Access provided by Rice University


Stalker, R. J. The Free-Piston Shock Tunnel. AIAA Journal, 5(12), 34-38, 1967.
McIntosh, M. Computer Program for the Numerical Calculation of Frozen Equilibrium Conditions in Shock Tunnels. Tech. Report, Department of Physics, Faculties, Australian National University, 1968.
Vardavas, I. Modelling Reactive Gas Flows within Shock Tunnels. Australian Journal of Physics, 37, 157-77, 1984.
CrossRef
Lees, L. Hypersonic Wakes and Trails. AIAA Journal, 2(3), 417-528, 1964.
CrossRef
Chapman, D. R., Kuehn, M. and Larson, K. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition. Technical report, NACA TR 1356, 1958.
Hollis, B. R. and Perkins, J. N. Transition Effects on Heating in the Wake of a Blunt Body. Journal of Spacecraft and Rockets, 35(5), 668-674, 1999.
Hruschka, R., O'Byrne, S. and Kleine, H. H. Comparison of Velocity and Temperature Measurements with Simulations in a Hypersonic Wake Flow. Experiments in Fluids, 51, 407-421, 2011.
CrossRef
Park, G., Hruschka, R., Gai, S. L. and Neely, A. J. Flow Establishment behind Blunt Bodies at Hypersonic Speeds in a Shock Tunnel. In Proc. of SPIE Vol. 7126. 2009. doi:10.1117/12.822751.
Hruschka, R., O'Byrne, S. and Kleine, H. Diode-Laser-Based Near-Resonantly Enhanced Flow Visualization in Shock Tunnels. Applied Optics, 47(24), 4352-4360, 2008. doi:10.1364/AO.47.004352.
CrossRef
Jiang, N., Webster, M., Lempert, W. R., Miller, J. D., Meyer, T. R., Ivey, C. B. et al. MHz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging in a Mach 10 Hypersonic Wind Tunnel. Applied Optics, 50(4), A20-A28, 2011. doi:10.1364/AO.50.000A20.
Danehy, P., Palma, P., Boyce, R. and Houwing, A. Numerical simulation of laser-induced fluorescence imaging in shock-layer flows. AIAA Journal, 37(6), 715-23, 1999.
CrossRef
O'Byrne, S. B., Danehy, P. M. and Houwing, A. F. P. Investigation of Hypersonic Nozzle Flow Uniformity using NO Fluorescence. Shock Waves, 15(2), 81-87, 2006.
CrossRef
Gai, S., Reynolds, N., Ross, C. and Baird, J. Measurements of Heat Transfer in Separated High-Enthalpy Dissoci- ated Laminar Hypersonic Flow behind a Step. J. Fluid Mech., 199, 541-61, 1989.
CrossRef
Mallinson, S., Gai, S. and Mudford, N. The Interaction of a Shock Wave with a Laminar Boundary Layer at a Compression Corner in High-Enthalpy Flows Including Real-Gas Effects. Journal of Fluid Mechanics, 342(10), 1-35, 1997.
CrossRef
Schultz, D. and Jones, T. Heat-Transfer Measurements in Short-Duration Hypersonic Facilities. AGARDograph AGARD-AG-165, Advisory Group for Aerospace Research and Development, 1973.
O'Byrne, S. Hypersonic Laminar Boundary Layers and Near-Wake Flows. Ph.D. thesis, Australian National University, 2002.
Holden, M. S. Establishment Time of Laminar Separated Flows. AIAA Journal, 9(11), 2296-2298, 1971.
CrossRef
Wada, I. and Inoue, Y. Heat Transfer Behind the Backward Facing Step in the Hypersonic Flow. In International Symposium on Space Technology and Science, 425-32. Tokyo, 1973.
Larson, H. K. Heat Transfer in Separated Flow. Journal of the Aerospace Sciences, 26(11), 731-38, 1964.
CrossRef
Rom, J. and Seginer, A. Laminar Heat Transfer to a Two-Dimensional Backward Facing Step from the High- Enthalpy Supersonic Flow in the Shock Tube. AIAA Journal, 2(2), 251-55, 1964.
CrossRef
Hayne, M. J. Hypervelocity Flow over Rearward-Facing Steps. Ph.D. thesis, University of Queensland, 2004.
< >

Issue Details

International Journal of Aerospace Innovations


International Journal of Aerospace Innovations

Print ISSN: 1757-2258

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers