis vectors that represents an approximation of the 
nucleotide sequence. 

11. The method of claim 1 in which the distance between 
the approximate representations of the pair of nucleotide 
sequences is determined according to at least one of (i) 
Euclidean distance between the approximate representations 
of the pair of nucleotide sequences or (ii) correlation 
between the approximate representations of the pair of 
nucleotide sequences. 

at least one of prokaryotes, eukaryotes, or viruses, the 
second portion of the first set of nucleotide sequences are 
obtained from a patient, and 

12. The method of claim 1, comprising determining the 
distance between every pair of nucleotide sequences, and 

15 classifying the first set of nucleotide sequences based on the 
distances between all of the pairs of nucleotide sequences. 

13. The method of claim 1 in which species of the second 
portion of the first set of nucleotide sequences are initially 
unknown. 

the method comprises, for each nucleotide sequence in the 
second portion, determining whether the nucleotide 
sequence is associated with one of the known species of 
the at least one of prokaryotes, eukaryotes, or viruses 
based on the classification of the first set of nucleotide 20 

sequences. 
3. The method of claim 2, comprising generating an 

output having information that indicates, for each nucleotide 
sequence in the second portion, which one of the known 
species of the at least one of prokaryotes, eukaryotes, or 25 

viruses, if any, is associated with the nucleotide sequence. 
4. The method of claim 1 in which the predetermined 

nucleotide segments are k-mers each having k nucleobases, 

14. The method of claim 1, comprising generating a 
phylogenetic tree for the first set of nucleotide sequences 
based on the classification of the first set of nucleotide 
sequences. 

15. The method of claim 1, comprising determining 
whether one or more of the first set of nucleotide sequences 
are associated with pathogenic species based on the classi­
fication of the first set of nucleotide sequences, and gener­
ating an output having information about which one or more 
of the first set of nucleotide sequences are associated with k being a positive integer, and each basis vector represents 

a specific combination of the k-mers. 30 pathogenic species. 
5. The method of claim 4 in which determining a set of 

basis vectors comprises 
forming a k-mer-sequence matrix in which rows of the 

matrix represent the k-mers and colunms of the matrix 
represent the nucleotide sequences, k being a positive 35 

integer, and each element in the matrix represents a 
repetition frequency of the segment represented by the 
corresponding row within the sequence represented by 
the corresponding colunm, and 

applying a dimension reduction process to the k-mer- 40 

sequence matrix to determine the basis vectors. 
6. The method of claim 5 in which applying a dimension 

reduction process comprises applying at least one of non­
negative matrix factorization or singular value decomposi­
tion to the segment-sequence matrix to determine the basis 45 

vectors. 
7. The method of claim 1 in which determining a set of 

basis vectors comprises 

16. The method of claim 1, comprising determining which 
nucleotide sequences are associated with low risk species, 
and which nucleotide sequences are associated with high 
risk species, based on the classification of the first set of 
nucleotide sequences, and generating an output indicating 
which nucleotide sequences are associated with low risk 
species, and which nucleotide sequences are associated with 
high risk species. 

17. The method of claim 1, comprising receiving a second 
set of nucleotide sequences that includes nucleotide 
sequences from a host and nucleotide sequences from a 
plurality of known species different from the host, classify­
ing the second set of nucleotide sequences based on the 
distances between the pairs of nucleotide sequences, and 
identifying nucleotide sequences that are primarily associ­
ated with the host based on the classification of the first and 
second sets of nucleotide sequences. 

18. The method of claim 17, comprising removing, from 
the second set of nucleotide sequences, nucleotide 
sequences that are primarily associated with the host. 

19. The method of claim 18, comprising generating an 
output having information about the nucleotide sequences 
remaining in the second set of nucleotide sequences after the 
nucleotide sequences primarily associated with the host have 

forming a segment-sequence matrix in which rows of the 
matrix represent the nucleotide segments and colunms 50 

of the matrix represent the sequences, each element in 
the matrix representing a repetition frequency of the 
segment represented by the corresponding row within 
the sequence represented by the corresponding colunm, 
and 55 been removed. 

applying a dimension reduction process to the segment­
sequence matrix to determine the basis vectors. 

8. The method of claim 7 in which applying a dimension 
reduction process comprises applying at least one of non­
negative matrix factorization or singular value decomposi- 60 

tion to the segment-sequence matrix to determine the basis 
vectors. 

20. The method of claim 17 in which the second set of 
nucleotide sequences comprises a second set of 16S ribo­
somal RNA sequences. 

21. The method of claim 1, comprising obtaining a sample 
from an animal or a human, and generating the first set of 
nucleotide sequences from the sample. 

22. The method of claim 21, comprising obtaining the 
sample from a gut of the animal or the human. 9. The method of claim 1 in which determining an 

approximate representation of the nucleotide sequence 
based on a combination of the basis vectors comprises 
determining an approximate representation of the nucleotide 
sequence based on a linear combination of the basis vectors. 

23. The method of claim 22, comprising determining 
65 bacteria species in the sample obtained from the gut of the 

animal or the human based on the classification of the first 
set of nucleotide sequences. 
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24. The method of claim 23, comprising generating an 
output having information about the bacteria species in the 
sample obtained from the gut of the animal or the human. 

25. The method of claim 1, comprising determining a 
projection matrix based on the basis vectors, and projecting 
segment-sequence vectors into a feature space based on the 
projection matrix. 

26. The method of claim 25, comprising: 
receiving a second set of nucleotide sequences that 

includes nucleotide sequences from a host and nucleo- 10 

tide sequences from a plurality of species different from 
the host; 

projecting the second set of nucleotide sequences into the 
feature space; 

clustering the projected sequences in the feature space; 
and 

identifying one or more clusters that are primarily asso­
ciated with the host. 

27. The method of claim 25, comprising 

15 

20 

50 
for each of the first set of nucleotide sequences, deter­

mine an approximate representation of the nucleo­
tide sequence based on a combination of the basis 
vectors; 

for each pair of a plurality of pairs of nucleotide 
sequences, determine a distance between the pair of 
nucleotide sequences according to a distance 
between the approximate representations of the pair 
of nucleotide sequences; 

classify the first set of nucleotide sequences based on 
the distances between the pairs of nucleotide 
sequences; 

for each nucleotide sequence in the second portion, 
determine whether the nucleotide sequence is asso­
ciated with one of the known species based on the 
classification of the first set of nucleotide sequences; 
and 

generate, by the data processor, an output having infor­
mation about, for each of those nucleotide sequences 
in the second portion that are associated with known 
species, which one of the known species is associ-
ated with the nucleotide sequence. 

receiving a second set of nucleotide sequences that 
includes nucleotide sequences from a host and nucleo­
tide sequences from a plurality of known species dif­
ferent from the host; 

receiving a third set of nucleotide sequences that includes 
nucleotide sequences from either the host or other 
species without information on which nucleotide 
sequences in the third set belong to the host; 

33. The apparatus of claim 32 in which the first portion of 
the first set of nucleotide sequences belong to known species 

25 of at least one of prokaryotes, eukaryotes, or viruses, the 
second portion of the first set of nucleotide sequences are 
obtained from a patient, and 

projecting the second and third sets of nucleotide 
sequences into the feature space; 30 

clustering the projected sequences in the feature space; 
identifying one or more clusters that are primarily asso­

ciated with the host; and 

the data processor is further configured to, for each 
nucleotide sequence in the second portion, determine 
whether the nucleotide sequence is associated with one 
of the known species of the at least one of prokaryotes, 
eukaryotes, or viruses based on the classification of the 
first set of nucleotide sequences. 

34. The apparatus of claim 33 in which the data processor 
removing sequences from the third set that are in the one 

or more clusters primarily associated with the host. 
28. The method of claim 27 in which the plurality of 

known species comprises known species of at least one of 
prokaryotes, eukaryotes, or viruses, and the third set of 
nucleotide sequences are obtained from the host. 

35 is configured to generate an output having information that 
indicates, for each nucleotide sequence in the second por­
tion, which one of the known species of the at least one of 
prokaryotes, eukaryotes, or viruses, if any, is associated with 

40 

the nucleotide sequence. 
35. The apparatus of claim 32 in which the predetermined 

nucleotide segments are kmers each having k nucleobases, 
k being a positive integer, and each basis vector represents 
a specific combination of the k-mers. 

29. The method of claim 1 in which determining an 
approximate representation of the nucleotide sequence 
based on a combination of the basis vectors comprises 
determining an approximate representation of the nucleotide 
sequence based on a linear combination of the basis vectors. 

36. The apparatus of claim 35 in which determine a set of 
45 basis vectors comprises 

30. The method of claim 1 in which the predetermined 
nucleotide segments are kmers each having k nucleobases, 
k being a positive integer, and each basis vector represents 
a specific combination of the k-mers. 

31. The method of claim 1 in which the first set of 50 

nucleotide sequences comprises a first set of 16S ribosomal 
RNA sequences. 

32. An apparatus comprising: 
a memory to store data representing a first set of nucleo-

55 
tide sequences, the first set having a first number of 
nucleotide sequences, the first set of nucleotide 
sequences including a first portion and a second por­
tion, the first portion including nucleotide sequences 
that belong to known species; and 60 

a data processor configured to process the data and 
determine a set of basis vectors, the set having a second 

number of basis vectors, in which the second number 
is smaller than the first number, the second number 
is equal to or larger than two, and each basis vector 65 

represents a specific combination of predetermined 
nucleotide segments; 

form a k-mer-sequence matrix in which rows of the matrix 
represent the k-mers and columns of the matrix repre­
sent the nucleotide sequences, k being a positive inte­
ger, and each element in the matrix represents a rep­
etition frequency of the segment represented by the 
corresponding row within the sequence represented by 
the corresponding column, and 

apply at least one of non-negative matrix factorization or 
singular value decomposition to the k-mer-sequence 
matrix to determine the basis vectors. 

37. The apparatus of claim 32 in which determine a set of 
basis vectors comprises 

form a segment-sequence matrix in which rows of the 
matrix represent the nucleotide segments and columns 
of the matrix represent the sequences, each element in 
the matrix representing a repetition frequency of the 
segment represented by the corresponding row within 
the sequence represented by the corresponding column, 
and 

apply at least one of non-negative matrix factorization or 
singular value decomposition to the segment-sequence 
matrix to determine the basis vectors. 
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38. The apparatus of claim 32 in which determine an 
approximate representation of the nucleotide sequence 
based on a combination of the basis vectors comprises 
determine an approximate representation of the nucleotide 
sequence based on a linear combination of the basis vectors. 

52 
50. The apparatus of claim 47 in which the second set of 

nucleotide sequences comprises a second set of 16S ribo­
somal RNA sequences. 

51. The apparatus of claim 32 in which the first set of 
nucleotide sequences is generated from a sample obtained 
from an animal or a human. 

52. The apparatus of claim 51 in which the sample is 
obtained from a gut of the animal or the human. 

39. The apparatus of claim 32 in which determine an 
approximate representation of the nucleotide sequence com­
prises determine coefficients for a linear combination of the 
basis vectors that represents an approximation of the nucleo­
tide sequence. 

40. The apparatus of claim 32 in which the distance 
between the approximate representations of the pair of 
nucleotide sequences is determined according to at least one 

53. The apparatus of claim 52 in which the data processor 
10 is c~nfigured to determine bacteria species in the sample 

obtamed from the gut of the animal or the human based on 
the classification of the first set of nucleotide sequences. 

of (i) Euclidean distance between the approximate repre­
sentations of the pair of nucleotide sequences or (ii) corre- 15 

lation between the approximate representations of the pair of 
nucleotide sequences. 

41. The apparatus of claim 32 in which the data processor 
is further configured to determine the distance between 
every pair of nucleotide sequences, and classify the first set 20 

of nucleotide sequences based on the distances between all 
of the pairs of nucleotide sequences. 

54. The apparatus of claim 53 in which the data processor 
is configured to generate an output having information about 
the bacteria species in the sample obtained from the gut of 
the animal or the human. 

