D. Aregba-Driollet and R. Natalini. Discrete kinetic schemes for multidimensional systems of conservation caws. SIAM J. Numer. Anal. 37:1973-2004, 2000. CrossRef | |
K .R. Arun, S. V. Raghurama Rao, M. Lukáčová-Medvid'ová and P. Prasad. A genuinely multi-dimensional relaxation scheme for hyperbolic conservation laws. In Proceedings of the Seventh Asian CFD conference, Bangalore, 2007. | |
S. Balasubramanyam and S. V. Raghurama Rao. A grid free upwind relaxation scheme for inviscid compressible flows. Int. J. Numer. Meth. Fl. 51:159-196, 2006. CrossRef | |
F. Bouchut. Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95:113-170, 1999. CrossRef | |
G. Q. Chen, D. Levermore and T. P. Liu. Hyperbolic conservation laws. with stiff relaxation terms and entropy. Comm. Pure. Appl. Math. 47:787-830, 1994. CrossRef | |
P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87:171-200, 1990. CrossRef | |
S. M. Deshpande. Kinetic flux splitting schemes. In Computational Fluid Dynamics Review 1995: A State-of-the-Art Reference to the Latest Developments in CFD, M. M. Hafez and A. K. Oshima (eds). Wiley: Chichester, 1995. | |
W. Dreyer, M. Kunik, K. Sabelfeld, N. Simonov and K. Wilmanski. Iterative procedure for multidimensional Euler equations. Monte Carlo Methods Appl. 4:253-271, 1998. | |
E. Godlewski and P. A. Raviart. Numerical Approximations of Hyperbolic Systems of Conservation Laws. Applied Mathematics Series, vol. 118. Springer: Berlin, 1996. | |
G. S. Jiang and E. Tadmor. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19:1892-1917, 1998. CrossRef | |
S. Jin and Z. Xin. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48:235-276, 1995. CrossRef | |
S. Jin. Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiss Relaxation Terms. J. Comput. Phys. 122:51-67, 1995. CrossRef | |
J. O. Langseth and R. J. LeVeque. A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165:126-166, 2000. CrossRef | |
R. Natalini. Recent mathematical results on hyperbolic relaxation problems, Analysis of systems of conservation laws, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1998. | |
L. Pareschi and G. Russo. Implicit-Explicit Runge-Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25:129-155, 2005. | |
S. V. Raghurama Rao and K. Balakrishna. An accurate shock capturing algorithm with a relaxation system for hyperbolic conservation laws. AIAA Paper No. AIAA-2003-4115. | |
P. Roe. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63:458-476, 1986. CrossRef | |
H. J. Schroll. Relaxed high resolution schemes for hyperbolic conservation laws. J. Sci. Comp. 21:251-279, 2004. | |
B. Van Leer. Progress in multi-dimensional upwind differencing. ICASE Report No. 92-43, 1992. |