Eastman J. A., Choi U. S., Lee S., Thopson L. J., Lee A. S., Enhanced Thermal Conductivity through the development of nanofluids: Proceedings of conference: Fall meeting of the Materials Research Society (MRS), Boston, USA, 1996, 3-11. | |
Hasan M. I., Rageb A. A., Yaghoubi M., Homayoni H., Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. Int. J. of Thermal Sc., 48, 2009, 1607-18. | |
Keblinski P., Prasher R., Eapen J., Thermal conductance of nanofluids: is the controversy over? J. of Nanoparticles Research, 2008, 10, 1089-97. CrossRef | |
Lee S., Choi S. U. S., Li S., Eastman J. A., Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121, 1999, 280-88. CrossRef | |
Koo J. and Kleinstreuer C., A new thermal conductive model for nanofluids. J. of Nanoparticles Research, 6, 2004, 577-88. CrossRef | |
Jang S. P., Choi S. U. S., Effect of various parameters on nanofluids thermal conductivity, Journal of Heat Transfer, 129, 2007, 617-623. CrossRef | |
Vajjha R. S., Das D. K., Experimental determination of thermal conductivity of three nanofluids and development of new correlation, Int. J. of Heat & Mass transfer, 2009, 4675-82. | |
Sharma Avdhesh Kr., Singh A., Model development for effective thermal conductivity and dynamic viscosity of Alumina-water nanofluid, Paper code μFLU08-253, In: Proceeds. of the 1st European Conf. on Microfluidics, Bologna, Dec. 10-12, 2008. | |
Wong K. V., Kurma T., Transport properties of alumina nanofluids, Nanotechnology, 19, 2008, 345702 (8p.) CrossRef | |
Nguyen C. T., Desgranges F., Roy G., Gallanis N., Mare T., Boucher S., Mintsa H. A., Temperature and particle- size dependent viscosity data for water- based nanofluids-Hysteresis phenomenon. Int. J. of Heat and Fluid Flow, 28, 2007, 1492-506. CrossRef | |
Rachkovskij D. A., Kussul S. A., Talayev S. A., Heat exchange in short microtubes and micro heat exchangers with low hydraulic losses, In: Microsystems Technologies, 4, Springer, 1998, 151-158. CrossRef | |
Mohammed H. A., Bhaskaran G., Shuaib N. H., Abu-Mulaweh H. I., Influence of nanofluids on parallel flow square microchannel heat exchanger performance, Int. Comm. in heat and mass transfer, 38, 2011, 1-9. CrossRef | |
Kakac S., Liu H., Heat Exchangers: Selection, rating and thermal design, 2nd Ed., CRC Press, 2002. | |
Chein R., Huang G., Analysis of microchannel heat sink performance using nanofluids, Applied Thermal Engg., 25, 2005, 3104-14. | |
Li J., Kleinstreuer C., Thermal performance of nanofluid flow in microchannels, Int. J. of Heat and Fluid flow, 29, 2008, 1221-32. CrossRef | |
Li J., Computational Analysis of Nanofluid Flow in Microchannels with Applications to Microheat Sinks and Bio-MEMS, Ph.D. Thesis, Mechanical Engg., North Carolina State University, Raleigh, 2008. | |
Xuan Y, Roetzel W., Conception for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer, 43, 2000, 3701-7. CrossRef | |
Koo, J. Kleinstreuer C., Laminar nanofluid flow in microsheet-shinks. Int. J. Nanoparticle Res., 48, 2005, 2652-61. |
Performance of a Conceptual Counter-flow MCHE operated on CuO-Water Nanofluid: Influence of Geometry
Avdhesh SharmaRelated information
1 DCR University of Science & Technology, Murthal (Sonepat) Haryana, INDIA