Bark F. H., Bark T. H. On vertical boundary layers in a rapidly rotating gas. Journal of Fluid Mechanics 1976, 78, 815-825. | |
Brouwers J. J. H. On compressible flow in a rotating cylinder. Journal of Engineering Mathematics 1978, 12, 265-285. CrossRef | |
Dickinson G. J., Jones I. P. Numerical solutions for the compressible flow in a rapidly rotating cylinder. Journal of Fluid Mechanics 1981, 107, 89-107. CrossRef | |
Park J.S, Hyun J. M. Flow of a compressibl fluid in a rapidly rotating pipe with azimuthally varying wall thermal condition. Journal of Fluid Mechanics 2004, 518, 125-145 CrossRef | |
Babarsky R.J, Herbst I.W, Wood III H. G. A new variational approach to gas flow in a rotating system. Physics of Fluid 2002, 14(10), 3624-3640. | |
Johnson EA, Stopford P. J. Shear flow in the presence of ‘strong rotation’: II. Approximations for continuum-plus-rarefied flow. J. Phys. D: Appl. Phys. 1983, 16, 1207-1215. CrossRef | |
Müller I., On the frame dependence of stress and heat flux., Arch. Rational Mech. Anal. 45, 1972, 241-250 | |
Sharipov F. M., Kremer G. M., Non-isothermal Couette flow of a rarefied gas between two rotating cylinders. Eur. J. Mech. B/Fluids 1999, 18(1), 121-130. CrossRef | |
Sharipov F.M, Cumin L. M. G., Kremer G. M. Transport phenomena in rotating rarefied gases Physics of Fluids 2001, 13(1), 335-346. CrossRef | |
Sharipov F. M., Kremer G. M. On thr frame dependence of constitutive equations. I. Heat transfer through a rarefied gas between two rotating cylinders., Continuum Mechanics. Thermodynamics, 7, 1995, 57-71. CrossRef | |
Taheri P, Struchtrup H. Effects of rarefaction in microflows between coaxial cylinders. Physical Review E 2009, 80, 066317(1)-066317(16). | |
Ghosh AK, Deshpande SM. Least squares kinetic upwind method for inviscid compressible flows. AIAA paper 95-1735, 1995. | |
Ramesh V. Least squares grid-free kinetic upwind method. PhD thesis. Bangalore, Dept. of Aerospace Engg., Indian Institute of Science, 2001. | |
Ramesh V, Deshpande SM, Unsteady flow computations for flow past multiple moving boundaries using LSKUM, Computers and Fluids, 2007, 36, 1592-1608. CrossRef | |
Praveen C, Ghosh AK, Deshpande SM. Positivity preservation, stencil selection and applications of LSKUM to 3-D inviscid flows. Computers and Fluids 2009, 38(8), 1481-1494. CrossRef | |
Praveen C. Development and Applications of Kinetic Meshless Methods for Euler Equations. PhD thesis. Bangalore: Dept. Of Aerospace Engg., Indian Institute of Science, 2004. | |
Mahendra AK. Application of least squares kinetic upwind method to strongly rotating viscous flows. M. Sc.(Eng) Thesis. Indian Institute of Science, Bangalore, 2003. | |
Mahendra AK, Singh RK, Gouthaman G. Meshless kinetic upwind method for compressible viscous rotating flows. Comput Fluids, in press. doi:10.1016/j.compfluid.2010.10.015. | |
Anil N., Rajan NKS, Deshpande S. M., Mathematical analysis of dissipation in m-KFVS Method, Fluid Mechanics Report 2005 FM 1, Indian Institute of Science, Bangalore, 2005 | |
Kolobov VI, Arslanbekov RR, Aristov V, Frolova AA, Zabelok SA. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. Journal of Computational Physics, 2007, 223, 589-608. CrossRef | |
Wang W-L, Boyd I.D, Predicting continuum breakdown in hypersonic viscous flows, Physics of fluids, 2003, 15(1), 91-100. | |
Schwartzentruber, T., Boyd, I. A hybrid particle-continuum method applied to shock waves. Journal of Computational Physics, 2006, 215, 402-416. CrossRef | |
Lockerby D. A., Struchtrup H, Reese J. M., Switching criteria for hybrid rarefied gas flow solvers, Rarefied Gas Dynamics:26th International Symposium, ed. T. Abe, 2009, CP1084, 434-440. | |
Arkilic EB, Schmidt M. A., Breuer KS. Gaseous Slip Flow in Long Microchannels. Journal of Microelectromechanical systems, 1997, 6(2), 167-178. CrossRef | |
M. Gad-el Hak. The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture. ASME Journal of Fluids Engineering, 1999, 121(403), 5-33. CrossRef | |
Bird, GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, 1994. | |
Shen, C. Rarefied Gas Dynamics : Fundamentals, Simulations and Micro Flows. Springer, Berlin, 2005. | |
Aristov, V. V. Direct methods for solving the Boltzmann equations and study of non equilibrium flows, Kluwer, 2001. | |
Burt JM, Boyd ID, A hybrid particle approach for continuum and rarefied flow simulation, Journal of Computational Physics 2009, 228, 460-475. CrossRef | |
Cercignani C, Lampis M, and Lorenzani S, Variational approach to gas flows in microchannels, Physics of Fluids 2004, 16(9), 3426-3437 CrossRef | |
Fan, J., Shen, C. Statistical simulation of low-speed unidirectional flows in transition regime. In: Rarefied Gas Dynamics, edited by R. Brun et al., 1999, vol. 2, 245. Cepadus-Editions, Toulouse. | |
Fan, J., Shen, C. Statistical simulation of low-speed rarefied gas flows. Journal of Computational Physics, 2001, 167, 393. CrossRef | |
Goldstein DB, Sturtevant B, Broadwell JE, Investigation of the motion of the discrete velocity gases, In: E. P. Muntz et al. (Eds.), Proceedings of the16th International Symposium on RGD, in Series: Progress in Astronautics and Aeronautics 118, 1989, 100. | |
Rogier F., Schneider JA, A direct method for solving Boltzmann equation, Trans. Theo. Stat. Phys., 1994, 23 (1-3), 313-338. CrossRef | |
Tan Z., Varghese PL, The δ-e method for the Boltzmann equation, J. Comput. Phys., 1994, 110, 327. CrossRef | |
Tcheremissine F. G., Solution to the Boltzmann kinetic equation for high-speed flows, Comput. Math. Math. Phys. 2006, 4, 315. | |
Degond P., Pareschi L., Russo G. (Eds.), Modeling and Computational methods for Kinetic Equations, Birkhauser, Boston, 2004, 356. | |
Oran, E. S., Oh, C. K., Cybyk, B. Z. Direct simulation Monte Carlo: recent advances and applications. Annu. Rev. Fluid Mech. 1998, 30, 403-441. CrossRef | |
Crouseilles N., Degond P., Lemou M., Ahybrid kinetic/fluid models for solving the gas dynamics Boltzmann-BGK equation, J. Comput. Phys. 2004, 199, 776. CrossRef | |
Beylich AE, Solving the kinetic equation for all Knudsen numbers, Physics of Fluids, 2000, 12(2), 444-465 CrossRef | |
Hash DB, Hassan HA, Two-dimensional coupling issues of hybrid DSMC/Navier-Stokes solvers, AIAA paper 97-2507, 1997. | |
Lockerby, D., Reese, J., Gallis, M. The usefulness of higher order constitutive relations for describing the Knudsen layer. Physics of Fluids, 2005, 17, 100609(1)-100609(9). | |
Chapman, S., Cowling, T. G. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, 1970. | |
Wang Chang, C. S. On the theory of the thickness of weak shock waves, Technical report no. APL/JHU, CM-503. Dept. of Eng. Research, University of Michigan, 1948. | |
Grad, H. On the Kinetic theory of rarefied gases. Commun. Pure Appl. Maths 1949, 2, 331. CrossRef | |
Wood L. C. Frame-indifferent kinetic theory. Journal of Fluid Mechanics, 1983, 136, 423-433. CrossRef | |
Lumpkin III, F. Development and evaluation of continuum models for translational-rotational nonequilibrium. Ph.D. thesis, Stanford University, 1990 | |
Eu, C. Kinetic Theory and Irreversible Thermodynamics. Wiley, New York, 1992. | |
Cercignani, C. Mathematical Methods in Kinetic Theory. Plenum, New York., 1990 | |
Cercignani, C. Higher order slip according to the linearized Boltzmann equation, Institute of Engineering Research Report AS-64-19, University of California, Berkeley, 1964. | |
Loyalka, S., Petrellis, N., Storvick, T. Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accommodation at the surface. Physics of Fluids, 1975, 18, 1094-1099 CrossRef | |
Zhong, X., MacCormack, R. W., Chapman, D. R. Stabilization of the Burnett equations and application to hypersonic flows. AIAA Journal, 1993, 31. | |
Jin, S., Slemrod, M. Regularization of the burnett equations via relaxation. Journal of Statistical Physics, 2001, 103 (5/6), 1009-1033. CrossRef | |
Struchtrup, H., Torrilhon, M. Regularization of Grad's 13 moment equations: derivation and linear analysis. Physics of Fluid, 2003, 15. 33 | |
Balakrishnan R. An approach to entropy consistency in second-order hydrodynamic equations. Journal of Fluid Mechanics 2004, 503, 201-245. CrossRef | |
Hadjiconstantinou N. G., The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics, Physics of Fluids, 2006, 18, 111301(1)-111301(19). | |
Loyalka S. K., Velocity profile in the Knudsen layer for the Kramer's problem, The Physics of Fluids, 1975, 18(12), 1666-1669. CrossRef | |
Harley J.C, Huang Y, Bau H, and Zemel J. N., Gas flow in microchannels, J. Fluid Mech., 1995, 284, 257-274 CrossRef | |
Arkilic E. B., Breuer K. S., Schmidt M. A., Gaseous Flow in Microchannels, 1994, ASME FED-Vol. 197, Application of Microfabrication to Fluid Mechanics, pp. 57-66 | |
Beskok A. and Karniadakis G., Simulation of heat and momentum transfer in micro-geometries, 1993, AIAA Paper 93-3269. | |
Maxwell, J. On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions Royal Society of London, 1879, 170, 231-256. CrossRef | |
Lockerby DA, Reese JM, Emerson DR, Barber RW. Velocity boundary condition at solid walls in rarefied gas calculations. Physical Review E 2004, 70, 017303(1)-017303(4). | |
Kennard E. H., Kinetic Theory of Gases, McGraw-Hill, New York, 1938. | |
Albertoni S., Cercignani C., Gotusso L., Numerical Evaluation of the slip coefficient, Physics of Fluids, 1963, 6, 993-996. CrossRef | |
Loyalka S. K., Hickey K. A., Plane Poiseuille flow: Near continuum results for a rigid sphere gas, Physica A 1989, 160, 395. CrossRef | |
Loyalka S. K., Tompson R. V., The velocity slip problem: Accurate solutions of the BGK model integral equation, European Journal of Mechanics B/Fluids, 2009, 28, 211-213 CrossRef | |
Ohwada T, Sone Y., Aoki K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Physics of Fluids A, 1, 1989, 2042-2049. CrossRef | |
Hadjiconstantinou N. G., Comment on Cercignani's second-order slip coefficient, Physics of Fluids 2003, 15(8), 2352-2354. CrossRef | |
Deissler R. G., An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases, Int. J. Heat Mass Transfer, 1964, 7, 681-694. CrossRef | |
Maurer J., Tabeling P., Joseph P., Willaime H., Second-order slip laws in microchannels for helium and nitrogen, Physics of Fluids, 2003, 15(9), 2613-2621. CrossRef | |
Ewart T, Perrier P, Graur I. A., Meolans J. G., Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes, J. Fluid Mech. 584, 2007, 337. CrossRef | |
Beskok A, Validation of a new velocity-slip model for separated gas microflows, Numerical heat transfer, Part B, 2001, 40, 451-471. CrossRef | |
Agrawal A, Djenidi L, Antonia R. A., Simulation of gas flow in microchannels with a sudden expansion or contraction, J. Fluid Mech., 2005, 530, 135-144. CrossRef | |
Struchtrup, H., Torrilhon, M. Higher-order effects in rarefied channel flows, Physical Review E, 2008, 78, 046301(1)-046301(11). | |
Cercignani C., and Lorenzani S., Variational derivation of second-order slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules, Physics of Fluids, 2010, 22, 062004(1)-062004(8) | |
Schamberg R, The Fundamental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems, Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1947. | |
Sreekanth A. K., Slip flow through long circular tubes, in: L. Trilling, H. Y. Wachman (Eds.), Proceedings of the sixth international symposium on Rarefied Gas Dynamics, Academic Press, 1969, 667-680. | |
Lang, H., Second order slip effects in Poiseuille flow, Physics of Fluids, 1976, 19, 366-371 CrossRef | |
Aubert C., Colin S., High-order boundary conditions for gaseous flows in rectangular microducts, Microscale Thermophys. Eng. 5, 2001, 41-54. CrossRef | |
Hsia Y. T., Domoto G. A., An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra Low Clearances, J. Lubrication Technol., 1983, 105, 120-130. CrossRef | |
Mitsuya Y, Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient, Journal of Tribology, 1983, 115, 289-294. CrossRef | |
Pan L. S., Liu G. R., Lam K. Y., Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo, J. Micromech. Microeng., 1999, 9, 89-96. CrossRef | |
Hadjiconstantinou N. G., Al-Mohssen H. A., A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers, J. Fluid Mechanics, 2005, 533, 47-56. | |
Dongari N., Agrawal A., Agrawal A., Analytical solution of gaseous slip flow in long microchannels International Journal of Heat and Mass Transfer, 2007, 50, 3411-3421. CrossRef | |
Karniadakis G. E., Beskok A., Aluru N., Microflows and Nanoflows: Fundamentals and Simulation, Springer-Verlag, New York, 2005. | |
Roohi E., Darbandi M., Extending the Navier-Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme, Physics of Fluids, 2009, 21, 082001(1)-082001(12). | |
Fichman M, Hetsroni G., Viscosity and slip velocity in gas flow in microchannels, Physics of Fluids, 2005, 17, 123102(1)-123102(5). | |
Lilley C. R., Sader J. E., Velocity profile in the Knudsen layer according to the Boltzmann equation, Proc. of the Royal Society A, 2008, 464, 2015-2035. CrossRef | |
Meng J, Zhang Y, Analytical Solution for the Lattice Boltzmann Model Beyond Naviers-Stokes, Advances in Applied Mathematics and Mechanics, 2010, Vol. 2, No. 5, pp. 670-676. | |
Ansumali S., Karlin I, Kinetic boundary conditions in the lattice Boltzmann method, Physical Review E, 2002, 66, 026311(1)-026311(6). | |
Sbragaglia M, Succi S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Physics of Fluids, 2005, 17, 093602(1)-093602(8). | |
Kim S. H., Pitsch H., Boyd I. D., Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows, Physical Review E, 2008, 77, 026704 (1)-026704(12). CrossRef | |
Guo Z, Zheng C, and Shi B, Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Physical Review E, 2008, 77, 036707 (1)-036707(12). | |
Agarwal, R. K., Yun, K.-Y., Balakrishnan, R. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime., Physics of Fluids, 2001, 13, 3061-3085. | |
Bao F-B, Lin J-Z, Burnett simulations of gas flow in microchannels, Fluid Dynamics Research, 2008, 40, 679-694. CrossRef | |
Mieussens L. Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries. Journal of Computational Physics 2000, 162, 429-466. CrossRef | |
Lockerby D. A., Reese J. M., High-resolution Burnett simulations of micro Couette flow and heat transfer, Journal of Computational Physics, 2003, 188, 333-347. CrossRef | |
Xu K, Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions. Journal of Fluid Mechanics 2004, 513, 87-110. CrossRef | |
Li Z, Zhang H, Gas kinetic algorithm using Boltzmann model equation, Computers & Fluids, 2004, 33, 967-991. CrossRef | |
Mahendra A. K., Gouthaman G, Singh R. K., Meshless method for slip flows, Report HBNI-3-2010, 2010. | |