55. The apparatus of claim 32 in which the data processor 
is configured to determine a projection matrix based on the 
basis vectors, and project segment-sequence vectors into a 
feature space based on the projection matrix. 

56. The apparatus of claim 55 in which the memory stores 
data representing a second set of nucleotide sequences that 
includes nucleotide sequences from a host and nucleotide 
sequences from a plurality of species different from the host, 

42. The apparatus of claim 32 in which species of the 
second portion of the first set of nucleotide sequences are 
initially unknown. 25 and the data processor is configured to: 

43. The apparatus of claim 32, comprising a graphical 
user interface to provide a graphical presentation of classi­
fication of the first set of nucleotide sequences. 

44. The apparatus of claim 32 in which generating the 
output comprises generating a phylogenetic tree for the first 30 

set of nucleotide sequences based on the classification of the 
first set of nucleotide sequences. 

45. The apparatus of claim 32, comprising determining 
whether one or more of the first set of nucleotide sequences 
are associated with pathogenic species based on the classi- 35 

fication of the first set of nucleotide sequences, and gener­
ating an output having information about which one or more 
of the first set of nucleotide sequences are associated with 
pathogenic species. 

~6. The app.aratus of claim 32, comprising determining 40 

which nucleotide sequences are associated with low risk 
species, and which nucleotide sequences are associated with 
high risk species, based on the classification of the first set 
of ~ucleotide s~quences, and generating an output indicating 
which nucleotide sequences are associated with low risk 45 

species, and which nucleotide sequences are associated with 
high risk species. 

47. The apparatus of claim 32 in which the data processor 
is configured to receive a second set of nucleotide sequences 
that includes nucleotide sequences from a host and nucleo- 50 

tide sequences from a plurality of known species different 
from the host, classify the second set of nucleotide 
sequences based on the distances between the pairs of 
nucleotide sequences, and identify nucleotide sequences that 
are primarily associated with the host based on the classi- 55 

fication of the first and second sets of nucleotide sequences. 

project the second set of nucleotide sequences into the 
feature space; 

cluster the projected sequences in the feature space; and 
identify one or more clusters that are primarily associated 

with the host. 
57. The apparatus of claim 55 in which the memory stores 

data representing a second set of nucleotide sequences that 
includes nucleotide sequences from a host and nucleotide 
sequences from a plurality of known species different from 
the host; 

the memory also stores data representing a third set of 
nucleotide sequences that includes nucleotide 
sequences from either the host or other species without 
information on which nucleotide sequences in the third 
set belong to the host; 

wherein the data processor is configured to: 
project the second and third sets of nucleotide 

sequences into the feature space; 
cluster the projected sequences in the feature space; 
identify one or more clusters that are primarily asso­

ciated with the host; and 
remove sequences from the third set that are in the one 

or more clusters primarily associated with the host. 
58. The apparatus of claim 57 in which the plurality of 

known species comprises known species of at least one of 
prokaryotes, eukaryotes, or viruses, and the third set of 
nucleotide sequences are obtained from the host. 

59. The apparatus of claim 32 in which determining an 
approximate representation of the nucleotide sequence 
based on a combination of the basis vectors comprises 
determining an approximate representation of the nucleotide 
sequence based on a linear combination of the basis vectors. 48. The apparatus of claim 47 in which the data processor 

is configured to remove, from the second set of nucleotide 
sequences, nucleotide sequences that are primarily associ­
ated with the host. 

49. The apparatus of claim 48 in which the data processor 
is configured to generate an output having information about 
the nucleotide sequences remaining in the second set of 
nucleotide sequences after the nucleotide sequences primar­
ily associated with the host have been removed. 

60. The apparatus of claim 32 in which the predetermined 
nucleotide segments are kmers each having k nucleobases, 

60 k being a positive integer, and each basis vector represents 
a specific combination of the k-mers. 

61. The apparatus of claim 32 in which the first set of 
nucleotide sequences comprises a first set of 16S ribosomal 
RNA sequences. 

* * * * * 




