Access provided by Rice University


R. D. Finlayson, M. Freisel, M. Carlos, J.C. Lenain, Health monitoring of aerospace structures with acoustic emission and acousto ultrasonics, Insight - Journal of the British Institute of Non-destructive testing, 43 (3), 2001, 155 - 158.
T. Krietsch, J. Bohse, Selection of acoustic emissions and classification of damage mechanisms in fiber composite materials, in: Proceedings of Acoustic Emission World Meeting (AEWM), Kamuela, Hawaii , vol.16, 1998, pp. S233-S242
A. Rabiei, M. Enoki, T. Kishi, A study on fracture behavior of particle reinforced metal matrix composites by using acoustic emission source characterization, Materials Science and Engineering A293, 2000, 81-87.
X. Liu, E. Kannatey-Asibu Jr, Classification of AE Signals for Monitoring Martensite Formation From Welding, Welding Journal, 69 (10), 1990, 389s-394s.
V. Emamian, M. Kaveh, A. H. Tewfik, Acoustic emission classification for failure prediction due to mechanical fatigue, Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, vol 3986, 2000, pp.78-84
R. K. Elsley, L. J. Graham, Pattern Recognition Technique Applied to Sorting Acoustic Emission signals. Prod., IEEE Ultrasonic Symp., 1976, pp. 147-150.
R. K. Elsley, L. J. Graham, AE Source Identification by Frequency Spectral analysis for Aircraft Monitoring Applications, Journal of Acoustic Emission, 4 (4), 1987, 115-123.
C. R. L. Murthy, B. Dattaguru, A. K. Rao, Application of Pattern Recognition Technique in Acoustic Emission Signal analysis, Journal of Acoustic Emission, 6 (1), 1987, 19-28.
C. Roy, A. Maslouhi, D. Gaucher, Z. Piasta, Classification of acoustic emission sources in CFRP assisted by pattern recognition analysis, Canadian Aeronautics and Space Journal 34, 1988, 224-232.
J.Z. Sikorska, P.J. Kellyb, J. Pan, Development of an AE data management and analysis system, Mechanical Systems and Signal Processing 20, 2006, 2321-2339.
J. T. Anderson, R. S. Gregory, William T. Collins, Acoustic classification of marine habitats in coastal Newfoundland, ICES Journal of Marine Science, 59, 2002, 156-167.
CrossRef
S. Suresh, S. N. Omkar, V. Mani, C. Menaka, Classification of Acoustic Emission Signal Sources using Genetic Programming, Journal of Aerospace Sciences and Technologies, 56, 2004, 26-40.
S. N. Omkar, S. Suresh, T. R. Raghavendra, V. Mani, Acoustic Emission Signal Classification using Fuzzy C-means Clustering, Proceedings of the 9th International Conference on Neural Information Processing (ICONIP '02), Singapore, vol. 4, No. 18-22, 2002, pp. 1827 - 1831.
S. N. Omkar, T. R. Raghavendra, Rule extraction for classification of acoustic emission signals using Ant Colony Optimization, Engineering Applications of Artificial Intelligence, In Press, Corrected Proof, Available online 26 March 2008.
Tinghu Yan, K. Holford, D. Carter, J. Brandon, Classification of acoustic emission signatures using a self-organization neural network, Journal of acoustic emission, 17, 1999, 49-59.
P. Wilkinson, R. L. Reuben, J. D. C. Jones, J. S. Barton, D. P. Hand, T. A. Carolan, S. R. Kidd, Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network, Mechanical systems and signal processing 13 (6), 1999, 955-966.
CrossRef
L. I. Smith, A tutorial on Principal Components Analysis (2002).
G. Xuan, P. Chai, X. Zhu, Y. Q. Shi, D. Fu, A Novel Pattern Classification Scheme: Classwise Non-Principal Component Analysis (CNPCA), International Conference on Pattern Recognition (ICPR), vol. 3, 2006, pp. 320 - 323
Koza, J.R, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992).
