Access provided by Rice University


Lee S., Choi S. U. S., Li S. and Eastman J. A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Trans ASME J. of Heat Transfer, 121, (1999) 280-289.
CrossRef
Eastman J. A., Choi S. U. S., Li S., Yu W. and Thompson L. J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letter, 78, (2001) 718-720.
CrossRef
Xuan Y. and Li Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat and Fluid Flow, 21, (2000) 5-64.
Zhou D. W., Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation, Int. J. Heat and Mass Transfer, 47, (2004) 3109-3117.
CrossRef
Patel H. E., Das S. K., Sundarrajan T., Nair A. S., George B. and Pradeep T., Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 83 (2003) 2931-2933.
CrossRef
Hamilton R. L. and Crosser, O. K., Thermal conductivity of heterogeneous two-component systems, I & EC Fundamentals 1, (1962) 182-191.
Wasp F. J., Solid-Liquid Flow Slurry Pipeline Transportation. Trans. Tech. Pub., Berlin. (1977).
Maxwell-Garnett J. C., Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A 203, (1904) 385-420.
CrossRef
Bruggeman D. A. G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Annalen der Physik. Leipzig 24 (1935) 636-679.
Wang B. X., Zhou L. P. and Peng X. F., A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat and Mass Transfer, 46, (2003) 2665-2672.
CrossRef
Yu W. and Choi S. U. S., the role of interfacial layer in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, Journal of Nanoparticles Research, (2003) 167-171.
Kumar D. H., Patel H. E., Kumar V. R. R., Sundararajan T., Pradeep T. and Das S. K., Model for conduction in nanofluids, Physical Review Letters, 93 (2004) 144301-1-3.
Prasher R., Bhattacharya P and Phelan P. E., Brownian-Motion-Based Convective-Conductive Model for the Effective thermal Conductivity of Nanofluid, ASME Journal of Heat Tranfer, 128 (2006) 588-595.
Patel H. E., Sundarrajan T, Pradeep T., Dasgupta A., Dasgupta N. and Das S. K., Amicro-convection model for thermal conductivity of nanofluid, Pramana-journal of Physics, 65 (2005) 863-869.
CrossRef
Chon et al APPLIED PHYSICS LETTERS 87, 153107 _2005_ .
Xuan Y. and Roetzel W., Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat and Mass Transfer, 43, (2000) 3701-3707.
CrossRef
Buongiorno J., Convective transport in nanofluids, Journal of Heat Transfer, 128 (2006) 240-250.
CrossRef
Keblinski P., Phillpot S. R., Choi S. U. S. and Eastman J. A., Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids), Int. J. Heat and Mass Transfer, 45, (2002) 855-863.
CrossRef
Brinkman H. C., The Viscosity of concentrated suspensions and solutions, J. Chemistry Physics, 20 (1952) 571-581.
CrossRef
Kwak K. and Kim C., Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheology Journal, 17 (2005) 35-40.
Chang H, Jwo C. S., Lo C. H., Tsung T. T., Kao M. J. and Lin H. M., Rheology of CuO nanoparticle suspension prepared by ASNSS, Rev. Adv. Material Science 10 (2005) 128-132.
Ding Y., Alias H., Wen D. and Williams R. A., Heat transfer of aqueous suspensions of carbon nanotubes ((CNT nanofluids), Int. J. Heat and Mass Transfer, 49 (2006) 240-250.
CrossRef
Kang C., Okada M., Hattori A. and Oyama K., Natural convection of water-fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of the natural convection in the case of suspension with narrow-size distribution), Int. J. Heat Mass Transfer, 44 (2001) 2973-2982.
CrossRef
Putra N., Roetzel W. and Das S. K., Natural convection of nano-fluids, Heat and Mass Transfer, 39 (2003) 775-784.
CrossRef
Wen D. and Ding Y., Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids), IEEE TRANSACTIONS ON NANOTECHNOLOGY, 5 (2006) 220-227.
CrossRef
Khanafer K., Vafai K. and Lightstone M., Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids, Int. J. Heat and Mass Transfer, 46 (2003) 3639-3653.
CrossRef
Santra A. K., Sen S. and Chakraborty Niladri, Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid, International Journal of thermal Sciences, 47 (2008), 1113-1122.
CrossRef
Ho C J, Chon M W and Li Z W, Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat and Mass Transfer, 51 (2008) 4506-4516.
CrossRef
Jou R. Y. and Tzeng S. C., Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, International Communications in Heat and Mass Transfer, 33 (2006) 727-736.
CrossRef
Abunada E. and Chakma A. J., Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, Int. J. Thermal Sciences, 49 (2010) 2339-2352.
CrossRef
Bird R. B., Stewert W. E. and Lightfoot E. N., Transport Phenomena, John Wiley & Sons, Singapore, 1960.
Patankar S.V, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D. C., (1980).
de Vahl Davis G., Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Numer. Methods Fluids, 3 (1962) 249-264.
CrossRef
< >

Issue Details

International Journal of Micro-Nano Scale Transport


International Journal of Micro-Nano Scale Transport

Print ISSN: 1759-3093

Related Content Search

Find related content

By Keyword
By Author

Subscription Options

Individual Offers