Arora K. Weighted least squares kinetic upwind method using eigendirections (WLSKUM-ED). Ph.D. Thesis. Indian Institute of Science, 2006. | |
Fortunato B, Magi V. An implicit Lambda Method for 2-D Viscous Compressible Flows. In: Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, S. M. Deshpande, S. S. Desai, R. Narasimha (eds.), Springer, 1995, 259-264. | |
Catalano LA, De Palma P, Naplitano M, Pascazio G. Genuinely multidimensional upwind methods for accurate and efficient solutions of compressible flows. Notes on Numerical Fluid Mechanism Vieweg-Verlag, Braunschweig, 1997, 221-250. | |
Avci M, Aydin O, Laminar forced convection slip-flow in a micro-annulus between two concentric cylinders, International Journal of Heat and Mass Transfer, 2008, 51, 3460-3467. CrossRef | |
Einzel D, Panzer P, Liu M, Boundary Condition for fluid flow : Curved or Rough surfaces, Phys. Rev. Lett., 1990, 64, 2269-2272. CrossRef | |
Tibbs KW, Baras F, Garcia AL. Anomalous flow profile due to the curvature effect on slip length. Physical Review E, 1997, 56(2), 2282-2283. CrossRef | |
Aoki K, Yoshida H, Nakanishi T, Garcia A. L., Inverted velocity profile in the cylindrical Couette flow of a rarefied gas, Physical Review E, 2003, 68, 016302(1)-016302(11). | |
Wannier GH. A contribution to the hydrodynamics of lubrication. Quarterly Journal of Applied Mathematics, 1950, 8, 1-32. CrossRef | |
Kamal MM. Separation in the flow between eccentric rotating cylinders. Journal of Basic Engineering, ASME, 1966, 88, 717-724. CrossRef | |
Wood WW. The asymptotic expansions at large Reynolds numbers for steady motion between non-coaxial rotating cylinders. Journal of Fluid Mechanics, 1957, 8, 159-175. | |
Ballal BY, Rivlin RS. Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects. Archive of Rational Mechanics and Analysis, 1977, 62, 237-294. | |
Araujo JHC, Ruas V, Vargas AS. Finite element solution of flow between eccentric cylinders with viscous dissipation. International Journal of Numerical Methods in Fluids, 1990, 11, 849-865. CrossRef | |
Ramesh PS, Lean MH. A boundary integral equation method for Navier-Stokes equations. Application to flow in annulus of eccentric cylinders. International Journal of Numerical Methods in Fluids, 1991, 13, 355-369. CrossRef | |
San Anders A, Szeri AZ. Flow between eccentric rotating cylinders. Journal of Applied Mechanics, ASME, 1984, 51, 869-878. CrossRef | |
de Socio L. M., Marino L., Numerical experiments on the gas flow between eccentric rotating cylinders, International Journal for Numerical Methods in Fluids, 2000, 34, 229-240. CrossRef | |
de Socio L. M., Marino L., Flow separation between rotating eccentric cylinders, European Journal of Mechanics B/Fluids, 2003, 22, 85-97. CrossRef | |
Deshpande S.M, Current Status and Future Directions in CFD, INS Golden Jubilee Lecture, Mumbai, 2004. | |
Mahendra AK, Sanyal A, Gouthaman G., Parallel meshless solver for strongly rotating flows. In: Proceedings The 9th International workshop on Separation phenomena in liquids and gases, S. Zeng (ed.), Tsinghua University Press, Beijing, 2006, 127-131. | |
Rajput S., Study of shocks under strong rotation, M. Tech. Thesis, Homi Bhabha National Institute, Mumbai, 2010. |
Viscous Compressible Slip Flows. Part 2 : Meshless Solver for Rotating Slip Flows
Ajit MahendraRelated information
1 Machine Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400094, India
, G. GouthamanRelated information1 Machine Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400094, India
, R. SinghRelated information2 Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400094, India