Kishore J.K, Patnaik L.M, Mani V, Agarwal V K, Application of Genetic Programming for multicategory pattern classification, IEEE Transactions on Evolutionary Computation, 4, 2000, 242-258.
CrossRef
Dorigo M, Blum C, Ant colony optimization theory: a survey, Theoretical Computer Science, 344, 2005, 243-278.
CrossRef
Parpinelli R.S, Lopes H.S, Freitas A.A, Data mining with an ant colony optimization algorithm, IEEE Transactions on Evolutionary Computation, 6, 2002, 321-332.
CrossRef
Manish Mangal, Manu Pratap Singh, Analysis of pattern classificationfor the multidimensional parity-bit-checking problem with hybrid evolutionary feed-forward neural network, Neurocomputing 70 (7-9), 2007, 1511-1524.
CrossRef
Niles L, Silverman H, Tajchman G, Bush M, How limited training data can allow a neural network to outperform an ‚optimal’ statistical classifier, in: Proceedings of ICASSP-89, 1989, pp. 17-20.
Marchant, J. A, Onyango C. M, Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination, Computers and Electronics in Agriculture, 39, 2003, 3-22.
CrossRef
S. Haykin, Neural Networks - A Comprehensive Foundation, Second Edition (Macmillan College, New York, 1994).
Eric Bonabeau, Macro Dorigo, Guy Theraulaz, Swarm intelligence-from natural to artificial system (Oxford University Press, New York, 1999).
D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing 8 (1), 2008, 687-697.
CrossRef
D. Karaboga, B. Akay, C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, Springer Berlin 4617, 2007, 318-329.
X.S. Yang, Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms, Lecture Notes in Computer Science, vol. 3562 (Springer-Verlag GmbH, 2005) 317-323.
Frisch K.V, Bees: Their Vision, Chemical Senses and Language, Revised Edition (Ithaca, N.Y.: Cornell University Press, 1976).
Von Frisch K, The Dance Language and Orientation of HoneyBees (Harvard University Press, 1967).
D.T. Pham, E. Koç, A. Ghanbarzadeh, S. Otri, Optimisation of the Weights of Multi-Layered Perceptrons Using the Bees Algorithm, in: Proceedings of 5th International Symposium on Intelligent Manufacturing Systems, 2006, pp. 38-46.
V. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).
N. Cristianini, J. S. Taylor, An Introduction to Support Vector Machines (Cambridge University Press, Cambridge, UK, 2000).
M. D. Richard, R. P. Lippmann, Neural network classifiers estimate Bayesian a posteriori probabilities, Neural Comput., 3, 1991, 461-483.
CrossRef
J. Cid-Sueiro, J. Arribas, S. Urban-Munoz, A. Figueiras-Vidal, Cost functions to estimate a posteriori probabilities in multi-class problems, IEEE Trans. Neural Networks 10, 1999, 645-656.
CrossRef
R. Rojas, A short proof of the posterior probability property of classifier neural networks, Neural Comput. 8, 1996, 41-43.
CrossRef
A. Cichocki, R. Unbenhauen, Neural Networks for Optimization and Control (Baffins Lane, U.K.: Wiley, 1993).
S. Suresh, N. Sundararajan, P. Saratchandran, Risk Sensitive Loss Functions for Sparse Multi-Category Classification Problems, Information Science 178 (12), 2008, 2621-2638.
CrossRef
M. Kubat, R. C. Holte, S. Matwin, Machine learning for the detection of oil spills in satellite radar images, Machine Learn. 30 (2/3), 1998, 195-215.
CrossRef
T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Annals of Statistics 32 (1), 2003, 56-85.
CrossRef
M. Abdul Majeed, Acoustic Emission Signal Analysis: An Unsupervised Pattern Recognition approach, Ph.D. Thesis, Indian Institute of Science, Bangalore, 1991.
< >

Issue Details

International Journal of Aerospace Innovations


International Journal of Aerospace Innovations

Print ISSN: 1757-2258

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers