Access provided by Rice University


Kachanov, Y. S., Physical mechanisms of laminar-boundary-layer transition, Annual Review of Fluid Mechanics, 1994, 26, 411-482.
CrossRef
Schubauer, G. and Skramstad, H. K., Laminar boundary layer oscillations and stability of laminar flow, Journal of Aeronautical Science, 1947, 14, 69.
CrossRef
Herbert, T., Secondary instability of boundary layers, Annual Review of Fluid Mechanics, 1988, 20, 487-526.
CrossRef
Kachanov, Y. S. and Levchenko, V. Y., The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer, Journal of Fluid Mechanics, 1984, 138, 209-247.
CrossRef
Zelman, M. B. and Maslennikova, I. I., Tollmien-Schlichting wave resonant mechanism for subharmonic-type transition, Journal of Fluid Mechanics, 1993, 252, 449-478.
CrossRef
Waleffe, F., The nature of triad interactions in homogeneous turbulence, Physics of Fluids A, 1992, 4(2), 350-363.
CrossRef
Orszag, S. A. and Patera, A. T., Secondary instability of wall-bounded shear flows, Journal of Fluid Mechanics, 1983, 128, 347-385.
CrossRef
Craik, A. D. D., Non-linear resonant instability in boundary layers, Journal of Fluid Mechanics, 1971, 50(2), 393-413.
CrossRef
Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M., The three-dimensional nature of boundary-layer instability, Journal of Fluid Mechanics, 1962, 12, 1-34.
CrossRef
Borodulin, V. I., Gaponenko, V. R., Kachanov, Y. S., Meyer, D. G. W., Rist, U., Lian, Q. X., and Lee, C. B., Late-stage transitional boundary-layer structures. Direct numerical simulation and experiment, Theoretical and Computational Fluid Dynamics, 2002 15, 317-337.
CrossRef
Gatski, T. B., Review of incompressible fluid flow computations using the vorticity-velocity formulation, Applied Numerical Mathematics, 1991, 7, 227-239.
CrossRef
Rempfer, D., On boundary conditions for incompressible Navier-Stokes problems, Applied Mechanics Review, 2006, 59, 107-125.
CrossRef
Gresho, P. M., Incompressible fluid dynamics: Some fundamental formulation issues, Annual Review of Fluid Mechanics, 1991, 23, 413-453.
CrossRef
Bhaganagar, K., Rempfer, D., and Lumley, J. L., Direct numerical simulation of spatial transition to turbulence using fourth-order vertical velocity second-order vertical vorticity formulation, Journal of Computational Physics, 2002, 180, 200-228.
CrossRef
Gatski, T. B., Grosch, C. E., and Rose, M. E., A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables, Journal of Computational Physics, 1982, 48, 1-22.
CrossRef
Daube, O., Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique, Journal of Computational Physics, 1992, 103, 402-414.
CrossRef
Ishihara, T., Gotoh, T., and Kaneda, Y., Study of high-Reynolds number isotropic turbulence by Direct Numerical Simulation, Annual Review of Fluid Mechanics, 2009, 41, 165-180.
CrossRef
Fasel, H., Investigation of the stability of boundary layers by a finite difference model of the Navier-Stokes equations, Journal of Fluid Mechanics, 1976, 78(2), 355-383.
CrossRef
Fasel, H. and Konzelmann, U., Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, Journal of Fluid Mechanics, 1990, 221, 311-347.
CrossRef
Fasel, H. F., Rist, U., and Konzelmann, U., Numerical investigation of the three-dimensional development in boundary-layer transition, AIAA Journal, 1990, 28(1), 29-37.
CrossRef
Gatski, T. B., Grosch, C. E., and Rose, M. E., The numerical solution of the Navier-Stokes equations for 3-dimensional, unsteady, incompressible flows by compact schemes, Journal of Computational Physics, 1989, 82, 298-329.
CrossRef
Rai, M. M. and Moin, P., Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer, Journal of Computational Physics, 1993, 109(2), 169-192.
CrossRef
Kleiser, L. and Zang, T. A., Numerical simulation of transition in wall-bounded shear flows, Annual Review of Fluid Mechanics, 1991, 23, 495-537.
CrossRef
Barry, M. D. J. and Ross, M. A. S., The flat plate boundary layer. Part 2. The effect of increasing thickness on stability, Journal of Fluid Mechanics, 1970, 43(4), 813-818.
CrossRef
Jordinson, R., The flat plate boundary layer. Part 1. Numerical integration of the Orr-Sommerfeld equation, Journal of Fluid Mechanics, 1970, 43(4), 801-811.
CrossRef
Ross, J. A., Barnes, F. H., Burns, J. G., and Ross, M. A. S., The flat plate boundary layer. Part 3. Comparison of theory with experiment, Journal of Fluid Mechanics, 1970, 43(4), 819-832.
CrossRef
Laney, C. B., Computational Gasdynamics, Cambridge University Press, Cambridge, 1998.
Chung, T. J., Computational Fluid Dynamics, Cambridge University Press, Cambridge, 2002.
Lee, C. B. and Wu, J. Z., Transition in wall-bounded flows, Applied Mechanics Review, 2008, 61, 1-20.
Sengupta, T. K., Bhaumik, S., Singh, V., and Shuki, S., Nonlinear and nonparallel receptivity of zero-pressure gradient boundary layer, International Journal of Emerging Multidisciplinary Fluid Sciences, 2009, 1(1), 19-35.
Abstract
Ng, B. S. and Reid, W. H., On the numerical solution of the Orr-Sommerfeld problem: Asymptotic initial conditions for shooting methods, Journal of Computational Physics, 1980, 38, 275-293.
CrossRef
Van Stijn, T. L. and Van de Vooren, A. I., An accurate method for solving Orr-Sommerfeld equation, Journal of Engineering Mathematics, 1980, 14(1), 17-26.
CrossRef
Orszag, S. A., Accurate solution of the Orr-Sommerfeld stability equation, Journal of Fluid Mechanics, 1971, 50, 689-703.
CrossRef
Bertolotti, F. P., Herbert, T., and Spalart, P. R., Linear and nonlinear stability of the Blasius boundary layer, Journal of Fluid Mechanics, 1992, 242, 441-474.
CrossRef
Benney, D. J. and Lin, C. C., On the secondary motion induced by oscillations in a shear flow, Physics of Fluids, 1960, 3(4), 656-657.
CrossRef
Bake, S., Fernholz, H. H., and Kachanov, Y. S., Resemblance of K- and N-regimes of boundary layer transition at late stages, European Journal of Mechanics B - Fluids, 2000, 19, 1-22.
CrossRef
Bake, S., Meyer, D. G. W., and Rist, U., Turbulence mechanism in Klebanoff transition: A quantitative comparison of experiment and direct numerical simulation, Journal of Fluid Mechanics, 2002, 459, 217-243.
Champagne, F. H., Harris, V. G., and Corrsin, S., Experiments on nearly homogeneous turbulent shear flow, Journal of Fluid Mechanics, 1970, 41(1), 81-139.
CrossRef
E, W. and Liu, J.-G., Vorticity boundary condition and related issues for finite difference schemes, Journal of Computational Physics, 1996, 124, 368-382.
CrossRef
Orszag, S. A. and Israeli, M., Numerical simulation of viscous incompressible flows, Annual Review of Fluid Mechanics, 1974, 6, 281-318.
CrossRef
Wu, X. H., Wu, J. Z., and Wu, J. M., Effective vorticity-velocity formulations for three-dimensional incompressible viscous flows, Journal of Computational Physics, 1995, 122, 68-82.
CrossRef
Davies, C. and Carpenter, P. W., A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution, Journal of Computational Physics, 2001, 172, 119-165.
CrossRef
Bertagnolio, F. and Daube, O., Solution of the div-curl problem in generalized curvilinear coordinates, Journal of Computational Physics, 1997, 138, 121-152.
CrossRef
Fasel, H., ed. Recent Developments in the Numerical Solution of the Navier-Stokes Equations and Hydrodynamic Stability Problems, Computational Fluid Dynamics, ed. Wolfgang Kollmann, 1980, Hemisphere Publishing Corporation, 167-280.
< >

Issue Details

International Journal of Emerging Multidisciplinary Fluid Sciences


International Journal of Emerging Multidisciplinary Fluid Sciences

Print ISSN: 1756-8315

Related Content Search

Find related content

By Author

Subscription Options

Individual Offers