Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, ASME J. of Heat Transfer, 1999, 121 (2), 280-289. CrossRef | |
Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters, 2001, 78 (6), 718-720. CrossRef | |
Xuan, Y. and Li, Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat and Fluid Flow, 2000, 21 (1), 58-64. CrossRef | |
Zhou, D.W., Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation, Int. J. Heat and Mass Transfer, 2004, 47 (14-16), 3109-3117. CrossRef | |
Patel, H.E., Das, S.K., Sundarrajan, T., Nair, A.S., George, B. and Pradeep, T., Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 2003, 83(14), 2931-2933. CrossRef | |
Xuan, Y. and Roetzel, W,. Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat and Mass Transfer, 2000, 43 (19), 3701-3707. CrossRef | |
Keblinski, P., Phillpot, S.R., Choi, S.U.S. and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids), Int. J. Heat and Mass Transfer, 2002, 45 (4), 855-863. CrossRef | |
Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, ASME J. of Heat Transfer, 2003, 125 (4), 567-574. CrossRef | |
Hamilton, R.L. and Crosser, O.K., Thermal conductivity of heterogeneous two-component systems. I & EC Fundamentals 1, 1962, 182-191. | |
Wasp, F. J., Solid-Liquid Flow Slurry Pipeline Transportation, Trans. Tech. Pub., Berlin, 1977. | |
Maxwell-Garnett, J.C., Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A, 1904, 203, 385-420. CrossRef | |
Bruggeman, D.A.G., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Annalen der Physik. Leipzig, 1935, 24, 636-679. | |
Chon, H.C., Kihn, K.D., Lee, S.P. and Choi, S.U.S., Empirical correlation finding the role of temperature and particle size for nanofluid (Al203) thermal conductivity enhancement, Applied Physics Letters, 2005, 87, 153107. | |
Patel, H.E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N. and Das, S.K., A micro-convection model for thermal conductivity of nanofluid, Pramana-Journal of Physics, 2005, 65 (5), 863-869. CrossRef | |
Khanafer, K., Vafai, K. and Lightstone, M., Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids, Int. J. Heat and Mass Transfer, 2003, 46 (19), 3639-3653. CrossRef | |
Jou, R.Y. and Tzeng, S.C., Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, International Communications in Heat and Mass Transfer, 2006, 33 (6), 727-736. CrossRef | |
Putra, N., Roetzel, W. and Das, S.K., Natural convection of nano-fluids, Heat and Mass Transfer, 2003, 39 (8-9), 775-784. CrossRef | |
Wen, D. and Ding, Y., Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids), IEEE Transactions on Nanotechnology, 2006, 5 (May), 220-227 CrossRef | |
Nnanna, A.W.A., Experimental Model of Temperature-Driven Nanofluid, ASME J. of Heat Transfer, 2007, 129 (6), 697-704. CrossRef | |
Kwak, K. and Kim, C., Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheology Journal, 2005, 17 (2), 35-40. | |
Chang, H, Jwo, C.S., Lo, C.H., Tsung, T.T., Kao, M.J. and Lin, H.M., Rheology of CuO nanoparticle suspension prepared by ASNSS, Rev. Adv. Material Science, 2005, 10, 128-132. | |
Ding, Y., Alias, H., Wen, D. and Williams, R.A., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat and Mass Transfer, 2006, 49 (1-2), 240-250. CrossRef | |
Santra, A.K., Sen, S. and Chakraborty, N., Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity using Copper-Water Nanofluid, Int. J. Thermal Sciences, 2008, 47 (9), 1113-1122. CrossRef | |
Bird, R.B., Stewert, W.E. and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons, Singapore, 1960. | |
Patankar, S.V, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D. C., 1980. | |
de Vahl Davis, G., Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Numer. Methods Fluids, 1962, 3, 249-264. CrossRef |
Particle Diameter Effect on Heat Transfer Due to Natural Convection Using Cu-Water Nanofluid - A Non-Newtonian Approach
Apurba Kumar SantraRelated information
1 Department of Power Engineering, Jadavpur University, Salt Lake Campus, Block - LB, Plot-8, Sector - III, Salt Lake, Kolkata - 700 098, India
, Swarnendu SenRelated information2 Department of Mechanical Engineering, Jadavpur University, Kolkata- 700 032, India
, Niladri ChakrabortyRelated information3 Department of Power Engineering, Jadavpur University, Salt Lake Campus, Block - LB, Plot-8, Sector - III, Salt Lake, Kolkata - 700 098, India