Access provided by Rice University


Hino, M., Sawamoto, M. and Takasu, S., Experiments on transition to turbulence in an oscillatory pipe flow, J. Fluid Mech., 1976, 75, 193-422.
CrossRef
Iguchi, M., Urahata, I. and Ohmi, M., Turbulent slug and velocity field in the inlet region for pulsatile pipe flow, JSME Int. J., 1987, 30-261, 414-422.
Szymanski, P., Quelques solutions exactes des équations de l'hydrodynamique du fluide visqueux dans le cas d'un tube cylindrique, J. Math. Pures Appl. Ser. 9, 1932, 11, 67-107.
Uchida, S., The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe, ZAMP, 1956, VII, 403-422.
Ohmi, M., Iguchi, M., Usui, T. and Minami, H., Flow pattern and frictional losses in pulsating pipe flow. Part 1 Effect of pulsating frequency on the turbulent flow pattern, Bull. JSME, 1980, 23, 2013-2020.
CrossRef
Ohmi, M. and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 2 Effect of pulsating frequency on the turbulent frictional losses, Bull. JSME, 1980, 23, 2021-2028.
CrossRef
Ohmi, M. and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 3 General representation of turbulent flow pattern, Bull. JSME, 1980, 23, 2029-2036.
CrossRef
Ohmi, M. and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 4 General representation of turbulent frictional losses, Bull. JSME, 1981, 24, 67-74.
CrossRef
Ohmi, M., Iguchi, M. and Usui, T., Flow pattern and frictional losses in pulsating pipe flow. Part 5 Wall shear stress and flow pattern in a laminar flow, Bull. JSME, 1981, 24, 75-81.
CrossRef
Ohmi, M. and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 6 Frictional losses in a laminar flow, Bull. JSME, 1981, 24, 1756-1763.
CrossRef
Ohmi, M. and Iguchi, M., Flow pattern and frictional losses in pulsating pipe flow. Part 7 Wall shear stress in a turbulent flow, Bull. JSME, 1981, 24, 1764-1771.
CrossRef
Ohmi, M., Iguchi, M., Kakehachi, K. and Masuda, T., Transition to turbulence and velocity distribution in an oscillating pipe flow, Bull. JSME, 1982, 25, 365-371.
CrossRef
Lafebvre, P. J. and White, F. M., Experiments on transition to turbulence in a constant-acceleration pipe flow, ASME, J. Fluids Eng., 1989, 111, 428-431.
CrossRef
Lafebvre, P. J. and White, F. M., Further Experiments on transition to turbulence in a constant-acceleration pipe flow, ASME, J. Fluids Eng., 1991, 113, 223-227.
CrossRef
Kurokawa, J. and Morikawa, M., Accelerated and Decelerated Flows in a Circular Pipe (1st Report, Velocity Distribution and Frictional Coefficient) (in Japanese), Trans. JSME, (B), 1985, 51(467), 2076-2083.
CrossRef
Kurokawa, J. and Takagi, A., Accelerated and Decelerated Flows in a Circular Pipe (2nd Report, Transition of an Accelerated Flow) (in Japanese), Trans. JSME, (B), 1987, 54(498), 302-307.
CrossRef
Moss, E. A., The Identification of Two Distinct Laminar to Turbulent Transition Modes in Pipe Flows Accelerated from Rest, Experiments in Fluids, 1989, 7, 271-274.
Greenblatt, D. and Moss, E. A., Rapid transition to turbulence in pipe flows accelerated from rest, ASME, J. Fluids Eng., 2003, 125, 1072-1075.
CrossRef
Koppel, T. and Ainola, L., Identification of transition to turbulence in a highly accelerated start-up pipe flow, ASME, J. Fluids Eng., 2006, 128, 680-686.
CrossRef
Nishihara, K., Knisely, C. W., Nakahata, Y., Wada, I. and Iguchi, M., Control of transition to turbulence in constant-acceleration square duct flow (in Japanese), J. JSEM, 2008, 8(3), 213-218.
Nishihara, K., Knisely, C. W., Nakahata, Y., Wada, I. and Iguchi, M., Transition to turbulence in constant velocity pipe flow after initial constant-acceleration, J. JSEM, 2009, 9, 30-35.
Das, D. and Arakeri, J. H., Transition of unsteady velocity profiles with reverse flow, J. Fluid Mech., 1998, 374, 251-283.
CrossRef
Das, D. and Arakeri, J. H., Unsteady laminar duct flow with a given volume flow rate variation, ASME, J. Appl. Mech., 2000, 67, 274-281.
CrossRef
Nishihara, K., Nakahata, Y., Ueda, Y., Knisely, C. W., Sasaki, Y. and Iguchi, M., Effect of initial acceleration history on transition to turbulence in pipe flow, Submitted to J. JSEM.
Ghidaoui, M. S. and Kolyshkin, A. A., A quasi-steady approach to the instability of time-dependent flows in pipes,” J. Fluid Mech., 2002, 465, 301-330.
Abramowitz, M. and Stegun, L. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1965.
Van Dyke, M., Perturbation methods in fluid mechanics, Parabolic Press, Stanford, 1975.
The zeros yn (n = 1, 2, … , 10) of J2(y) used are listed as follows: y1 = 5.1356, y2 = 8.4172, y3 = 11.6198, y4 = 14.7959, y5 = 17.9598, y6 = 21.1169, y7 = 24.2700, y8 = 27.4205, y9 = 30.5691, y10 = 33.7165. For a large n, the zero yn is described as ynβ = 15/(8β) − 4860/[3(8β)3] − 4471200/[15(8β)5] − 7844040000/[105(8β)7], where β = (s + 3/4)π.
< >

Issue Details

International Journal of Flow Control

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers