Dresselhaus, M. S., Dresselhaus, G., Charlier, J. C. and Hernandez, E., Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. R. Soc. Lond. A, 2004, 362, 2065-2098. CrossRef | |
Prasher, R. S., Hu, X. J., Chalopin, Y., Mingo, N., Lofgreen, K., Volz, S., Cleri, F. and Keblinski, P., Turning carbon nanotubes from exceptional heat conductors into insulators, Phys. Rev. Lett., 2009, 102, 105901. CrossRef | |
Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H. and Schulte, K., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, 2006, 47, 2036-2045. CrossRef | |
Xuan, Y. M. and Li, Q., Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 2003, 125, 151-155. CrossRef | |
Marconnet, A. M., Yamamoto, N., Panzer, M. A., Wardle, B. L. and Goodson, K. E., Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density, ACS Nano, 2011, 5(6), 4818-4825. CrossRef | |
Hu, X. J., Padilia, A. A., Xu, J., Fisher, T. S. and Goodson, K. E., 3-omega measurements of vertically oriented carbon nanotubes on silicon, J. Heat Transfer, 2006, 128(11), 1109-1113. CrossRef | |
Lu, W. G., Zu, M., Byun, J. H., Kim, B. S. and Chou, T. W., State of the art of carbon nanotube fibers: opportunities and challenges, Adv. Mater., 2012, 24, 1805-1833. CrossRef | |
Miao, T. T., Ma, W. G., Zhang, X., Wei, J. Q. and Sun, J. L., Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle, Appl. Phys. Lett., 2013, 102, 053105. CrossRef | |
Zhou, W., Vavro, J., Guthy, C., Winey, K. I., Fischer, J. E., Ericson, L. M., Ramesh, S., Saini, R., Davis, V. A., Kittrell, C., Pasquali, M., Hauge, R. H. and Smalley, R. E., Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport, J. Appl. Phys., 2004, 95(2), 649-655. CrossRef | |
Badaire, S., Pichot, V., Zakri, C., Poulin, P., Launois, P., Vavro, J., Guthy, C., Chen, M. and Fishcher, J. E., Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes, J. Appl. Phys., 2004, 96(12), 7509-7513. CrossRef | |
Aliev, A. E., Guthy, C., Zhang, M., Fang, S., Zakhidov, A. A., Fischer, J. E. and Baughman, R. H., Thermal transport in MWCNT sheets and yarns, Carbon, 2007, 45, 2880-2888. CrossRef | |
Borca-Tasciuc, T., Vafaei, S., Borca-Tasciuc, D. A., Wei, B. Q., Vajtai, R. and Ajayan, P. M., Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays, J. Appl. Phys., 2005, 98, 054309. CrossRef | |
Jin, R., Zhou, Z. X., Mandrus, D., Ivanov, I. N., Eres, G., Howe, J. Y., Puretzky, A. A. and Geohegan, D. B., The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes, Physica B, 2007, 388, 326-330. CrossRef | |
Kunadian, I., Andrews, R., Menguc, M. P. and Qian, D., Thermoelectric power generation using doped MWCNTs, Carbon, 2009, 47, 589-601. CrossRef | |
Jakubinek, M. B., White, M. A., Li, G., Jayasinghe, C., Cho, W., Schulz, M. J. and Shanov, V., Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays, Carbon, 2010, 48, 3947-3952. CrossRef | |
Jakubinek, M. B., Johnson, M. B., White, M. A., Jayasinghe, C., Li, G., Cho, W., Schulz, M. J. and Shanov, V., Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns, Carbon, 2012, 50, 244-248. CrossRef | |
Behabtu, N., Young, C., Tsentalovich, D. E., Kleinerman, O., Wang, X., Ma, A. W. K., Bengio, E. A., ter Waarbeek, R. F., de Jong, J. J., Hoogerwerf, R. E., Fairchild, S. B., Ferguson, J. B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J. and Pasquali, M., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science, 2013, 339, 182-186. CrossRef | |
Monthioux, M., Smith, B. W., Burteaux, B., Claye, A., Fischer, J. E. and Luzzi, D. E., Sensitivity of single-wall carbon nanotubes to chemical processing and electron microscopy investigation, Carbon, 2001, 39, 1251-1272. CrossRef | |
Volkov, A. N. and Zhigilei, L. V., Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes, Appl. Phys. Lett., 2012, 101, 043113. CrossRef | |
Zhong, X. H., Li, Y. L., Liu, Y. K., Qiao, X. H., Feng, Y., Liang, J., Jin, J., Zhu, L., Hou, F. and Li, J. Y., Continuous multilayered carbon nanotube yarns, Adv. Mater., 2010, 22(6), 692-696. CrossRef | |
Cronin, S. B., Swan, A. K., Unlu, M. S., Goldberg, B. B., Dresselhaus, M. S. and Tinkham, M., Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes, Phys. Rev. Lett., 2004, 93(16), 167401. CrossRef | |
Rauf, H., Pichler, T., Pfeiffer, R., Simon, F., Kuzmany, H. and Popov, V. N., Detailed analysis of the Raman response of n-doped double-wall carbon nanotubes, Phys. Rev. B, 2006, 74, 235419. CrossRef | |
Zhou, W., Xie, S., Sun, L., Tang, D., Li, Y., Liu, Z., Ci, L., Zou, X. and Wang, G., Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes, Appl. Phys. Lett., 2002, 80(14), 2553-2555. CrossRef | |
Wang, J. L., Gu, M., Zhang, X. and Song, Y., Thermal conductivity measurement of an individual fiber using a T type probe method, J. Phys. D: Appl. Phys., 2009, 42, 105502. CrossRef | |
Klemens, P. G., Theory of the thermal conductivity of solids, in: Tye, R. P., ed., Thermal Conductivity (vol. 1), Academic Press, London, 1969, 1-68. | |
Dresselhaus, M. S., Jorio, A., Souza-Filho, A. G. and Saito, R., Defect characterization in graphene and carbon nanotubes using Raman spectroscopy, Phil. Trans. R. Soc. A, 2010, 368, 5355-5377. CrossRef | |
Hone, J., LIaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J. and Smalley, R. E., Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett., 2000, 77(5), 666-668. CrossRef | |
Miao, M. H., Electrical conductivity of pure carbon nanotube yarns, Carbon, 2011, 49, 3755-3761. CrossRef | |
Marconnet, A. M., Panzer, M. A. and Goodson, K. E., Thermal conduction phenomena in carbon nanotubes and related nanostructured materials, Rev. Mod. Phys., 2013, 85(3), 1295-1326. CrossRef | |
Sturm, J., Grosse, P. and Theiß, W., Effective dielectric functions of alkali halide composites and their spectral representation, Z. Phys. B-Condensed Matter, 1991, 83, 361-365. CrossRef | |
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 2001, 79(14), 2252-2254. CrossRef |
Characterization of Thermal Transport in Carbon Nanotube Yarns
J. WangRelated information
1 School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, PR China
, S. HeRelated information2 Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, PR China
, J. BaoRelated information1 School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, PR China
, X. ZhangRelated information3 Department of Engineering Mechanics, Key Laboratory for Thermal Science and Power Engineering of Education Ministry, Tsinghua University, Beijing 100084, PR China
, J. YangRelated information1 School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, PR China
, Y. ChenRelated information1 School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, PR China